The Recent Progress of MEMS/NEMS Resonators
Abstract
:1. Introduction
2. Manufacturing and Testing of Resonators
3. Research on Resonance Performance
4. Application of Resonant Sensor
4.1. Single or Double-Clamped Resonators
4.1.1. Resonators in Micromechanical Thermal Analysis
4.1.2. Resonators in the Quantum Field
4.1.3. Resonator as Mass Sensor
4.1.4. Self Oscillating Resonator
4.2. Hemispherical Shell Resonators
4.3. Microdisk Resonators
4.4. Drum Resonators
4.5. Ring Resonators
4.6. Surface/Bulk Acoustic Wave Resonators
4.7. Fork Resonators
4.8. Other Resonant Structures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.; Tang, H.X.; Roukes, M.L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2007, 2, 114–120. [Google Scholar] [CrossRef]
- Johnson, B.N.; Mutharasan, R. Biosensing using dynamic-mode cantilever sensors: A review. Biosens. Bioelectron. 2012, 32, 1–18. [Google Scholar] [CrossRef]
- Arash, B.; Jiang, J.-W.; Rabczuk, T. A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl. Phys. Rev. 2015, 2, 021301. [Google Scholar] [CrossRef]
- Gouttenoire, V.; Barois, T.; Perisanu, S.; Leclercq, J.-L.; Purcell, S.T.; Vincent, P.; Ayari, A. Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: Towards a nanotube cell phone. Small 2010, 6, 1060–1065. [Google Scholar] [CrossRef] [Green Version]
- Jose-Yacaman, M.; Miki-Yoshida, M.; Rendon, L.; Santiesteban, J.G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 1993, 62, 657–659. [Google Scholar] [CrossRef]
- Li, S.; Feng, X.; Liu, H.; Wang, K.; Long, Y.-Z.; Ramakrishna, S. Preparation and application of carbon nanotubes flexible sensors. J. Semicond. 2019, 40, 111606. [Google Scholar] [CrossRef]
- Wilder, J.W.G.; Venema, L.C.; Rinzler, A.G.; Smalley, R.E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nat. Cell Biol. 1998, 391, 59–62. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Q.; He, Z.; Gao, X.; Wu, E.; Guo, J.; Zhou, C.; Feng, Z. Epitaxial graphene gas sensors on SiC substrate with high sensitivity. J. Semicond. 2020, 41, 41. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Samanta, C.; Gangavarapu, P.R.Y.; Naik, A.K. Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system. Appl. Phys. Lett. 2015, 107, 173110. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, Z.; Haneef, I.; Udrea, F. Material selection for Micro-Electro-Mechanical-Systems (MEMS) using Ashby’s approach. Mater. Des. 2018, 157, 412–430. [Google Scholar] [CrossRef]
- Middlemiss, R.P.; Samarelli, A.; Paul, D.J.; Hough, J.; Rowan, S.; Hammond, G.D. Measurement of the Earth tides with a MEMS gravimeter. Nat. Cell Biol. 2016, 531, 614–617. [Google Scholar] [CrossRef] [Green Version]
- Kanik, M.; Bordeenithikasem, P.; Kim, D.; Selden, N.; Desai, A.; M’Closkey, R.; Schroers, J. Metallic glass hemispherical shell resonators. J. Microelectromechanical Syst. 2014, 24, 19–28. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, J.; Feng, P. Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators. Nat. Commun. 2014, 5, 5158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahamians, J.-O.; Van, L.P.; Régnier, S. Contributed review: Quartz force sensing probes for micro-applications. Rev. Sci. Instrum. 2016, 87, 71502. [Google Scholar] [CrossRef] [Green Version]
- Castelletto, S.; Rosa, L.; Blackledge, J.; Al Abri, M.Z.; Boretti, A. Advances in diamond nanofabrication for ultrasensitive devices. Microsyst. Nanoeng. 2017, 3, 17061. [Google Scholar] [CrossRef] [Green Version]
