Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials
Abstract
:1. Introduction
- (1)
- Low-temperature materials, in which the working temperature is around 400 K. Alloys based on bismuth are among the popular materials in this temperature region [40].
- (2)
- Intermediate-temperature materials, in which the working temperature is between 600 and 900 K. Alloys based on lead are commonly used in this category.
- (3)
- High-temperature materials, in which the working temperature is higher than 900 K. Material fabricated from silicon–germanium usually falls under this region [21].
2. Working Mechanisms of Thermoelectric Generators
2.1. The Basic Principle and Structure
2.2. Physical Properties of Thermoelectric Materials
3. Challenges in Optimisation of ZT Value
3.1. Challenges in the Optimisation of PF
3.2. Challenges in Reducing the Thermal Conductivity, κ
3.2.1. Electronic Thermal Conductivity, ke
3.2.2. Lattice Thermal Conductivity, kp
4. Advanced Approaches in Optimisation of ZT Value
4.1. Advanced Approaches in PF Optimisation
4.2. Advanced Approaches in Minimising Thermal Conductivity, κ
4.3. Approaches for Improvements of n-Type Bi2Te3’s Poor Performance
5. TE Materials at Low Operating Temperatures
5.1. Bismuth Telluride, Bi2Te3
5.2. Cesium Tetrabismuth Hexatelluride, CsBi4Te6
5.3. Silver Antimony Telluride, AgSbTe2
5.4. Magnesium Silver Antimonide, MgAgSb
6. Conclusions and Future Research
- (1)
- Improvement of TE efficiency, especially for n-type TE materials, is the most critical issue at the moment. The ZT performance of TE products has dramatically changed in recent years thanks to phonon engineering and energy-band strategies. However, the ZT value for low-operating-temperature TE material is still around unity, causing the low efficiency of TE systems. Further advancements would necessitate a significant amount of creativity in order to investigate different mechanisms and methods for developing TE properties.
- (2)
- High-performance TE materials at room temperature make use of low-abundance components found in the Earth’s crust, such as Bi2Te3. However, the widespread use of Bi2Te3-based TE is limited by the low abundance, relatively high cost, and toxicity of the Te element. There is still an urgent need to develop alternative green TE materials with abundantly available elements in the crust and good TE properties near room temperature.
- (3)
- Research on potential near-room temperature TE materials needs to be expanded. At the moment, the in-depth analysis focuses primarily on standard Bi2Te3-based TE. Research on other TE materials based on CsBi4Te6, AgSbTe2, and MgAgSb is still limited. In addition, the potential candidates for low-operating-temperature TE materials are only laboratory technologies at present, and large-scale, low-cost preparation technologies need to be explored further.
- (4)
- Very recently, research on graphene, single-walled carbon nanotubes (SWCNTs), and TE material nanocomposites demonstrated better ZT performance, as well as improved electrical conductivity (σ) and were successful in suppressing the thermal conductivity, κ [27,165,166,167]. The κ of TE nanocomposites is predicted to be lower than that of their bulk equivalents of the same chemical configuration. They can be manufactured at a low price by combining nanoparticles and nanosized powders.
Author Contributions
Funding
Conflicts of Interest
References
- Pozo, B.; Garate, J.I.; Araujo, J.Á.; Ferreiro, S. Energy Harvesting Technologies and Equivalent Electronic Structural Models—Review. Electronics 2019, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Sampe, J.; Yunus, N.H.M.; Yunas, J.; Pawi, A.; Rhazali, Z.A. Design and Fabrication of a Dual Band 1.8/2.5 GHZ Antenna for RF Energy Harvester. Int. J. Eng. Technol. 2018, 7, 3574–3578. [Google Scholar] [CrossRef]
- Yunus, N.H.M.; Sampe, J.; Yunas, J.; Pawi, A. MEMS Based RF Energy Harvester for Battery-Less Remote Control: A Review. Am. J. Appl. Sci. 2017, 14, 316–324. [Google Scholar] [CrossRef]
- Akinaga, H. Recent Advances and Future Prospects in Energy Harvesting Technologies. Jpn, J. Appl. Phys. 2020, 59. [Google Scholar] [CrossRef]
- Rojas, J.P.; Singh, D.; Inayat, S.B.; Sevilla, G.A.T.; Fahad, H.M.; Hussain, M.M. Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications. ECS J. Solid State Sci. Technol. 2017, 6, N3036–N3044. [Google Scholar] [CrossRef] [Green Version]
- Charris, D.; Gomez, D.; Ortega, A.R.; Carmona, M.; Pardo, M. A Thermoelectric Energy Harvesting Scheme with Passive Cooling for Outdoor IoT Sensors. Energies 2020, 13, 2782. [Google Scholar] [CrossRef]
- Kim, S.; Suzuki, Y. Photoelectric-Charging-Enhanced MEMS Electret Energy Harvester with Vacuum Packaging. J. Phys. Conf. Ser. 2016, 773, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Ambrozkiewicz, B.; Litak, G.; Wolszczak, P. Modelling of Electromagnetic Energy Harvester with Rotational Pendulum Using Mechanical Vibrations to Scavenge Electrical Energy. Appl. Sci. 2020, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Yunas, J.; Indah, N.; Hanifah, H.M.; Hamidah, I.; Ramadhan, D.F.; Mustagisin, I.; Bais, B.; Hamzah, A.A. Mechanical Charaterization of Mems Vibration Membrane with Planar Spring Design for Energy HarvestER. J. Eng. Sci. Technol. 2020, 15, 3178–3188. [Google Scholar]
- Fu, J.; Hou, Y.; Zheng, M.; Zhu, M. Flexible Piezoelectric Energy Harvester with Extremely High Power Generation Capability by Sandwich Structure Design Strategy. ACS Appl. Mater. Interfaces 2020, 12, 9766–9774. [Google Scholar] [CrossRef]
- Lee, L.T.; Mohamed, M.A.; Yahya, I.; Kulothungan, J.; Muruganathan, M.; Mizuta, H. Comparison of Piezoelectric Energy Harvesting Performance Using Silicon and Graphene Cantilever Beam. Microsyst. Technol. 2018, 24, 3783–3789. [Google Scholar] [CrossRef]
