Physics-Based TCAD Simulation and Calibration of 600 V GaN/AlGaN/GaN Device Characteristics and Analysis of Interface Traps †
Abstract
:1. Introduction
2. Simulation Setup
3. Results and Discussion
3.1. Schottky Barrier Height
3.2. Tunneling Coefficient
3.3. Fixed Charge and Donor-Like Traps
3.4. Donor and Acceptor Energy Levels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, K.; Dasgupta, A.; Ghosh, S.; Ahsan, S.A.; Khandelwal, S.; Chauhan, Y.S. Effect of access region and field plate on capacitance behavior of GaN HEMT. In Proceedings of the 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, 1–4 June 2015; pp. 499–502. [Google Scholar] [CrossRef]
- Shenai, K.; Chattopadhyay, A. Optimization of High-Voltage Wide Bandgap Semiconductor Power Diodes. IEEE Trans. Electron Devices 2015, 62, 359–365. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Tsurumi, N.; Uemoto, Y.; Sakai, H.; Ueda, T.; Tanaka, T.; Ueda, D. GaN Transistors for Power Switching and High Frequency Applications. In Proceedings of the 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, Monterey, CA, USA, 12–15 October 2008; pp. 1–5. [Google Scholar]
- Palacios, T.; Mishra, U.K. GaN-based transistors for high-frequency applications. Compr. Semicond. Sci. Technol. 2011, 5, 242–298. [Google Scholar]
- Ueda, T.; Ishida, M.; Tanaka, T.; Ueda, D. GaN transistors on Si for switching and high-frequency applications. Jpn. J. Appl. Phys. 2014, 53, 100214. [Google Scholar] [CrossRef] [Green Version]
- Jardel, O.; De Groote, F.; Reveyrand, T.; Jacquet, J.-C.; Charbonniaud, C.; Teyssier, J.-P.; Floriot, D.; Quere, R. An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR. IEEE Trans. Microw. Theory Tech. 2007, 55, 2660–2669. [Google Scholar] [CrossRef]
- Raffo, A.; Vadala, V.; Schreurs, D.M.M.-P.; Crupi, G.; Avolio, G.; Caddemi, A.; Vannini, G. Nonlinear Dispersive Modeling of Electron Devices Oriented to GaN Power Amplifier Design. IEEE Trans. Microw. Theory Tech. 2010, 58, 710–718. [Google Scholar] [CrossRef]
- Ghosh, K.; Das, S.; Ganguly, S.; Saha, D.; Laha, A. Impact of GaN buffer layer thickness on structural and optical properties of AlGaN/GaN based high electron mobility transistor structure grown on Si(111) substrate by plasma assisted molecular beam epitaxy technique. In Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, India, 7–8 February 2015. [Google Scholar] [CrossRef]
- Efthymiou, L.; Longobardi, G.; Camuso, G.; Hsieh, A.P.-S.; Udrea, F. Modelling of an AlGaN/GaN Schottky diode and extraction of main parameters. In Proceedings of the 2015 International Semiconductor Conference (CAS), Sinaia, Romania, 12–14 October 2015; pp. 211–214. [Google Scholar] [CrossRef]
- Subramani, N.K.; Couvidat, J.; Al Hajjar, A.; Nallatamby, J.-C.; Sommet, R.; Quere, R. Identification of GaN Buffer Traps in Microwave Power AlGaN/GaN HEMTs Through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations. IEEE J. Electron Devices Soc. 2017, 5, 175–181. [Google Scholar] [CrossRef]
- Johnson, R.; Evans, J.; Jacobsen, P.; Thompson, J.; Christopher, M. The Changing Automotive Environment: High-Temperature Electronics. IEEE Trans. Electron. Packag. Manuf. 2004, 27, 164–176. [Google Scholar] [CrossRef]