- Fritz, J.; Baller, M.K.; Lang, H.P.; Rothuizen, H.; Vettiger, P.; Meyer, E.; Güntherodt, H.-J.; Gerber, C.; Gimzewski, J.K. Translating biomolecular recognition into nanomechanics. Science 2000, 288, 316–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.; Ma, Z.; Ma, J.; Yang, L.; Wei, J.; Zhao, Y.; Zhang, M.; Yang, F.; Wang, X. Recent progress of miniature MEMS pressure sensors. Micromachines 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, G.A.; Uknalis, J.; Tu, S.-I.; Mutharasan, R. Detect of Escherichia coli O157:H7 in ground beef samples using piezoelectric excited millimeter-sized cantilever (PEMC) sensors. Biosens. Bioelectron. 2007, 22, 1296–1302. [Google Scholar] [CrossRef]
- Wallraff, A.; Schuster, D.I.; Blais, A.; Frunzio, L.; Huang, R.-S.; Majer, J.; Kumar, S.; Girvin, S.M.; Schoelkopf, R.J. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nat. Cell Biol. 2004, 431, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Treutlein, P.; Hunger, D.; Camerer, S.; Hänsch, T.W.; Reichel, J. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip. Phys. Rev. Lett. 2007, 99, 140403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stripling, W.; Baskett, J.R. Hemispherical Resonator Gyro: Principle, Design, and Performance; AGARD: Neuilly-sur-Seine, France, 1992. [Google Scholar]
- St-Gelais, R.; Bernard, S.; Reinhardt, C.; Sankey, J.C. Swept-frequency drumhead optomechanical resonators. ACS Photonics 2019, 6, 525–530. [Google Scholar] [CrossRef]
- Sartori, A.F.; Belardinelli, P.; Dolleman, R.; Steeneken, P.G.; Ghatkesar, M.K.; Buijnsters, J.G. Inkjet-printed high-Q nanocrystalline diamond resonators. Small 2019, 15, e1803774. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Xiao, D.; Zhou, X.; Xu, Y.; Zhuo, M.; Hou, Z.; He, K.; Zhang, Y.; Wu, X. 0.04 degree-per-hour MEMS disk resonator gyroscope with high-quality factor (510 k) and long decaying time constant (74.9 s). Microsyst. Nanoeng. 2018, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dolleman, R.J.; Belardinelli, P.; Houri, S.; Van Der Zant, H.S.J.; Alijani, F.; Steeneken, P.G. High-Frequency Stochastic Switching of Graphene Resonators Near Room Temperature. Nano Lett. 2019, 19, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhao, C.; Xiao, D.; Sun, J.; Sobreviela, G.; Gerrard, D.D.; Chen, Y.; Flader, I.; Kenny, T.W.; Wu, X.; et al. Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-T.; Chen, Y.-Y.; Chou, T.-H. A high sensitivity nanomaterial based SAW humidity sensor. J. Phys. D Appl. Phys. 2008, 41, 085101. [Google Scholar] [CrossRef]
- Ferrier, D.C.; Shaver, M.P.; Hands, P.J. Micro- and nano-structure based oligonucleotide sensors. Biosens. Bioelectron. 2015, 68, 798–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.A.; Singleton, V.T. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: Applications of acoustic physics to the analysis of biomolecular interactions. J. Mol. Recognit. 2007, 20, 154–184. [Google Scholar] [CrossRef]
- Khudiyev, T.; Clayton, J.D.; Levy, E.C.; Chocat, N.; Gumennik, A.; Stolyarov, A.M.; Joannopoulos, J.; Fink, Y. Electrostrictive microelectromechanical fibres and textiles. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; He, R.; Yang, P.; Roukes, M.J.N.L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 2007, 7, 1953–1959. [Google Scholar] [CrossRef] [Green Version]
- Verbridge, S.S.; Bellan, L.M.; Parpia, J.M.; Craighead, H.G. Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett. 2006, 6, 2109–2114. [Google Scholar] [CrossRef] [PubMed]
- Gruber, G.; Urgell, C.; Tavernarakis, A.; Stavrinadis, A.; Tepsic, S.; Magen, C.; Sangiao, S.; De Teresa, J.M.; Verlot, P.; Bachtold, A. Mass sensing for the advanced fabrication of nanomechanical resonators. Nano Lett. 2019, 19, 6987–6992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Yue, H.; Wang, J.; Shen, B.; Sun, S.; Wang, S.; Wang, H.; Li, X.; Xu, Z.; Zhang, R.; et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- Cleland, A.N.; Roukes, M.L. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 1996, 69, 2653–2655. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, Z.; Li, B.; Duan, X. Synthesis of two-dimensional/one-dimensional heterostructures with tunable width. J. Semicond. 2021, 1, 5. [Google Scholar]