- Theng, L.L.; Mohamed, M.A.; Yahya, I.; Kulothungan, J.; Muruganathan, M.; Mizuta, H. Piezoelectric Energy Harvester Enhancement with Graphene Base Layer. Mater. Today Proc. 2019, 7, 792–797. [Google Scholar] [CrossRef]
- Zulkifli, F.F.; Sampe, J.; Islam, M.S.; Mohamed, M.A. Architecture of Ultra Low Power Micro Energy Harvester Using RF Signal for Health Care Monitoring System: A Review. Am. J. Appl. Sci. 2015, 12, 335–344. [Google Scholar] [CrossRef]
- Mutee-Ur-Rehman; Qureshi, M.I.; Ahmad, W.; Khan, W.T. Radio Frequency Energy Harvesting from Ambient FM Signals for Making Battery-Less Sensor Nodes for Wireless Sensor Networks. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 487–490. [Google Scholar] [CrossRef]
- Li, F.; Zhai, R.; Wu, Y.; Xu, Z.; Zhao, X.; Zhu, T. Enhanced Thermoelectric Performance of N-Type Bismuth-Telluride-Based Alloys via In Alloying and Hot Deformation for Mid-Temperature Power Generation. J. Mater. 2018, 4, 208–214. [Google Scholar] [CrossRef]
- Carvalhaes-Dias, P.; Cabot, A.; Siqueira Dias, J.A. Evaluation of the Thermoelectric Energy Harvesting Potential at Different Latitudes Using Solar Flat Panels Systems with Buried Heat Sink. Appl. Sci. 2018, 8, 2641. [Google Scholar] [CrossRef] [Green Version]
- Kadohiro, Y.; Cheng, S.; Cross, J.S. All-Day Energy Harvesting Power System Utilizing a Thermoelectric Generator with Water-Based Heat Storage. Sustainability 2020, 12, 3659. [Google Scholar] [CrossRef]
- Culebras, M.; Choi, K.; Cho, C. Recent Progress in Flexible Organic Thermoelectrics. Micromachines 2018, 9, 638. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, J.; Shi, Q.; He, T.; Chen, T.; Sun, L.; Dziuban, J.A.; Lee, C. Development of a Thermoelectric and Electromagnetic Hybrid Energy Harvester from Water Flow in an Irrigation System. Micromachines 2018, 9, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.D. Thermoelectric Materials: Energy Conversion between Heat and Electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Freer, R.; Powell, A.V. Realising the Potential of Thermoelectric Technology: A Roadmap. J. Mater. Chem. C 2020, 8, 441–463. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics Handbook: Macro to Nano; CRC Press: Boca Raton, FL, USA, 2006; ISBN 1420038907. [Google Scholar]
- Deshmukh, S.B.M.; Krishnamoorthy, A.; Bhojwani, V.K.; Pandhare, A.; Umbarkar, A.M.; Patil, G.P.; Jadhav, K.B.; Todkar, A.R. An Overview of the Applications and Performance Characteristics of the Thermoelectric Devices. ARPN J. Eng. Appl. Sci. 2017, 12, 2063–2071. [Google Scholar]
- Rahman, A.A.A.; Ali Umar, A.; Othman, M.H.U. Effect of Bismuth Telluride Concentration on the Thermoelectric Properties of PEDOT:PSS-Glycerol Organic Films. Phys. E Low Dimens. Syst. Nanostruct. 2015, 66, 293–298. [Google Scholar] [CrossRef]
- Chen, X.; Cai, F.; Liu, C.; Dong, R.; Qiu, L.; Jiang, L.; Yuan, G.; Zhang, Q. Enhanced Thermoelectric Performance of Bi 2 Te 2.7 Se 0.3 /Bi 2 S 3 Synthesized by Anion Exchange Method. Phys. Status Solidi Rapid Res. Lett. 2020, 14, 1900679. [Google Scholar] [CrossRef]
- Ahmad, K.; Wan, C.; Al-Eshaikh, M.A.; Kadachi, A.N. Enhanced Thermoelectric Performance of Bi2Te3 Based Graphene Nanocomposites. Appl. Surf. Sci. 2019, 474, 2–8. [Google Scholar] [CrossRef]
- Chen, X.; Cai, F.; Dong, R.; Lei, X.; Sui, R.; Qiu, L.; Zeng, Z.; Sun, W.; Zheng, H.; Zhang, Q. Enhanced Thermoelectric Properties of N-Type Bi2Te2.7Se0.3 for Power Generation. J. Mater. Sci. Mater. Electron. 2020, 31, 4924–4930. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Suarez, F.; Dycus, J.H.; Cabral, M.J.; LeBeau, J.M.; Öztürk, M.C.; Vashaee, D. Thermoelectric Generators for Wearable Body Heat Harvesting: Material and Device Concurrent Optimization. Nano Energy 2020, 67, 104265. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, Y.; Liu, Y.; Liu, F.; Hu, L.; Ao, W.; Zhang, C.; Li, Y.; Li, J.; Xie, H. Near-Room-Temperature Thermoelectric Materials and Their Application Prospects in Geothermal Power Generation. Geomech. Geophys. Geo Energy Geo Resour. 2020, 6. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.D. Charge and Phonon Transport in PbTe-Based Thermoelectric Materials. Npj Quantum Mater. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Nan, P.; Chen, Z.; Zeng, Z.; Liu, R.; Dong, H.; Xie, L.; Xiao, Y.; Chen, Z.; Gu, H.; et al. Thermoelectric Enhancements in PbTe Alloys Due to Dislocation-Induced Strains and Converged Bands. Adv. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Salleh, F.; Usop, R.; Saugi, N.S.; Salih, E.Y.; Mohamad, M.; Ikeda, H.; Mohd Sabri, M.F.; Ahmad, M.K.; Said, S.M. Influence of TiO2 Layer’s Nanostructure on Its Thermoelectric Power Factor. Appl. Surf. Sci. 2019, 497. [Google Scholar] [CrossRef]
- Erden, F.; Li, H.; Wang, X.; Wang, F.K.; He, C. High-Performance Thermoelectric Materials Based on Ternary TiO2/CNT/PANI Composites. Phys. Chem. Chem. Phys. 2018, 20, 9411–9418. [Google Scholar] [CrossRef] [PubMed]
- Zong, P.A.; Hanus, R.; Dylla, M.; Tang, Y.; Liao, J.; Zhang, Q.; Snyder, G.J.; Chen, L. Skutterudite with Graphene-Modified Grain-Boundary Complexion Enhances ZT Enabling High-Efficiency Thermoelectric Device. Energy Environ. Sci. 2017, 10, 183–191. [Google Scholar] [CrossRef]
- Joshi, G.; Poudel, B. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys. J. Electron. Mater. 2016, 45, 6047–6051. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, R.; Liao, J.; Zhang, Q.; Xia, X.; Wang, C.; Huang, H.; Chu, J.; Gu, M.; Zhu, T.; et al. High-Efficiency Half-Heusler Thermoelectric Modules Enabled by Self-Propagating Synthesis and Topologic Structure Optimization. Energy Environ. Sci. 2019, 12, 3390–3399. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.; Xiang, Q.; Zhang, C.; Li, J. Enhancing Thermoelectric Properties of P-Type SiGe by SiMo Addition. J. Mater. Sci. Mater. Electron. 2019, 30, 9163–9170. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.B.; Yu, H.Y.; Li, J.; Yang, H.; Yaer, X.; Wang, X.H.; Liu, H.M. Enhanced Thermoelectric Performance in N-Type SrTiO3/SiGe Composite. ACS Appl. Mater. Interfaces 2020, 12, 2687–2694. [Google Scholar] [CrossRef]