- George, T.; Son, K.-A.; Powers, R.; Del Castillo, L.; Okojie, R. Harsh Environment Microtechnologies for NASA and Terrestrial Applications. In IEEE Sensors, 2005; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2006; p. 6. [Google Scholar] [CrossRef]
- Werner, M.R.; Fahrner, W.R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 2001, 48, 249–257. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Tazzoli, A.; Ronchi, N.; Stocco, A.; Chini, A.; Zanoni, E. Reliability issues of Gallium Nitride High Electron Mobility Transistors. Int. J. Microw. Wirel. Technol. 2010, 2, 39–50. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.; Ozpineci, B. Application-based review of GaN HFETs. In Proceedings of the 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 13–15 October 2014; pp. 24–29. [Google Scholar] [CrossRef]
- Bouzid-Driad, S.; Maher, H.M.; Defrance, N.; Hoel, V.; De Jaeger, J.-C.; Renvoise, M.; Frijlink, P. AlGaN/GaN HEMTs on Silicon Substrate with 206-GHz Fmax. IEEE Electron Device Lett. 2012, 34, 36–38. [Google Scholar] [CrossRef]
- Mukherjee, K.; Darracq, F.; Curutchet, A.; Malbert, N.; Labat, N. Investigation of the trap-limited transient response of GaN HEMTs. In Proceedings of the 2018 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC 2018), Brive La Gaillarde, France, 5–6 July 2018. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.L.; Wang, N.; Yu, H.Y.; Lin, X.P. A Charge Storage Based Enhancement Mode AlGaN/GaN High Electron Mobility Transistor. Mater. Sci. Forum 2018, 913, 870–875. [Google Scholar] [CrossRef]
- Pezzimenti, F. Modeling of the Steady State and Switching Characteristics of a Normally Off 4H-SiC Trench Bipolar-Mode FET. IEEE Trans. Electron Devices 2013, 60, 1404–1411. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.-Y.; Hao, Y.; Luo, X.; Fang, J.; Ma, Y.-C.; Yu, C.-H.; Cao, F. Evaluation by Simulation of AlGaN/GaN Schottky Barrier Diode (SBD) with Anode-Via Vertical Field Plate Structure. IEEE Trans. Electron Devices 2018, 65, 2552–2557. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B. Mechanism of yellow luminescence in GaN at room temperature. J. Appl. Phys. 2017, 121, 65104. [Google Scholar] [CrossRef] [Green Version]
- Ťapajna, M.; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Brunner, F.; Cho, E.-M.; Hashizume, T.; Kuzmík, J. Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations. J. Appl. Phys. 2014, 116, 104501. [Google Scholar] [CrossRef]
- Liu, W.; Sayed, I.; Gupta, C.; Li, H.; Keller, S.; Mishra, U. An improved methodology for extracting interface state density at Si3N4/GaN. Appl. Phys. Lett. 2020, 116, 022104. [Google Scholar] [CrossRef]
- Engel-Herbert, R.; Hwang, Y.; Stemmer, S. Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces. J. Appl. Phys. 2010, 108, 124101. [Google Scholar] [CrossRef] [Green Version]
- Hezabra, A.; Abdeslam, N.A.; Sengouga, N.; Yagoub, M.C.E. 2D study of AlGaN/AlN/GaN/AlGaN HEMTs’ response to traps. J. Semicond. 2019, 40, 022802. [Google Scholar] [CrossRef]
- Osvald, J. Interface electron traps and capacitance characteristics of AlGaN/GaN. In Proceedings of the 18th International Conference on Applied Physics of Condensed Matter; Vajda, J., Jamnicky, I., Eds.; Slovak University of Technology: Bratislava, Slovakia, 2012; p. 369. [Google Scholar]