- Liao, M.; Sang, L.; Teraji, T.; Koizumi, S.; Koide, Y. Ultrahigh performance on-chip single crystal diamond NEMS/MEMS with electrically tailored self-sensing enhancing actuation. Adv. Mater. Technol. 2019, 4, 4. [Google Scholar] [CrossRef]
- Onuta, T.-D.; Wang, Y.; Lofland, S.E.; Takeuchi, I. Multiferroic Operation of dynamic memory based on heterostructured cantilevers. Adv. Mater. 2014, 27, 202–206. [Google Scholar] [CrossRef]
- He, R.; Feng, P.; Roukes, M.L.; Yang, P. Self-transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 2008, 8, 1756–1761. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, P.; Pandey, M.; Bhattacharya, S. Additive manufacturing as an emerging technology for fabrication of microelectromechanical systems (MEMS). J. Micromanuf. 2019, 2, 175–197. [Google Scholar] [CrossRef]
- Credi, C.; Fiorese, A.; Tironi, M.; Bernasconi, R.; Magagnin, L.; Levi, M.; Turri, S. 3D printing of cantilever-type microstructures by stereolithography of ferromagnetic photopolymers. ACS Appl. Mater. Interfaces 2016, 8, 26332–26342. [Google Scholar] [CrossRef]
- Leary, J.F.; Key, J.; Vidi, P.-A.; Cooper, C.L.; Kole, A.; Reece, L.M.; Lelièvre, S.A. Human organ-on-a-chip BioMEMS devices for testing new diagnostic and therapeutic strategies. In Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems XI Conference, San Francisco, CA, USA, 3–6 February 2013; p. 86150. [Google Scholar]
- Teh, K.S. Additive direct-write microfabrication for MEMS: A review. Front. Mech. Eng. 2017, 12, 490–509. [Google Scholar] [CrossRef]
- Arnold, G.; Winkler, R.; Stermitz, M.; Orthacker, A.; Noh, J.; Fowlkes, J.D.; Kothleitner, G.; Huth, M.; Rack, P.D.; Plank, H. Tunable 3D nanoresonators for gas-sensing applications. Adv. Funct. Mater. 2018, 28, 28. [Google Scholar] [CrossRef]
- Song, P.; Si, C.; Zhang, M.; Zhao, Y.; He, Y.; Liu, W.; Wang, X. A novel piezoresistive MEMS pressure sensors based on temporary bonding technology. Sensors 2020, 20, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 4Masmanidis, S.C.; Karabalin, R.B.; De Vlaminck, I.; Borghs, G.; Freeman, M.R.; Roukes, M.L. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 2007, 317, 780–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, S.; Villanuevam, L.G.; Roukes, M.L. Fundamentals of Nanomechanical Resonators; Springer: Berlin, Germany, 2016. [Google Scholar]
- Huang, X.M.H.; Zorman, C.A.; Mehregany, M.; Roukes, M.L. Nanodevice motion at microwave frequencies. Nat. Cell Biol. 2003, 421, 496. [Google Scholar] [CrossRef]
- Zhou, J.; Moldovan, N.; Stan, L.; Cai, H.; Czaplewski, D.A.; López, D. Approaching the strain-free limit in ultrathin nanomechanical resonators. Nano Lett. 2020, 20, 5693–5698. [Google Scholar] [CrossRef]
- Roy, S.K.; Sauer, V.T.K.; Westwood-Bachman, J.N.; Venkatasubramanian, A.; Hiebert, W.K. Improving mechanical sensor performance through larger damping. Science 2018, 360, eaar5220. [Google Scholar] [CrossRef] [Green Version]
- Tajaddodianfar, F.; Yazdi, M.R.H.; Pishkenari, H.N. Nonlinear dynamics of MEMS/NEMS resonators: Analytical solution by the homotopy analysis method. Microsyst. Technol. 2016, 23, 1913–1926. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, H.; Li, Z.; Jiang, Z.; Li, L.; Yan, X. Nonlinear dynamic control of GaAs nanomechanical resonators using lasers. Nanotechnology 2021, 32, 295502. [Google Scholar] [CrossRef]
- Maillet, O.; Zhou, X.; Gazizulin, R.; Cid, A.M.; Defoort, M.; Bourgeois, O.; Collin, E. Nonlinear frequency transduction of nanomechanical Brownian motion. Phys. Rev. B 2017, 96, 165434. [Google Scholar] [CrossRef] [Green Version]