- Ren, Z.; Yucheng, L.Q.Z. Advanced Thermoelectrics; Series in Materials Science and Engineering; Ren, Z., Lan, Y., Zhang, Q., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ando Junior, O.H.; Maran, A.L.O.; Henao, N.C. A Review of the Development and Applications of Thermoelectric Microgenerators for Energy Harvesting. Renew. Sustain. Energy Rev. 2018, 91, 376–393. [Google Scholar] [CrossRef]
- Ambrosi, R.M.; Williams, H.; Watkinson, E.J.; Barco, A.; Mesalam, R.; Crawford, T.; Bicknell, C.; Samara-Ratna, P.; Vernon, D.; Bannister, N.; et al. European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for Space Science and Exploration. Space Sci. Rev. 2019, 215. [Google Scholar] [CrossRef] [Green Version]
- Dargusch, M.; Liu, W.D.; Chen, Z.G. Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems. Adv. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Kim, C.S.; Yang, H.M.; Lee, J.; Lee, G.S.; Choi, H.; Kim, Y.J.; Lim, S.H.; Cho, S.H.; Cho, B.J. Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Lett. 2018, 3, 501–507. [Google Scholar] [CrossRef]
- Torfs, T.; Leonov, V.; Vullers, R.J.M. Pulse Oximeter Fully Powered by Human Body Heat. Sens. Transducers J. 2007, 80, 1230–1238. [Google Scholar]
- Park, H.; Lee, D.; Park, G.; Park, S.; Khan, S.; Kim, J.; Kim, W. Energy Harvesting Using Thermoelectricity for IoT (Internet of Things) and E-Skin Sensors. J. Phys. Energy 2019, 1. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, M.; Liu, W.D.; Shi, X.L.; Xu, S.D.; Sun, Q.; Gao, H.; Lu, S.; Zou, J.; Chen, Z.G. Bi0.5Sb1.5Te3/PEDOT:PSS-Based Flexible Thermoelectric Film and Device. Chem. Eng. J. 2020, 397, 8. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G.J. Stretchable Fabric Generates Electric Power from Woven Thermoelectric Fibers. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Park, E.B.; Yazdi, S.J.M.; Lee, J.H. Development of Wearable Temperature Sensor Based on Peltier Thermoelectric Device to Change Human Body Temperature. Sens. Mater. 2020, 32, 2959–2970. [Google Scholar] [CrossRef]
- Im, J.P.; Kim, J.H.; Lee, J.W.; Woo, J.Y.; Im, S.Y.; Kim, Y.; Eom, Y.S.; Choi, W.C.; Kim, J.S.; Moon, S.E. Self-Powered Autonomous Wireless Sensor Node by Using Silicon-Based 3D Thermoelectric Energy Generator for Environmental Monitoring Application. Energies 2020, 13, 674. [Google Scholar] [CrossRef] [Green Version]
- Köhler, E.; Nilsson, T.M.J.; Enoksson, P. Metal Thermoelectric Harvester for Wireless Sensors. Smart Mater. Struct. 2020, 29, 084004. [Google Scholar] [CrossRef]
- Uenuma, M.; Felizco, J.C.; Senaha, D.; Uraoka, Y. Transparent Thin Film for Energy Harvesting. J. Phys. Conf. Ser. 2018, 1052. [Google Scholar] [CrossRef]
- Sivaprahasam, D.; Harish, S.; Gopalan, R.; Sundararajan, G. Automotive Waste Heat Recovery by Thermoelectric Generator Technology. Bringing Thermoelectr. Into Real. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ziolkowski, A. Automotive Thermoelectric Generator Impact on the Efficiency of a Drive System with a Combustion Engine. In Proceedings of the MATEC Web Conference, Poznan, Poland, 27–29 June 2017; Volume 118. [Google Scholar] [CrossRef] [Green Version]
- Mat Noh, N.A.S.; Bhathal Singh, B.S.; Remeli, M.F.; Oberoi, A. Internal Combustion Engine Exhaust Waste Heat Recovery Using Thermoelectric Generator Heat Exchanger. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 82, 15–27. [Google Scholar] [CrossRef]
- Chowdhury, J.I.; Hu, Y.; Haltas, I.; Balta-Ozkan, N.; Matthew, G.; Varga, L. Reducing Industrial Energy Demand in the UK: A Review of Energy Efficiency Technologies and Energy Saving Potential in Selected Sectors. Renew. Sustain. Energy Rev. 2018, 94, 1153–1178. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the Global Waste Heat Potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Ravindra, N.M.; Jariwala, B.; Bañobre, A.; Maske, A. Thermoelectrics: Physical Mechanisms. In Thermoelectrics; Springer: Cham, Switzerland, 2019; pp. 21–47. ISBN 9783319963419. [Google Scholar]
- Von Lukowicz, M.; Abbe, E.; Schmiel, T.; Tajmar, M. Thermoelectric Generators on Satellites—An Approach for Waste Heat Recovery in Space. Energies 2016, 9, 541. [Google Scholar] [CrossRef]
- Mahan, G.D. Good Thermoelectrics. In Solid State Physics—Advances in Research and Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 51, pp. 81–157. ISBN 0126077517. [Google Scholar]
- LeBlanc, S. Thermoelectric Generators: Linking Material Properties and Systems Engineering for Waste Heat Recovery Applications. Sustain. Mater. Technol. 2014, 1, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Goldsmid, H.J. Optimisation and Selection of Semiconductor Thermoelements; Springer Series in Materials Science; Springer: Cham, Switzerland, 2016; Volume 121, pp. 45–66. ISBN 9783662492550. [Google Scholar]
- Nolas, G.S.; Sharp, J.; Goldsmid, J. Thermoelectrics: Basic principles and new materials developments. In Science and Technology; Springer Science & Business Media: New York, NY, USA, 2013; Volume 45, p. 228. ISBN 9781461257080. [Google Scholar]
- Rowe, D.M. CRC Handbook of Thermoelectric, 1st ed.; CRC Press: Boca Raton, FL, USA, 1995; ISBN 0849301467. [Google Scholar]
- Ravindra, N.M.; Jariwala, B.; Bañobre, A.; Maske, A. Thermoelectrics: Fundamentals, Materials Selection, Properties, and Performance; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-96339-6. [Google Scholar]
- Myronov, M. Molecular Beam Epitaxy of High Mobility Silicon, Silicon Germanium and Germanium Quantum Well Heterostructures. In Molecular Beam Epitaxy; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 37–54. ISBN 9780128121368. [Google Scholar]