- Park, Y.S.; Lee, M.; Jeon, K.; Yoon, I.T.; Shon, Y.; Im, H.; Park, C.J.; Cho, H.Y.; Han, M.-S. Deep level transient spectroscopy in plasma-assisted molecular beam epitaxy grown Al0.2Ga0.8N/GaN interface and the rapid thermal annealing effect. Appl. Phys. Lett. 2010, 97, 112110. [Google Scholar] [CrossRef]
- Ibbetson, J.P.; Fini, P.T.; Ness, K.D.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 2000, 77, 250–252. [Google Scholar] [CrossRef]
- Jogai, B. Free electron distribution in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 2002, 91, 3721–3729. [Google Scholar] [CrossRef]
- Jogai, B. Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 2003, 93, 1631–1635. [Google Scholar] [CrossRef]
- Tirado, J.M.; Sanchez-Rojas, J.L.; Izpura, J.I. Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices. IEEE Trans. Electron Devices 2007, 54, 410–417. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Chowdhury, S.; Miao, M.-S.; Swenson, B.L.; Van De Walle, C.G.; Mishra, U.K. Distribution of donor states on etched surface of AlGaN/GaN heterostructures. J. Appl. Phys. 2010, 108, 063719. [Google Scholar] [CrossRef] [Green Version]
- Ťapajna, M.; Hilt, O.; Bahat-Treidel, E.; Wurfl, J.; Kuzmik, J. Gate Reliability Investigation in Normally-Off p-Type-GaN Cap/AlGaN/GaN HEMTs Under Forward Bias Stress. IEEE Electron Device Lett. 2016, 37, 385–388. [Google Scholar] [CrossRef]
- Reddy, M.K.; Lakshmi, J.; Hemanth, A.; Kumar, B.H.; Bandi, L.; Sheu, G.; Song, Y.-L.; Chen, P.-A.; Chang, L.-M. Physics Based TCAD Simulation and Calibration of GaN/AlGaN/GaN HEMT Device. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019; pp. 253–256. [Google Scholar] [CrossRef]
- Hemanth, A.; Reddy, M.K.; Lakshmi, J.; Kumar, B.H.; Bandi, L.; Sheu, G.; Song, Y.-L.; Chen, P.-A.; Chang, L.-M. Investigations of Low Dynamic Ron on GaN/AlGaN/GaN HEMT by Field Plate Using Physical Device Simulations. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019; pp. 249–252. [Google Scholar] [CrossRef]
- Hilt, O.; Bahat-Treidel, E.; Knauer, A.; Brunner, F.; Zhytnytska, R.; Würfl, J. High-voltage normally OFF GaN power transistors on SiC and Si substrates. MRS Bull. 2015, 40, 418–424. [Google Scholar] [CrossRef]
- Lee, H.-P.; Bayram, C. Improving Current ON/OFF Ratio and Subthreshold Swing of Schottky-Gate AlGaN/GaN HEMTs by Postmetallization Annealing. IEEE Trans. Electron Devices 2020, 67, 2760–2764. [Google Scholar] [CrossRef]
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Goyal, N.; Fjeldly, T.A. Effects of strain relaxation on bare surface barrier height and two-dimensional electron gas in AlxGa1−xN/GaN heterostructures. J. Appl. Phys. 2013, 113, 14505. [Google Scholar] [CrossRef]
- Saito, W.; Kuraguchi, M.; Takada, Y.; Tsuda, K.; Omura, I.; Ogura, T. Influence of Surface Defect Charge at AlGaN–GaN-HEMT Upon Schottky Gate Leakage Current and Breakdown Voltage. IEEE Trans. Electron Devices 2005, 52, 159–164. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, W.; Sun, R.; Liu, C.; Xin, Y.; Xia, Y.; Wang, F.; Xu, X.; Deng, X.; Chen, T.; et al. Modeling the Influence of the Acceptor-Type Trap on the 2DEG Density for GaN MIS-HEMTs. IEEE Trans. Electron Devices 2020, 67, 2290–2296. [Google Scholar] [CrossRef]