- Barnard, A.W.; Zhang, M.; Wiederhecker, G.S.; Lipson, M.; McEuen, P.L. Real-time vibrations of a carbon nanotube. Nat. Cell Biol. 2019, 566, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Moser, J.; Güttinger, J.; Eichler, A.; Esplandiu, M.J.; Liu, D.E.; Dykman, M.I.; Bachtold, A. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 2013, 8, 493–496. [Google Scholar] [CrossRef]
- Guzman, P.; Dinh, T.; Phan, H.-P.; Joy, A.P.; Qamar, A.; Bahreyni, B.; Zhu, Y.; Rais-Zadeh, M.; Li, H.; Nguyen, N.-T.; et al. Highly-doped SiC resonator with ultra-large tuning frequency range by Joule heating effect. Mater. Des. 2020, 194, 108922. [Google Scholar] [CrossRef]
- Jia, H.; Feng, P.X.-L. Very high-frequency silicon carbide microdisk resonators with multimode responses in water for particle sensing. J. Microelectromechanical Syst. 2019, 28, 941–953. [Google Scholar] [CrossRef]
- Aykol, M.; Hou, B.; Dhall, R.; Chang, S.-W.; Branham, W.; Qiu, J.; Cronin, S.B. Clamping instability and Van der Waals forces in carbon nanotube mechanical resonators. Nano Lett. 2014, 14, 2426–2430. [Google Scholar] [CrossRef]
- Ghadimi, A.H.; Fedorov, S.A.; Engelsen, N.J.; Bereyhi, M.J.; Schilling, R.; Wilson, D.J.; Kippenberg, T.J. Elastic strain engineering for ultralow mechanical dissipation. Science 2018, 360, 764–768. [Google Scholar] [CrossRef] [Green Version]
- Bao, F.-H.; Bao, J.-F.; Lee, J.E.-Y.; Bao, L.-L.; Khan, M.A.; Zhou, X.; Wu, Q.-D.; Zhang, T.; Zhang, X.-S. Quality factor improvement of piezoelectric MEMS resonator by the conjunction of frame structure and phononic crystals. Sens. Actuators A Phys. 2019, 297. [Google Scholar] [CrossRef]
- Miao, T.; Hu, X.; Zhou, X.; Wu, X.; Hou, Z.; Xiao, D. A million-order effective quality factor MEMS resonator by mechanical pumping. In Proceedings of the 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Hiroshima, Japan, 23–26 March 2020; pp. 1–4. [Google Scholar]
- Wunderlich, B.J.J. Methodology of interpreting thermal analysis of polymers. J. Therm. Anal. Calorim. 2011, 106, 85–91. [Google Scholar] [CrossRef]
- Magoshi, J.; Becker, M.A.; Han, Z.; Nakamura, S. Thermal properties of seed proteins. J. Therm. Anal. Calorim. 2002, 70, 833–839. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Larsen, P.E.; Larsen, T.; Goswami, S.B.; Villanueva, L.G.; Boisen, A.; Keller, S.S. Pyrolytic carbon resonators for micromechanical thermal analysis. Microsyst. Nanoeng. 2019, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jung, N.; Jeon, S. Nanomechanical thermal analysis with silicon cantilevers of the mechanical properties of poly(vinyl acetate) near the glass transition temperature. Macromolecules 2008, 41, 9819–9822. [Google Scholar] [CrossRef]
- Okeyo, P.O.; Larsen, P.E.; Kissi, E.O.; Ajalloueian, F.; Rades, T.; Rantanen, J.; Boisen, A. Single particles as resonators for thermomechanical analysis. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; et al. Optimal control of complex atomic quantum systems. Sci. Rep. 2016, 6, srep34187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, A. Physics: Researchers Race to Put the Quantum into Mechanics. Science 2003, 299, 36–37. [Google Scholar] [CrossRef]
- Knobel, R.G.; Cleland, A.N. Nanometre-scale displacement sensing using a single electron transistor. Nat. Cell Biol. 2003, 424, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Kalaee, M.; Mirhosseini, M.; Dieterle, P.B.; Peruzzo, M.; Fink, J.M.; Painter, O. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 2019, 14, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Safavi-Naeini, A.H.; Hill, J.; Meenehan, S.; Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 2012, 101, 081115. [Google Scholar] [CrossRef] [Green Version]