- Wu, H.; Zhang, Y.; Ning, S.; Zhao, L.D.; Pennycook, S.J. Seeing Atomic-Scale Structural Origins and Foreseeing New Pathways to Improved Thermoelectric Materials. Mater. Horiz. 2019, 6, 1548–1570. [Google Scholar] [CrossRef]
- Wei, J.; Liu, H.J.; Cheng, L.; Zhang, J.; Liang, J.H.; Jiang, P.H.; Fan, D.D.; Shi, J. Tuning the Carrier Concentration to Improve the Thermoelectric Performance of CuInTe2 Compound. AIP Adv. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xi, L.; Qiu, W.; Wu, L.; Shi, X.; Chen, L.; Yang, J.; Zhang, W.; Uher, C.; Singh, D.J. On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory-Experiment Perspective. Njp Comput. Mater. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Hicks, L.D.; Dresselhaus, M.S. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B 1993, 47, 12727–12731. [Google Scholar] [CrossRef]
- Shen, X.C.; Zhang, X.; Zhang, B.; Wang, G.Y.; He, J.; Zhou, X.Y. Optimizing Thermoelectric Properties of BiSe through Cu Additive Enhanced Effective Mass and Phonon Scattering. Rare Met. 2020, 39, 1374–1382. [Google Scholar] [CrossRef]
- Du, W.; Gu, Y.; Wang, K.; Yang, X.; Xing, J.; Guo, K.; Luo, J.; Zhao, J.T. Effective Mass Enhancement and Thermal Conductivity Reduction for Improving the Thermoelectric Properties of Pseudo-Binary Ge2Sb2Te5. Ann. Phys. 2020, 532, 1–7. [Google Scholar] [CrossRef]
- He, W.; Wang, D.; Haijun, W. High Thermoelectric Performance in Low-Cost SnS0.91Se0.09 Crystals. Science 2019, 1424, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Zhang, X.; Hao, S.; Chi, H.; Bailey, T.P.; Su, X.; Uher, C.; Dravid, V.P.; Wolverton, C.; Kanatzidis, M.G. Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped Pb 0.97 Cd 0.03 Te Thermoelectric Alloys. ACS Appl. Mater. Interfaces 2019, 11, 9197–9204. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, H.; Cui, J.; Wang, D.; Fu, L.; Zhang, Y.; Chen, Y.; He, J.; Pennycook, S.J.; Zhao, L.D. Realizing High Performance N-Type PbTe by Synergistically Optimizing Effective Mass and Carrier Mobility and Suppressing Bipolar Thermal Conductivity. Energy Environ. Sci. 2018, 11, 2486–2495. [Google Scholar] [CrossRef]
- Althaf, R.A.M.A. Realization of High Thermoelectric Power Factor in Ta-Doped ZnO by Grain Boundary Engineering. J. Appl. Phys. 2020, 128, 165110. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, Y.; Ren, D.; Su, L.; Qiu, Y.; Zhao, L.D. Enhancing Thermoelectric Performance of BiSbSe3 through Improving Carrier Mobility via Percolating Carrier Transports. J. Alloy. Compd. 2020, 836, 155473. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Pan, Z.; Hu, X.; Liu, P.; He, Z.; Li, Y.; Fan, X. Enhanced Thermoelectric Performance in BiCuSeO Oxyselenides via Ba/Te Dual-Site Substitution and 3D Modulation Doping. J. Solid State Chem. 2018. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, H.; Li, W.; Yin, M.; Pei, Y.; Zhang, Y.; Fu, L.; Chen, Y.; Pennycook, S.J.; Huang, L.; et al. Remarkable Roles of Cu to Synergistically Optimize Phonon and Carrier Transport in N-Type PbTe-Cu2Te. J. Am. Chem. Soc. 2017, 139, 18732–18738. [Google Scholar] [CrossRef]
- Mao, J.; Shuai, J.; Song, S.; Wu, Y.; Dally, R.; Zhou, J.; Liu, Z.; Sun, J.; Zhang, Q.; Dela Cruz, C.; et al. Manipulation of Ionized Impurity Scattering for Achieving High Thermoelectric Performance in N-Type Mg3Sb2-Based Materials. Proc. Natl. Acad. Sci. USA 2017, 114, 10548–10553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, Y.L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High Thermoelectric Performance Realized in a Bicuseo System by Improving Carrier Mobility through 3D Modulation Doping. J. Am. Chem. Soc. 2014, 136, 13902–13908. [Google Scholar] [CrossRef]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar] [CrossRef]
- Kim, M.; Park, D.; Kim, J. Enhancement of Bi2O2Se Thermoelectric Power Factor via Nb Doping. J. Alloy. Compd. 2021, 851, 156905. [Google Scholar] [CrossRef]
- Liu, W.D.; Wang, D.Z.; Liu, Q.; Zhou, W.; Shao, Z.; Chen, Z.G. High-Performance GeTe-Based Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2020, 10, 1–24. [Google Scholar] [CrossRef]
- Hong, M.; Lyv, W.; Li, M.; Xu, S.; Sun, Q.; Zou, J.; Chen, Z.G. Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives. Joule 2020, 4, 2030–2043. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Q.; Wang, X.; Sun, J.; Zhu, Q.; Dahal, K.; Lin, X.; Cao, F.; Zhou, J.; Chen, S.; et al. Deep Defect Level Engineering: A Strategy of Optimizing the Carrier Concentration for High Thermoelectric Performance. Energy Environ. Sci. 2018, 11, 933–940. [Google Scholar] [CrossRef]
- Berry, T.; Fu, C.; Auffermann, G.; Fecher, G.H.; Schnelle, W.; Serrano-Sanchez, F.; Yue, Y.; Liang, H.; Felser, C. Enhancing Thermoelectric Performance of TiNiSn Half-Heusler Compounds via Modulation Doping. Chem. Mater. 2017, 29, 7042–7048. [Google Scholar] [CrossRef]
- Zhang, Q.; Chere, E.K.; McEnaney, K.; Yao, M.; Cao, F.; Ni, Y.; Chen, S.; Opeil, C.; Chen, G.; Ren, Z. Enhancement of Thermoelectric Performance of N-Type PbSe by Cr Doping with Optimized Carrier Concentration. Adv. Energy Mater. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Lalonde, A.D.; Heinz, N.A.; Shi, X.; Iwanaga, S.; Wang, H.; Chen, L.; Snyder, G.J. Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Adv. Mater. 2011, 23, 5674–5678. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Xiao, Y.; Zhao, L.D.; Tan, G.; Tang, X. Large Effective Mass and Low Lattice Thermal Conductivity Contributing to High Thermoelectric Performance of Zn-Doped Cu5Sn2Se7. J. Alloy. Compd. 2020, 826, 154154. [Google Scholar] [CrossRef]
- Zhao, L.D.; Lo, S.H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef]