- Tang, G.; Wei, J.; Zhang, Z.; Tang, X.; Hua, M.; Wang, H.; Chen, K.J. Impact of substrate termination on dynamic performance of GaN-on-Si lateral power devices. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 235–238. [Google Scholar] [CrossRef]
- Moench, S.; Salcines, C.; Li, R.; Li, Y.; Kallfass, I. Substrate potential of high-voltage GaN-on-Si HEMTs and half-bridges: Static and dynamic four-terminal characterization and modeling. In Proceedings of the 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, 9–12 July 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, S.; Sheng, K. GaN-on-Si lateral power devices with symmetric vertical leakage: The impact of floating substrate. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 100–103. [Google Scholar] [CrossRef]
- Mukherjee, K.; Curutchet, A.; Darracq, F.; Malbert, N.; Labat, N. Investigation of trapping behaviour in GaN HEMTs through physical TCAD simulation of capacitance voltage characteristics. In Proceedings of the 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Toulouse, France, 15–18 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Chumbes, E.; Shealy, J.; Schremer, A.; Smart, J.; Wang, Y.; Macdonald, N.; Hogue, D.; Komiak, J.; Lichwalla, S.; Leoni, R. AlGaN/GaN high electron mobility transistors on Si(111) substrates. IEEE Trans. Electron Devices 2001, 48, 420–426. [Google Scholar] [CrossRef]
- Mukherjee, K.; Darracq, F.; Curutchet, A.; Malbert, N.; Labat, N. TCAD simulation capabilities towards gate leakage current analysis of advanced AlGaN/GaN HEMT devices. Microelectron. Reliab. 2017, 76-77, 350–356. [Google Scholar] [CrossRef]
- Yu, C.-H.; Luo, Q.-Z.; Luo, X.-D.; Liu, P.-S. Donor-Like Surface Traps on Two-Dimensional Electron Gas and Current Collapse of AlGaN/GaN HEMTs. Sci. World J. 2013, 2013, 931980. [Google Scholar] [CrossRef] [Green Version]
- Moens, P. General Overview of GaN Power Devices. Available online: http://ssie.dei.unipd.it/wp-content/uploads/2017/07/T01_Moens_GaNHEMTs_PhD_Brixen_Jul_2017.pdf (accessed on 20 September 2019).
- Ohno, Y.; Nakao, T.; Kishimoto, S.; Maezawa, K.; Mizutani, T. Effects of surface passivation on breakdown of AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 2004, 84, 2184–2186. [Google Scholar] [CrossRef]
- Chynoweth, A.G. Ionization rates for electrons and holes in silicon. Phys. Rev. 1958, 109, 1537. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.-F. RESURF Principle in AlGaN/GaN HEMTs: Accurate 1-D Modeling on Off-State Avalanche Breakdown Behavior via Effective Concentration Profile. IEEE J. Electron Devices Soc. 2020, 8, 530–539. [Google Scholar] [CrossRef]
- Uren, M.; Moereke, J.; Kuball, M. Buffer Design to Minimize Current Collapse in GaN/AlGaN HFETs. IEEE Trans. Electron Devices 2012, 59, 3327–3333. [Google Scholar] [CrossRef] [Green Version]
- Ronchi, N.; Bakeroot, B.; You, S.; Hu, J.; Stoffels, S.; Wu, T.-L.; De Jaeger, B.; Decoutere, S. Optimization of the source field-plate design for low dynamic R DS-ON dispersion of AlGaN/GaN MIS-HEMTs. Phys. Status Solidi (A) 2017, 214, 1600601. [Google Scholar] [CrossRef]