- MacCabe, G.S.; Ren, H.; Luo, J.; Cohen, J.D.; Zhou, H.; Sipahigil, A.; Mirhosseini, M.; Painter, O. Nano-acoustic resonator with ultralong phonon lifetime. Science 2020, 370, 840–843. [Google Scholar] [CrossRef]
- Wang, H.; Lekavicius, I. Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics. Appl. Phys. Lett. 2020, 117, 230501. [Google Scholar] [CrossRef]
- Carter, S.G.; Bracker, A.S.; Bryant, G.W.; Kim, M.; Kim, C.S.; Zalalutdinov, M.K.; Yakes, M.K.; Czarnocki, C.; Casara, J.; Scheibner, M.; et al. Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator. Phys. Rev. Lett. 2018, 121, 246801. [Google Scholar] [CrossRef] [Green Version]
- Oeckinghaus, T.; Momenzadeh, S.A.; Scheiger, P.; Shalomayeva, T.; Finkler, A.; Dasari, D.B.R.; Stöhr, R.; Wrachtrup, J. Spin–phonon interfaces in coupled nanomechanical cantilevers. Nano Lett. 2019, 20, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, A.D.; Hofheinz, M.; Ansmann, M.; Bialczak, R.C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.; Wang, H.; Weides, M.; et al. Quantum ground state and single-phonon control of a mechanical resonator. Nat. Cell Biol. 2010, 464, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Blatt, R.; Wineland, D. Entangled states of trapped atomic ions. Nat. Cell Biol. 2008, 453, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Arcizet, O.; Jacques, V.; Siria, A.; Poncharal, P.; Vincent, P.; Seidelin, S. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 2011, 7, 879–883. [Google Scholar] [CrossRef]
- Fortágh, J.; Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 2007, 79, 235. [Google Scholar] [CrossRef]
- Jensen, K.H.; Kim, K.; Zettl, A. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 2008, 3, 533–537. [Google Scholar] [CrossRef]
- Yang, Y.T.; Callegari, C.; Feng, P.; Ekinci, K.L.; Roukes, M.L.; Yang, Y.T.; Callegari, C.; Feng, P.; Ekinci, K.L.; Roukes, M.L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 2006, 6, 583–586. [Google Scholar] [CrossRef]
- Mujahid, A.; Dickert, F.L. Surface acoustic wave (SAW) for chemical sensing applications of recognition layers. Sensors 2017, 17, 2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 3Hanay, M.S.; Kelber, S.; Naik, A.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 2012, 7, 602–608. [Google Scholar] [CrossRef]
- Mile, E.; Jourdan, G.; Bargatin, I.; Labarthe, S.; Marcoux, C.; Andreucci, P.; Hentz, S.; Kharrat, C.; Colinet, E.; Duraffourg, L. In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. Nanotechnology 2010, 21, 165504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Medina, S.; Fostner, S.; Defoort, M.; Sansa, M.; Stark, A.-K.; Halim, M.A.; Vernhes, E.; Gely, M.; Jourdan, G.; Alava, T.; et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. Science 2018, 362, 918–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sage, E.; Sansa, M.; Fostner, S.; Defoort, M.; Gély, M.; Naik, A.K.; Morel, R.; Duraffourg, L.; Roukes, M.L.; Alava, T.; et al. Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Venkatasubramanian, A.; Sauer, V.T.K.; Westwood-Bachman, J.N.; Cui, K.; Xia, M.; Wishart, D.S.; Hiebert, W.K. Porous nanophotonic optomechanical beams for enhanced mass adsorption. ACS Sensors 2019, 4, 1197–1202. [Google Scholar] [CrossRef]
- Anderson, P.W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef]
- Wang, D.F.; Du, X.; Li, X.; Zhou, D.; Xia, C.; Zheng, G.; Wan, S.; Wang, X. Picogram-order mass sensors via cantilever-based micro-/nanostructures. In Micro Electro Mechanical Systems; Springer Science and Business Media: Berlin, Germany, 2018; pp. 753–786. [Google Scholar]
- Steeneken, P.; Phan, K.L.; Goossens, M.J.; Koops, G.E.J.; Brom, G.J.A.M.; Van Der Avoort, C.; Van Beek, J.T.M. Piezoresistive heat engine and refrigerator. Nat. Phys. 2011, 7, 354–359. [Google Scholar] [CrossRef]