- Pei, Y.L.; He, J.; Li, J.F.; Li, F.; Liu, Q.; Pan, W.; Barreteau, C.; Berardan, D.; Dragoe, N.; Zhao, L.D. High Thermoelectric Performance of Oxyselenides: Intrinsically Low Thermal Conductivity of Ca-Doped BiCuSeO. NPG Asia Mater. 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Yoo, H.; Choi, J.; Kim, J.Y.; Lee, D.S.; Kim, M.J.; Lee, J.C.; Kim, W.N.; Grossman, J.C.; Park, J.H.; et al. Significantly Reduced Thermal Conductivity and Enhanced Thermoelectric Properties of Single- and Bi-Layer Graphene Nanomeshes with Sub-10 Nm Neck-Width. Nano Energy 2017, 35, 26–35. [Google Scholar] [CrossRef]
- Lee, M.J.; Ahn, J.H.; Sung, J.H.; Heo, H.; Jeon, S.G.; Lee, W.; Song, J.Y.; Hong, K.H.; Choi, B.; Lee, S.H.; et al. Thermoelectric Materials by Using Two-Dimensional Materials with Negative Correlation between Electrical and Thermal Conductivity. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Al Rahal Al Orabi, R.; Mecholsky, N.A.; Hwang, J.; Kim, W.; Rhyee, J.S.; Wee, D.; Fornari, M. Band Degeneracy, Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys. Chem. Mater. 2016, 28, 376–384. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.; He, H.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Enhanced Thermoelectric Performance of Nb-Doped SrTiO3 by Nano-Inclusion with Low Thermal Conductivity. Sci. Rep. 2013, 3, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Ghosh, T.; Arora, R.; Dutta, M.; Pandey, J.; Acharya, S.; Soni, A.; Waghmare, U.V.; Biswas, K. Engineering Ferroelectric Instability to Achieve Ultralow Thermal Conductivity and High Thermoelectric Performance in Sn 1-: X Ge × Te. Energy Environ. Sci. 2019, 12, 589–595. [Google Scholar] [CrossRef]
- Hanus, R.; Agne, M.T.; Rettie, A.J.E.; Chen, Z.; Tan, G.; Chung, D.Y.; Kanatzidis, M.G.; Pei, Y.; Voorhees, P.W.; Snyder, G.J. Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. Adv. Mater. 2019, 31, 1–10. [Google Scholar] [CrossRef]
- Luo, Z.Z.; Hao, S.; Zhang, X.; Hua, X.; Cai, S.; Tan, G.; Bailey, T.P.; Ma, R.; Uher, C.; Wolverton, C.; et al. Soft Phonon Modes from Off-Center Ge Atoms Lead to Ultralow Thermal Conductivity and Superior Thermoelectric Performance in n-Type PbSe-GeSe. Energy Environ. Sci. 2018, 11, 3220–3230. [Google Scholar] [CrossRef]
- Tan, G.; Hao, S.; Zhao, J.; Wolverton, C.; Kanatzidis, M.G. High Thermoelectric Performance in Electron-Doped AgBi3S5 with Ultralow Thermal Conductivity. J. Am. Chem. Soc. 2017, 139, 6467–6473. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hao, S.; Uher, C.; Wolverton, C.; et al. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. J. Am. Chem. Soc. 2018, 140, 2673–2686. [Google Scholar] [CrossRef]
- Yang, C.; Guo, K.; Yang, X.; Xing, J.; Wang, K.; Luo, J.; Zhao, J.T. Realizing High Thermoelectric Performance in BaCu2-XAgxTe2 through Enhanced Carrier Effective Mass and Point-Defect Scattering. ACS Appl. Energy Mater. 2018, 2, 889–895. [Google Scholar] [CrossRef]
- Samanta, M.; Biswas, K. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1−2x(GeSe)x(GeS)x: Competition between Solid Solution and Phase Separation. J. Am. Chem. Soc. 2017, 139, 9382–9391. [Google Scholar] [CrossRef]
- Pei, Y.; Chang, C.; Wang, Z.; Yin, M.; Wu, M.; Tan, G.; Wu, H.; Chen, Y.; Zheng, L.; Gong, S.; et al. Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. J. Am. Chem. Soc. 2016, 138, 16364–16371. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Sun, Z.; Zhang, X.; Tang, D. Tailoring Phononic, Electronic, and Thermoelectric Properties of Orthorhombic GeSe through Hydrostatic Pressure. Sci. Rep. 2019, 9, 9490. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, A.F. Semiconductor Thermoelements and Thermo-Electric Cooling. Sol. Energy 1960, 4, 27. [Google Scholar] [CrossRef]
- Morelli, D.T.; Jovovic, V.; Heremans, J.P. Intrinsically Minimal Thermal Conductivity in Cubic I-V-VI2 Semiconductors. Phys. Rev. Lett. 2008, 101, 16–19. [Google Scholar] [CrossRef]
- Toberer, E.S.; Zevalkink, A.; Snyder, G.J. Phonon Engineering through Crystal Chemistry. J. Mater. Chem. 2011, 21, 15843. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, L.; Uher, C. Recent Advances in High-Performance Bulk Thermoelectric Materials. Int. Mater. Rev. 2016, 61, 379–415. [Google Scholar] [CrossRef]
- Han, M.K.; Jin, Y.; Lee, D.H.; Kim, S.J. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms. Materials 2017, 10, 1235. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yu, Y.; Zhang, Q.; Zhu, T.; Zhai, R.; Zhao, X. Liquid-Phase Hot Deformation to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions. Adv. Sci. 2019, 1901702. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Hu, L.; Wu, H.; Xu, Z.; Zhu, T.J.; Zhao, X.B. Enhancing Thermoelectric Performance of N-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects. ACS Appl. Mater. Interfaces 2017, 9, 28577–28585. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Krasinski, J.S.; Vashaee, D. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications. Materials 2019, 12, 1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmid, H.J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [Green Version]
- Eibl, O.; Nielsch, K.; Peranio, N.; Völklein, F. Thermoelectric Bi2Te3 Nanomaterials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; ISBN 9783527672608. [Google Scholar]
- Liu, W.; Jie, Q.; Kim, H.S.; Ren, Z. Current Progress and Future Challenges in Thermoelectric Power Generation: From Materials to Devices. Acta Mater. 2015, 87, 357–376. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials. In Materials for Sustainable Energy; Co-Published with Macmillan Publishers Ltd.: London, UK, 2010; Volume 7, pp. 101–110. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Kim, J. Preparation and Structure Dependent Thermoelectric Properties of Nanostructured Bulk Bismuth Telluride with Graphene. J. Alloy. Compd. 2016, 664, 639–647. [Google Scholar] [CrossRef]