- Maeda, T.; Narita, T.; Ueda, H.; Kanechika, M.; Uesugi, T.; Kachi, T.; Kimoto, T.; Horita, M.; Suda, J. Estimation of Impact Ionization Coefficient in GaN by Photomulitiplication Measurement Utilizing Franz-Keldysh Effect. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019; pp. 59–62. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Harden, G.; Ye, H.; Stillwell, R.; Hoffman, A.J.; Fay, P. Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates. Appl. Phys. Lett. 2018, 112, 262103. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Li, F.; Sun, Z.; Sun, N.; Zhang, F.; Cao, Y.; Zhang, H.; Tao, P. Gallium Nitride Normally-Off Vertical Field-Effect Transistor Featuring an Additional Back Current Blocking Layer Structure. Electronics 2019, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Nigam, A.; Bhat, T.N.; Rajamani, S.; Bin Dolmanan, S.; Tripathy, S.; Kumar, M. Effect of self-heating on electrical characteristics of AlGaN/ GaN HEMT on Si (111) substrate. AIP Adv. 2017, 7, 085015. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, K.; Zhang, Y.C.; Chen, X.J.; Huang, S.; Yin, H.B.; Liu, G.G.; Yuan, T.T.; Zheng, Y.K.; Wang, X.Y.; et al. Well-suppressed interface states and improved transport properties of AlGaN/GaN MIS-HEMTs with PEALD SiN gate dielectric. Vacuum 2021, 191, 110359. [Google Scholar] [CrossRef]
- Hua, Y.-C.; Li, H.-L.; Cao, B.-Y. Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs. IEEE Trans. Electron Devices 2019, 66, 3296–3301. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, Y.; Guo, Y. A Universal Scalable Thermal Resistance Model for Compact Large-Signal Model of AlGaN/GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2018, 66, 4419–4429. [Google Scholar] [CrossRef]
- Sun, H.; Simon, R.B.; Pomeroy, J.W.; Francis, D.; Faili, F.; Twitchen, D.J.; Kuball, M.H.H. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl. Phys. Lett. 2015, 106, 111906. [Google Scholar] [CrossRef] [Green Version]
Physical Phenomenon | Model |
---|---|
| 1a. Doping dependence |
1b. High field saturation | |
1c. Poole frankel | |
| 2a. Van overstraeten |
| 3a. Shockley-Red-Hall |
| 4a. Piezo-Electric Stress |
4b. Piezo-Electric Strain | |
| 5a. Electron Barrier Tunneling |
| 6a. Thermodynamic |
Parameters | Conditions |
---|---|
Threshold voltage (Vth) | VGS at ID = 1 mA/mm |
IDss | At VGS = 0 V; and at VDS = 20 V |
Off-state Breakdown | At VGS = Vth − 5 V; VDS sweep |
Dynamic RON [30] | At VGS = Vth − 5 V; VDS stress = varied Off-state period = 80 µs; On-state period = 10 µs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.-L.; Reddy, M.K.; Chang, L.-M.; Sheu, G. Physics-Based TCAD Simulation and Calibration of 600 V GaN/AlGaN/GaN Device Characteristics and Analysis of Interface Traps. Micromachines 2021, 12, 751. https://doi.org/10.3390/mi12070751
Song Y-L, Reddy MK, Chang L-M, Sheu G. Physics-Based TCAD Simulation and Calibration of 600 V GaN/AlGaN/GaN Device Characteristics and Analysis of Interface Traps. Micromachines. 2021; 12(7):751. https://doi.org/10.3390/mi12070751
Chicago/Turabian StyleSong, Yu-Lin, Manoj Kumar Reddy, Luh-Maan Chang, and Gene Sheu. 2021. "Physics-Based TCAD Simulation and Calibration of 600 V GaN/AlGaN/GaN Device Characteristics and Analysis of Interface Traps" Micromachines 12, no. 7: 751. https://doi.org/10.3390/mi12070751
APA StyleSong, Y. -L., Reddy, M. K., Chang, L. -M., & Sheu, G. (2021). Physics-Based TCAD Simulation and Calibration of 600 V GaN/AlGaN/GaN Device Characteristics and Analysis of Interface Traps. Micromachines, 12(7), 751. https://doi.org/10.3390/mi12070751