- Manca, N.; Pellegrino, L.; Kanki, T.; Venstra, W.J.; Mattoni, G.; Higuchi, Y.; Tanaka, H.; Caviglia, A.D.; Marré, D. Selective high-frequency mechanical actuation driven by the VO2 electronic instability. Adv. Mater. 2017, 29, 29. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.; Chan, M.-L.; Yang, H.-A.; Jaramillo, G.; Taheri-Tehrani, P.; Fonda, P.; Najar, H.; Yamazaki, K.; Lin, L.; Horsley, D. Hemispherical wineglass resonators fabricated from the microcrystalline diamond. J. Micromech. Microeng. 2013, 23, 125016. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Baker, C.; Hease, W.; Sejil, S.; Senellart, P.; Lemaitre, A.; Ducci, S.; Leo, G.; Favero, I. Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield. Appl. Phys. Lett. 2013, 103, 241112. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.; Hease, W.; Baker, C.; Gil-Santos, E.; Senellart, P.; Lemaître, A.; Ducci, S.; Leo, G.; Favero, I. Improved optomechanical disk resonator sitting on a pedestal mechanical shield. N. J. Phys. 2015, 17, 023016. [Google Scholar] [CrossRef]
- Gil-Santos, E.; Ruz, J.J.; Malvar, O.; Favero, I.; Lemaître, A.; Kosaka, P.M.; García-López, S.; Calleja, M.; Tamayo, J. Optomechanical detection of vibration modes of a single bacterium. Nat. Nanotechnol. 2020, 15, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Gil Santos, E.; Baker, C.; Nguyen, D.T.; Hease, W.; Gomez, C.; Lemaitre, A.; Ducci, S.; Leo, G.; Favero, I. High-frequency nano-optomechanical disk resonators in liquids. Nat. Nanotechnol. 2015, 10, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Han, X.; Zhao, C.; Niu, C.; Jia, Y. Tellurene: An elemental 2D monolayer material beyond its bulk phases without Van der Waals layered structures. J. Semicond. 2020, 41, 081002. [Google Scholar] [CrossRef]
- Chen, C.; Lee, S.; Deshpande, V.V.; Lee, G.-H.; Lekas, M.; Shepard, K.; Hone, J. Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 2013, 8, 923–927. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.T.; Zalalutdinov, M.K.; Cress, C.D.; Culbertson, J.C.; Friedman, A.L.; Merrill, A.; Landi, B.J. Graphene strained by defects. ACS Nano 2017, 11, 4745–4752. [Google Scholar] [CrossRef] [PubMed]
- Karg, T.M.; Gouraud, B.; Treutlein, P.; Hammerer, K. Remote Hamiltonian interactions mediated by light. Phys. Rev. A 2019, 99, 063829. [Google Scholar] [CrossRef] [Green Version]
- Karg, T.M.; Gouraud, B.; Ngai, C.T.; Schmid, G.-L.; Hammerer, K.; Treutlein, P. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 2020, 369, 174–179. [Google Scholar] [CrossRef]
- Gao, A.; Liu, K.; Liang, J.; Wu, T. AlN MEMS filters with extremely high bandwidth widening capability. Microsyst. Nanoeng. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Ross, G.; Dong, H.; Karuthedath, C.B.; Sebastian, A.T.; Pensala, T.; Paulasto-Kröckel, M. The impact of residual stress on resonating piezoelectric devices. Mater. Des. 2020, 196, 109126. [Google Scholar] [CrossRef]
- Le, X.; Liu, Y.; Peng, L.; Pang, J.; Xu, Z.; Gao, C.; Xie, J. Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension. Microsyst. Nanoeng. 2019, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.; Gomez-Diaz, J.S.; Qian, Z.; Alù, A.; Rinaldi, M. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 2016, 7, 11249. [Google Scholar] [CrossRef]
- Serrano, D.E.; Zaman, M.F.; Rahafrooz, A.; Hrudey, P.; Lipka, R.; Younkin, D.; Nagpal, S.; Jafri, I.; Ayazi, F. Substrate-decoupled, bulk-acoustic wave gyroscopes: Design and evaluation of next-generation environmentally robust devices. Microsyst. Nanoeng. 2016, 2, 16015. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Kharel, P.; Renninger, W.H.; Burkhart, L.D.; Frunzio, L.; Rakich, P.T.; Schoelkopf, R.J. Quantum acoustics with superconducting qubits. Science 2017, 358, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Mateen, F.; Boales, J.; Erramilli, S.; Mohanty, P. Micromechanical resonator with dielectric nonlinearity. Microsyst. Nanoeng. 2018, 4, 14. [Google Scholar] [CrossRef]