- Hu, L.P.; Zhu, T.J.; Wang, Y.G.; Xie, H.H.; Xu, Z.J.; Zhao, X.B. Shifting up the Optimum Figure of Merit of P-Type Bismuth Telluride-Based Thermoelectric Materials for Power Generation by Suppressing Intrinsic Conduction. NPG Asia Mater. 2014, 6, e88. [Google Scholar] [CrossRef] [Green Version]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. The Phonon—Glass Electron-Crystal Approach to Thermoelectric Materials Research. In Thermoelectrics; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 177–207. [Google Scholar] [CrossRef]
- Gasenkova, I.V.; Ivanova, L.D.; Granatkina, Y.V. Structural Defects in Tin-Doped Antimony Telluride Single Crystals. Inorg. Mater. 2001, 37, 1112–1117. [Google Scholar] [CrossRef]
- West, D.; Sun, Y.Y.; Wang, H.; Bang, J.; Zhang, S.B. Native Defects in Second-Generation Topological Insulators: Effect of Spin-Orbit Interaction on Bi 2Se 3. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Witting, I.T.; Chasapis, T.C.; Ricci, F.; Peters, M.; Heinz, N.A.; Hautier, G.; Snyder, G.J. The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 2019, 5, 1–20. [Google Scholar] [CrossRef]
- Enescu, D. Thermoelectric Energy Harvesting: Basic Principles and Applications. Green Energy Adv. 2019. [Google Scholar] [CrossRef] [Green Version]
- Fadzli, K.; Huu, N.; Ono, T. Enhancement in Thermoelectric Performance of Electrochemically Deposited Platinum-Bismuth Telluride Nanocomposite. Electrochim. Acta 2019, 312, 62–71. [Google Scholar] [CrossRef]
- Tan, M.; Hao, Y.; Wang, G. Improvement of Thermoelectric Properties Induced by Uniquely Ordered Lattice Field in Bi2Se0.5Te2.5 Pillar Array. J. Solid State Chem. 2014, 215, 219–224. [Google Scholar] [CrossRef]
- Yeo, Y.H.; Oh, T.S. Thermoelectric Properties of P-Type (Bi,Sb)2Te3 Nanocomposites Dispersed with Multiwall Carbon Nanotubes. Mater. Res. Bull. 2014, 58, 54–58. [Google Scholar] [CrossRef]
- Tan, M.; Deng, Y.; Hao, Y. Enhancement of Thermoelectric Properties Induced by Oriented Nanolayer in Bi2Te2.7Se0.3 Columnar Films. Mater. Chem. Phys. 2014, 146, 153–158. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, M.Y.; Xu, G.D.; Chen, S.; Zhang, J.H.; Wang, M.M. Hydrothermal Synthesized Nanostructure Bi-Sb-Te Thermoelectric Materials. J. Alloy. Compd. 2014, 588, 384–387. [Google Scholar] [CrossRef]
- Tan, M.; Deng, Y.; Wang, Y. Ordered Structure and High Thermoelectric Properties of Bi2(Te,Se)3 Nanowire Array. Nano Energy 2014, 3, 144–151. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Xiao, Y.; Li, G.; Zhang, J.S.; Peng, J. Thermoelectric Properties of P-Type(Bi0.26Sb0.74) 2Te3+3%Te Ingots Prepared by Vacuum Melting. Procedia Eng. 2012, 27, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Hana, G.; Yanga, L.; Cheng, L.; Zou, J. Nanostructured Thermoelectric Materials: Current Research and Future Challenge. Prog. Nat. Sci. Mater. Int. 2012, 22, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; He, J.; Kang, H.J.; Tang, X.; Zhu, S.; Laver, M.; Wang, S.; Copley, J.R.D.; Brown, C.M.; Zhang, Q.; et al. Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2Te3 Nanocomposites. Nano Lett. 2010, 10, 3283–3289. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.Q.; Zhao, X.B.; Zhu, T.J.; Zhang, X.B.; Tu, J.P. Syntheses and Thermoelectric Properties of Bi2 Te3 Sb2 Te3 Bulk Nanocomposites with Laminated Nanostructure. Appl. Phys. Lett. 2008, 92, 8–11. [Google Scholar] [CrossRef]
- Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T.M. Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys. Appl. Phys. Lett. 2009, 94, 1–4. [Google Scholar] [CrossRef]
- Yan, X.; Poudel, B.; Ma, Y.; Liu, W.S.; Joshi, G.; Wang, H.; Lan, Y.; Wang, D.; Chen, G.; Ren, Z.F. Experimental Studies on Anisotropic Thermoelectric Properties and Structures of N-Type Bi2Te2.7Se0.3. Nano Lett. 2010, 10, 3373–3378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.B.; Yang, S.H.; Cao, Y.Q.; Mi, J.L.; Zhang, Q.; Zhu, T.J. Synthesis of Nanocomposites with Improved Thermoelectric Properties. J. Electron. Mater. 2009, 38, 1017–1024. [Google Scholar] [CrossRef]
- Wang, S.; Tan, G.; Xie, W.; Zheng, G.; Li, H.; Yang, J.; Tang, X. Enhanced Thermoelectric Properties of Bi2(Te1−XSex)3-Based Compounds as n-Type Legs for Low-Temperature Power Generation. J. Mater. Chem. 2012, 22, 20943–20951. [Google Scholar] [CrossRef]
- Liu, W.S.; Zhang, Q.; Lan, Y.; Chen, S.; Yan, X.; Zhang, Q.; Wang, H.; Wang, D.; Chen, G.; Ren, Z. Thermoelectric Property Studies on Cu-Doped n-Type Cu XBi 2Te 2.7Se 0.3 Nanocomposites. Adv. Energy Mater. 2011, 1, 577–587. [Google Scholar] [CrossRef]
- Hong, M.; Chasapis, T.C.; Chen, Z.G.; Yang, L.; Kanatzidis, M.G.; Snyder, G.J.; Zou, J. N-Type Bi2Te3-XSex Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. ACS Nano 2016, 10, 4719–4727. [Google Scholar] [CrossRef]
- Song, S.; Wang, J.; Xu, B.; Lei, X.; Jiang, H.; Jin, Y.; Zhang, Q.; Ren, Z. Thermoelectric Properties of N-Type Bi2Te2.7Se0.3 with Addition of Nano-ZnO:Al Particles. Mater. Res. Express 2014, 1. [Google Scholar] [CrossRef]
- Hu, L.P.; Liu, X.H.; Xie, H.H.; Shen, J.J.; Zhu, T.J.; Zhao, X.B. Improving Thermoelectric Properties of N-Type Bismuth-Telluride-Based Alloys by Deformation-Induced Lattice Defects and Texture Enhancement. Acta Mater. 2012, 60, 4431–4437. [Google Scholar] [CrossRef]
- Chung, A.D.; Hogan, T.; Brazis, P.; Rocci-lane, M.; Bastea, M.; Uher, C.; Kanatzidis, M.G.; Chung, D.; Hogan, T.; Brazis, P.; et al. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science 2000, 287, 1024–1027. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Bai, H.; Zhang, J.; Tan, G.; Yan, Y.; Liu, W.; Su, X.; Wu, J.; Zhang, Q.; Tang, X. Realizing High Thermoelectric Performance in Sb-Doped Ag 2 Te Compounds with a Low-Temperature Monoclinic Structure. ACS Appl. Mater. Interfaces 2020, 12, 39425–39433. [Google Scholar] [CrossRef]
- Sheng, C.Y.; Liu, H.J.; Fan, D.D.; Cheng, L.; Zhang, J.; Wei, J.; Liang, J.H.; Jiang, P.H.; Shi, J. Predicting the Optimized Thermoelectric Performance of MgAgSb. J. Appl. Phys. 2016, 119. [Google Scholar] [CrossRef] [Green Version]
- Gostkowska, N.; Miruszewski, T.; Trawiński, B.; Bochentyn, B.; Kusz, B. Structure and Thermoelectric Properties of Cs-Bi-Te Alloys Fabricated by Different Routes of Reduction of Oxide Reagents. Solid State Sci. 2017, 73, 41–50. [Google Scholar] [CrossRef]
- Lin, H.; Chen, H.; Yu, J.S.; Zheng, Y.J.; Liu, P.F.; Ali Khan, M.; Wu, L.M. CsBi4Te6: A New Facile Synthetic Method and Mid-Temperature Thermoelectric Performance. Dalt. Trans. 2016, 45, 11931–11934. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.-Y.; Hogan, T.P.; Rocci-Lane, M.; Brazis, P.; Ireland, J.R.; Kannewurf, C.R.; Bastea, M.; Uher, C.; Kanatzidis, M.G. A New Thermoelectric Material: CsBi4Te6. ChemInform 2004, 35, 6414–6428. [Google Scholar] [CrossRef]
- Li, K.; Li, Z.; Yang, L.; Xiao, C.; Xie, Y. Charge Compensation Modulation of the Thermoelectric Properties in AgSbTe2 via Mn Amphoteric Doping. Inorg. Chem. 2019, 58, 9205–9212. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Hao, S.; Hanus, R.C.; Zhang, X.; Anand, S.; Bailey, T.P.; Rettie, A.J.E.; Su, X.; Uher, C.; Dravid, V.P.; et al. High Thermoelectric Performance in SnTe-AgSbTe2 Alloys from Lattice Softening, Giant Phonon-Vacancy Scattering, and Valence Band Convergence. ACS Energy Lett. 2018, 3, 705–712. [Google Scholar] [CrossRef]
- Du, B.; Liu, M.; Xu, J.; Hu, B.; Liu, B.; Su, T.; Wang, J. Thermodynamic, Structural and Thermoelectric Properties of AgSbTe2 Thick Films Developed by Melt Spinning. Nanomaterials 2018, 8, 474. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Li, H.; Xu, J.; Tang, X.; Uher, C. Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound. Chem. Mater. 2010, 22, 5521–5527. [Google Scholar] [CrossRef]
- Li, S.; Yang, J.; Liu, Y.; Xin, J.; Li, S.; Long, Q.; Jiang, Q. Enhanced Thermoelectric Properties in MgAgSb Composite with Ag3Sb Fabricated by the Microwave-Assisted Process and Subsequent Spark Plasma Sintering. Adv. Appl. Ceram. 2020, 119, 107–113. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, C.; Miao, L.; Li, C.; Huang, R.; Gao, J.; Wang, X.; Chen, J.; Zhou, Y.; Nishibori, E. Extraordinary Thermoelectric Performance in MgAgSb Alloy with Ultralow Thermal Conductivity. Nano Energy 2019, 59, 311–320. [Google Scholar] [CrossRef]
- Zhao, H.; Sui, J.; Tang, Z.; Lan, Y.; Jie, Q.; Kraemer, D.; McEnaney, K.; Guloy, A.; Chen, G.; Ren, Z. High Thermoelectric Performance of MgAgSb-Based Materials. Nano Energy 2014, 7, 97–103. [Google Scholar] [CrossRef]
- Ying, P.; Liu, X.; Fu, C.; Yue, X.; Xie, H.; Zhao, X.; Zhang, W.; Zhu, T. High Performance α-MgAgSb Thermoelectric Materials for Low Temperature Power Generation. Chem. Mater. 2015, 27, 909–913. [Google Scholar] [CrossRef]
- Luo, W.; Souza de Almeida, J.; Osorio-Guillen, J.M.; Ahuja, R. Electronic Structure of a Thermoelectric Material: CsBi4Te6. J. Phys. Chem. Solids 2008, 69, 2274–2276. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowski, K.T.; Schmidt, M. Structural and Thermoelectric Properties of AgSbTe 2 -AgSbSe 2 Pseudobinary System. Phys. Rev. B 2009, 1–7. [Google Scholar] [CrossRef]
- Carlton, C.E.; De Armas, R.; Ma, J.; May, A.F.; Delaire, O.; Shao-Horn, Y. Natural Nanostructure and Superlattice Nanodomains in AgSbTe2. J. Appl. Phys. 2014, 115, 144903. [Google Scholar]
- Rezaei, N.; Hashemifar, S.J.; Akbarzadeh, H. Thermoelectric Properties of AgSbTe2 from First-Principles Calculations. J. Appl. Phys. 2014, 116. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.F.; Zou, M.; Sui, T. Synthesis and Transport Property of AgSb Te2 as a Promising Thermoelectric Compound. Appl. Phys. Lett. 2008, 93, 1–4. [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Du, B.; Tang, X.; Zhang, Q.; Uher, C. High Thermoelectric Figure of Merit and Nanostructuring in Bulk AgSbTe2. J. Mater. Chem. 2010, 20, 6138–6143. [Google Scholar] [CrossRef]
- Ma, H.; Su, T.; Zhu, P.; Guo, J.; Jia, X. Preparation and Transport Properties of AgSbTe2 by High-Pressure and High-Temperature. J. Alloy. Compd. 2008, 454, 415–418. [Google Scholar] [CrossRef]
- Kirkham, M.J.; Dos Santos, A.M.; Rawn, C.J.; Lara-Curzio, E.; Sharp, J.W.; Thompson, A.J. Abinitio Determination of Crystal Structures of the Thermoelectric Material MgAgSb. Phys. Rev. B 2012, 85, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Li, J.; Xu, J.; Eklund, P. Thermoelectric Properties of Reduced Graphene Oxide/Bi2Te3 Nanocomposites. Energies 2019, 12, 2430. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Liu, Y.; Meng, X.; Cui, B.; Qi, Y.; Cai, W.; Sui, J. Graphene-Enhanced Thermoelectric Properties of p-Type Skutterudites. Chin. Phys. B 2018, 27, 048402. [Google Scholar] [CrossRef]
- Krause, B.; Liguoro, A.; Pötschke, P. Blend Structure and N-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes. Nanomaterials 2021, 11, 1146. [Google Scholar] [CrossRef] [PubMed]
Temperature Ranges, K | TE Material | Temperature, K | Example of Waste-Heat Sources |
---|---|---|---|
Low temperature (around 400) | Bi2Te3 alloy [25,26,27,28,29,30] | 305–330 300–323 300–360 310 <360 350–400 | Cooling water Air compressors Forming dies and pumps Body heat Low-temperature geothermal Automotive engines |
Medium temperature (600–900) | PbTe alloy [31,32] TiO2 [33,34] Skutterudite [35] | 315–600 425–650 425–650 | Engine exhausts Catalytic crackers Furnace |
High temperature (>900) | Half-Heusler [36,37] SiGe [38,39] | 650–760 760–1100 620–730 | Aluminium-refinement furnace Copper-refinement furnace Hydrogen plants |
Application | Powered Devices | Working Temperature, K | References |
---|---|---|---|
Implantable biomedical system | Electrocardiographic systems Oximeter | Body temperature | [43,44,45] |