- Chen, H.; Opondo, N.F.; Jiang, B.; MacQuarrie, E.R.; Daveau, R.S.; Bhave, S.A.; Fuchs, G.D. Engineering electron–phonon coupling of quantum defects to a semiconfocal acoustic resonator. Nano Lett. 2019, 19, 7021–7027. [Google Scholar] [CrossRef]
- Karrai, K.; Grober, R.D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 1995, 66, 1842–1844. [Google Scholar] [CrossRef]
- Seo, Y.; Cadden-Zimansky, P.; Chandrasekhar, V. Low-temperature high-resolution magnetic force microscopy using a quartz tuning fork. Appl. Phys. Lett. 2005, 87, 103103. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Dai, C.; Zhang, J.; O’Shea, S.J. Quartz tuning fork biosensor. Biosens. Bioelectron. 2002, 17, 111–117. [Google Scholar] [CrossRef]
- Nihei, F.; Ideura, K.; Kobayashi, H.; Taniguchi, J.; Suzuki, M. Mechanical response of 4He films adsorbed on graphite with a quartz tuning fork. J. Low Temp. Phys. 2010, 162, 559–564. [Google Scholar] [CrossRef]
- Lavrik, N.V.; Datskos, P.G. Optically read Coriolis vibratory gyroscope based on a silicon tuning fork. Microsyst. Nanoeng. 2019, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, R.; Ilic, R.; Aksyuk, V.; Liu, Y. Frequency stabilization of nanomechanical resonators using thermally invariant strain engineering. Nano Lett. 2020, 20, 3050–3057. [Google Scholar] [CrossRef]
- Shnaiderman, R.; Wissmeyer, G.; Ülgen, O.; Mustafa, Q.; Chmyrov, A.; Ntziachristos, V. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nat. Cell Biol. 2020, 585, 372–378. [Google Scholar] [CrossRef] [PubMed]
- El Mansouri, B.; Middelburg, L.M.; Poelma, R.; Zhang, G.Q.; Van Zeijl, H.W.; Wei, J.; Jiang, H.; Vogel, J.G.; Van Driel, W.D. High-resolution MEMS inertial sensor combining large-displacement buckling behaviour with integrated capacitive readout. Microsyst. Nanoeng. 2019, 5, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhang, H.; Tang, Z.; Liu, W.; Lu, Y.; Wang, Z.; Yang, H.; Pang, W.; Zhang, H.; et al. Hypersonic poration: A new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device. Small 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Pandit, M.; Sobreviela, G.; Steinmann, P.; Mustafazade, A.; Zou, X.; Seshia, A. A resonant MEMS accelerometer with 56ng bias stability and 98ng/Hz1/2 noise floor. J. Microelectromechanical Syst. 2019, 28, 324–326. [Google Scholar] [CrossRef]
- Zheng, X.-Q.; Lee, J.; Feng, P.X.-L. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion. Microsyst. Nanoeng. 2017, 3, 17038. [Google Scholar] [CrossRef] [Green Version]
- Bunch, J.S.; Van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [Green Version]
Structure | Material | Dimension | Frequency | Quality Factor | Excitation/Detection | Application | Reference |
---|---|---|---|---|---|---|---|
Double-clamped | Carbon nanotubes | 500 Hz | acoustic drive | Anti-fatigue property | Ref [35] | ||
32.6 kHz | electric drive | Self oscillation | Ref [92] | ||||
Pyrolytic carbon | µm | 233 | electric drive/detection | MTA | Ref [65] | ||
Si | 352.2 KHz | 30,160 | differential drive | Accelerometer | Ref [120] | ||
Si | 1.26 MHz | electric drive | Self oscillation | Ref [91] | |||
Carbon nanotubes | 4.2 MHz | 48,000 | electrostatic drive /mixing detection | Force sensing | Ref [56] | ||
h-BN | 6.7 nm (t) | 39 | thermodynamic fluctuation | Resonator | Ref [121] | ||
Carbon nanotubes | 46–51.5 MHz | electric drive/detection | Energy loss | Ref [59] | |||
Si | 70.72 MHz | magnetomotive transduction | High frequency Resonator | Ref [36] | |||
Single-layer graphene | 70.5 MHz | 78 | optical drive | Resonator | Ref [122] | ||
Silicon nanowire | 96 MHz | 5500 | electric drive | Electromechanical system | Ref [40] | ||