Wearable electronics | E-skin sensors, temperature sensors | Body temperature | [46,47,48,49] |
Environmental monitoring | Humidity sensors, temperature sensors, wireless sensor nodes | 300–420 | [50,51] |
Building | Smart window | 100–400 | [33,52] |
Automotive | E-vehicle | 370–400 | [53,54,55] |
Authors | Published Year | Material | Enhanced Physical Property | Enhanced PF Value (μWcm−1·K−2) | ZT | Method |
---|---|---|---|---|---|---|
Shen et al. [71] | 2020 | BiCuSe | 6.8–7.1 | 0.29 | Band engineering | |
Du et al. [72] | 2020 | GeSbTe | 2.1–4.2 | 0.41 | Convergence of band gap | |
He et al. [73] | 2019 | SnS0.91Se0.09 | 30–53 | 1.6 | Convergance of electronic band | |
Tan et al. [74] | 2019 | PbTe | 5.6–17 | 1.2 | Band engineering | |
Xiao et al. [75] | 2018 | PbTe | 19.7–23.7 | 1.6 | Flatten conduction band | |
Althaf et al. [76] | 2020 | ZnO | µ | 1.5–15.2 | - | Grain-boundary engineering |
Wang et al. [77] | 2020 | BiSb | µ | 4.6–6.0 | 1.0 | Percolation effect |
Feng et al. [78] | 2018 | BiCuSeO | µ | 2.8–7.2 | 1.17 | Modulation doping |
Xiao et al. [79] | 2017 | PbTe | µ | 21.9–36.7 | 1.5 | Carrier-scattering mechanism |
Mao et al. [80] | 2017 | Mg3Sb2 | µ | 5–13 | 1.7 | Ionized-impurity scattering |
Pei et al. [81] | 2014 | BiCuSeO | µ | 5–10 | 1.4 | Modulation doping |
Yu et al. [82] | 2012 | SiGe | µ | - | 1.3 | Modulation doping |
Kim et al. [83] | 2021 | Bi2O2Se | n | 2.7–7.0 | - | Point-defect chemistry |
W.Liu et al. [84] | 2020 | GeTe | n | - | >2 | Band engineering |
M.Hong et al. [85] | 2020 | GeTe | n | 7.2–11.6 | 2.2 | Band convergence |
Zhang et al. [86] | 2018 | PbTe | n | 14–26 | 1.4 | Deep-defect level |
Berry et al. [87] | 2017 | TiNiSn | n | 30–45 | 0.63 | Modulation doping |
Zhang et al. [88] | 2015 | PbSe at | n | - | 1.0 | Carrier engineering |
Pei et al. [89] | 2011 | PbTe | n | - | 1.7 | Band engineering |
Authors | Published Year | Material | Thermal Conductivity W/mK | ZT | Method |
---|---|---|---|---|---|
Zhai et al. [90] | 2020 | Cu5Sn2Se7 | 2.49–0.55 | 0.51 | Anharmonicity |
Zhao et al. [91] | 2014 | SnSe | 0.68–0.23 | 2.6 | Anharmonicity |
Pei et al. [92] | 2013 | BiCuSeO | 0.89–0.45 | 0.9 | Anharmonicity |
Oh et al. [93] | 2017 | Graphene nanomesh | 3000–78 | - | Nanostructuring |
Lee et al. [94] | 2016 | SnS2 | 10.0–3.0 | 0.13 | Nanostructuring |
Rahal et al. [95] | 2016 | SnTe | 8.1–5.3 | 1.35 | Nanostructuring |
Wang et al. [96] | 2013 | SrTiO3 | 15% reduction | 0.21 | Nanostructuring |
Banik et al. [97] | 2019 | SnTe | 2.89–0.67 | 1.6 | Local structural distortions |
Hanus et al. [98] | 2019 | PbTe | 20% reduction | 2.0 | Lattice softening |
Luo et al. [99] | 2018 | PbSe | 4.69–1.52 | 1.54 | Incoherent rattling motion |
Tan et al. [100] | 2017 | AgBi3S5 | 0.6–0.3 | 1.0 | Double-rattling behaviour |
Zhen et al. [101] | 2018 | GeTe | 3.37–0.13 | 1.61 | Alloy scattering |
Yang et al. [102] | 2018 | BaCu2Te2 | 0.9–0.5 | 1.08 | Point defects |
Samanta et al. [103] | 2017 | GeTe | 3.0–0.7 | 2.1 | Point defects |
Pei et al. [104] | 2016 | K2Bi8Se13 | 0.5–0.2 | 1.83 | Complex crystal structure |
Authors | Material | ZT | Temperature |
---|---|---|---|
Amin et al. [113] | Bi2Te2.7Se0.3 | 0.87 | Room temperature |
Ju et al. [118] | Graphene/Bi2Te3-NW | 0.4 | Room temperature |
Fadzli et al. [125] | Pt/Bi2Te3 | 0.61 | Room temperature |
Tan et al. [126] | Bi2Se0.5Te2.5 | 1.28 | Room temperature |
Yeo et al. [127] | (Bi,Sb)2Te3 | 1.41 | Room temperature |
Tan et al. [128] | Bi2Te2.7 Se0.3 | 1.27 | Room temperature |
Chen et al. [129] | Bi0.4Sb1.6Te3 | 1.26 | Room temperature |
Tan et al. [130] | Bi2(Te, Se)3 | 1.01 | Room temperature |
Xu et al. [131] | p type(Bi0.26 Sb 0.74)2Te3 + 3%Te ingots | 1.12 | Room temperature |
Material System | Carrier Type | ZT | T (K) | Synthetic Method |
---|---|---|---|---|
(Bi,Sb)2Te3 [133] | P | 1.5 | 390 | MS + SPS |
(BiSb)2Te3 [134] | P | 1.47 | 440 | HS + HP |
Bi0.52Sb1.48Te3 [135] | P | 1.56 | 300 | MS + SPS |
Bi2Te2.7Se0.3 [136] | N | 1.04 | 498 | HEBM + HP |
Bi2Te3 [137] | N | 1 | 450 | HS + HP |
Bi2(Te1-xSex)3 [138] | N | 0.8 | 600 | Zone melting |
Cu0.01Bi2Te2.7Se0.3 [139] | N | 1.06 | - | Nanostructuring |
Bi2Te2.7Se0.3 [140] | N | 1.23 | 480 | Nanostructuring |
Bi2Te2.7Se0.3(AZO)0.005 [141] | N | 0.85 | 323 | Nano inclusions |
Bi2Te3 [142] | N | 1 | 513 | Texturing |
Material | S (μ V.K−1) | k (Wm−1K−1) | ZT | Method |
---|---|---|---|---|
CsBi4Te6 [143] | 90 | 1.85 | 0.8 | |
CsBi4Te6 [146] | −70 | 0.43 | 0.054 | Reduction of oxide reagents |
CsBi4Te6 [147] | 76 | 1.07 | 0.14 | Rare-earth metals |
CsBi4Te6 [148] | −74 | 1.25 | 0.82 | |
Ag2SbxTe1−x [144] | −103 | 0.35 | 1.4 | Sb doping |
AgSbTe2 [149] | 58 | - | 0.74 | Mn doping |
SnTe-AgSbTe2 [150] | 160 | 0.4 | 1.2 | I doping |
Ag2Te-Sb2Te3 [151] | 300 | 1.4 | Se doping | |
AgSbSexTe2−x [152] | 0.6 | 1.37 | Se doping | |
α-MgAgSb [153] | 189 | 1.06 | 0.76 | Microwave method |
MgAgSb [154] | 278 | 1.15 | 1.4 | Heat-treating |
MgAgSb [155] | 210 | 0.8 | 0.9 | Ball milling |
MgAgSb [156] | 190 | 1.10 | 1.1 | In doping |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkepli, N.; Yunas, J.; Mohamed, M.A.; Hamzah, A.A. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines 2021, 12, 734. https://doi.org/10.3390/mi12070734
Zulkepli N, Yunas J, Mohamed MA, Hamzah AA. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines. 2021; 12(7):734. https://doi.org/10.3390/mi12070734
Chicago/Turabian StyleZulkepli, Nurkhaizan, Jumril Yunas, Mohd Ambri Mohamed, and Azrul Azlan Hamzah. 2021. "Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials" Micromachines 12, no. 7: 734. https://doi.org/10.3390/mi12070734
APA StyleZulkepli, N., Yunas, J., Mohamed, M. A., & Hamzah, A. A. (2021). Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines, 12(7), 734. https://doi.org/10.3390/mi12070734