GaAs | 116.7 MHz | 1700 | SET detection | Quantum mechanics | Ref [70] | ||
Silicon nitride | 145 MHz | 400 | laser drive/detection | Energy loss | Ref [33] | ||
SiC | 190 MHz | 5000 | reflection bridge | Mass sensing | Ref [82] | ||
Silicon nanowire | 200 MHz | 2000 | magnetomotive transduction | High frequency resonator | Ref [32] | ||
Single-clamped | /PZT | 3.549 KHz | 2500 | electric/ magnetic drive | Resonance tuning | Ref [39] | |
TP MH | piezoelectric excitation | MTA | Ref [67] | ||||
Carbon nanotubes | 1–15 (l) μm | 3000 | optomechanical detection | Mass sensing | Ref [34] | ||
Pt-C | . | electrical detection | Original process | Ref [45] | |||
SiC nanowire | 1 MHz | 10,000 | optical detection | Spin coupling | Ref [79] | ||
Si | 5000 | Atomic spin | Ref [21] | ||||
GaAs | 8 MHz | 2700 | piezoelectric excitation | Resonance tuning | Ref [47] | ||
Porous nano cantilever | 9.66 MHz | Mass sensing | Ref [88] | ||||
Si | 19.16 MHz | 5000 | electrical detection | Mass sensing | Ref [85,86] | ||
Si | 5–10 (l) μm | 20–120 MHz | 7500–8500 | electrical detection | Mass sensing | Ref [87] | |
SiC | 127 MHz | 900 | electrical detection | High frequency resonator | Ref [1] | ||
Carbon nanotubes | 1000 | radio signal detect | Mass sensing | Ref [81] | |||
Hemispherical Shell | Metallic glasses | 3 mm (d) | 6200 | optical detection | Gyroscope | Ref [13] | |
Polycrystalline diamond | 1.1 mm (d) | 20,000 | optical detection | Resonator | Ref [93] | ||
Ring | Si | 1–6 mm (r) | 2163.8 Hz | 510,000 | electrostatic drive | Gyroscope | Ref [25] |
Si | (d) | 134.31 kHz | electrostatic drive | Resonator | Ref [27] | ||
Microdisk | Diamond | (d) | > | laser detection | Mass sensing | Ref [24] | |
SiC | 19.5(d) | 10.14~16.48 | 850~1360 | laser detection | Multi-mode | Ref [14] | |
GaAs | (r) | 1.3 GHz | optomechanical detection | Energy loss | Ref [97] | ||
Drum | SiN | 100 nm (t) | 121.1 kHz | optical interference | Octave frequency tuning | Ref [23] | |
Graphene | 285 nm (t) | 13.92 MHz | 416.6 | High-frequency stochastic switch | Ref [26] | ||
Graphene | (d) | 52.19 MHz | 55 | electric drive | Oscillator | Ref [99] | |
Graphene | (d) | 60–75 MHz | 500–3000 | optical detection | In plane stress detection | Ref [100] | |
Fork | Si | 3 KHz | optical levers detection | Resonator | Ref [115] | ||
Silicon nitride | Resonator | Ref [116] | |||||
SAW/BAW | Si | 4.3 MHz | 60,000 | electrostatic excitation | Gyroscope | Ref [107] | |
AlN | (t) | 106.69 MHz | electrical excitation | High-order harmonics | Ref [109] | ||
AlN/Au | 500 nm (t) | 161.4 MHz | 1116 | electrical excitation | Infrared detector | Ref [106] | |
Graphene oxide/AlN | (t) | 226.3 MHz | transmission spectrum detection | Humidity sensor | Ref [105] | ||
AlN | (t) | 446 MHz | 1500 | RF excitation | Resonator | Ref [103] | |
Diamond/ZnO | (t) | 3 GHz | Fast spin control | Ref [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Kuai, X.; Bao, Y.; Wei, J.; Yang, L.; Song, P.; Zhang, M.; Yang, F.; Wang, X. The Recent Progress of MEMS/NEMS Resonators. Micromachines 2021, 12, 724. https://doi.org/10.3390/mi12060724
Wei L, Kuai X, Bao Y, Wei J, Yang L, Song P, Zhang M, Yang F, Wang X. The Recent Progress of MEMS/NEMS Resonators. Micromachines. 2021; 12(6):724. https://doi.org/10.3390/mi12060724
Chicago/Turabian StyleWei, Lei, Xuebao Kuai, Yidi Bao, Jiangtao Wei, Liangliang Yang, Peishuai Song, Mingliang Zhang, Fuhua Yang, and Xiaodong Wang. 2021. "The Recent Progress of MEMS/NEMS Resonators" Micromachines 12, no. 6: 724. https://doi.org/10.3390/mi12060724
APA StyleWei, L., Kuai, X., Bao, Y., Wei, J., Yang, L., Song, P., Zhang, M., Yang, F., & Wang, X. (2021). The Recent Progress of MEMS/NEMS Resonators. Micromachines, 12(6), 724. https://doi.org/10.3390/mi12060724