Simultaneous Trapping of Two Types of Particles with Focused Elegant Third-Order Hermite–Gaussian Beams
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Radiation Forces Produced by the Focused Elegant TH3GBs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashkin, A.; Dziedzic, J.M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nat. Cell Biol. 1987, 330, 769–771. [Google Scholar] [CrossRef]
- Okada, Y.; Hirokawa, N. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science 1999, 283, 1152–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galajda, P.; Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 2001, 78, 249–251. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [Green Version]
- Marksteiner, S.; Savage, C.M.; Zoller, P.; Rolston, S. Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion. Phys. Rev. A 1994, 50, 2680–2690. [Google Scholar] [CrossRef]
- Herman, R.M.; Wiggins, T.A. Production and uses of diffractionless beams. J. Opt. Soc. Am. A 1991, 8, 932–942. [Google Scholar] [CrossRef]
- Wang, X.; Littman, M.G. Laser cavity for generation of variable-radius rings of light. Opt. Lett. 1993, 18, 767–768. [Google Scholar] [CrossRef] [PubMed]
- Paterson, C.; Smith, R. Higher-order Bessel waves produced by axicon-type computer-generated holograms. Opt. Commun. 1996, 124, 121–130. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, F.; Zhao, C.; Cai, Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt. Express 2014, 22, 13975–13987. [Google Scholar] [CrossRef]
- Wang, F.; Cai, Y.; Korotkova, O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Opt. Express 2009, 17, 22366–22379. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cao, Z.; Shao, H.; Zheng, W.; Zeng, B.; Lu, X. Trapping two types of particles by modified circular Airy beams. Opt. Express 2016, 24, 18072–18081. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Sun, X.; Chen, H.; Liu, S.; Lin, Z. Abruptly autofocusing property and optical manipulation of circular Airy beams. Phys. Rev. A 2019, 99, 013817. [Google Scholar] [CrossRef]
- Xu, C. Circular symmetric Airy beam. Opt. Commun. 2020, 475, 126190. [Google Scholar] [CrossRef]
- Guo, M.; Zhao, D. Radiation forces on a Rayleigh dielectric sphere produced by highly focused parabolic scaling Bessel beams. Appl. Opt. 2017, 56, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, D. Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam. Opt. Commun. 2015, 354, 250–255. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, X.; Lin, Q. Hollow Gaussian beams and their propagation properties. Opt. Lett. 2003, 28, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Honarasa, G. Propagation characteristics of controllable dark-hollow beams in a quadratic-index medium. J. Opt. Soc. Am. A 2018, 35, 462–465. [Google Scholar] [CrossRef]
- Tang, B.; Li, Y.; Zhou, X.; Huang, L.; Lang, X. Radiation force of highly focused modified hollow Gaussian beams on a Ray-leigh particle. Optik 2016, 127, 6446–6451. [Google Scholar] [CrossRef]
- Lee, H.S.; Stewart, B.W.; Choi, K.; Fenichel, H. Holographic nondiverging hollow beam. Phys. Rev. A 1994, 49, 4922–4927. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Lin, Z.; Fu, X.; Qiu, H.; Chen, K.; Deng, D. Propagation properties and radiation forces of the Hermite–Gaussian vortex beam in a medium with a parabolic refractive index. Appl. Opt. 2020, 59, 8342. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, L. Two-dimensional Hermite–Gaussian solitons in strongly nonlocal nonlinear medium with rectangular boundaries. Opt. Commun. 2009, 282, 1654–1658. [Google Scholar] [CrossRef]
- Walborn, S.P.; Pádua, S.; Monken, C.H. Conservation and entanglement of Hermite-Gaussian modes in parametric down-conversion. Phys. Rev. A 2005, 71, 053812. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.X.; Ho, Y.K.; Tang, C.X.; Wang, W. Field structure and electron acceleration in a laser beam of a high-order Her-mite-Gaussian mode. J. Appl. Phys. 2007, 101, 083113. [Google Scholar] [CrossRef]
- Meyrath, T.P.; Schreck, F.; Hanssen, J.L.; Chuu, C.-S.; Raizen, M.G. A high frequency optical trap for atoms using Her-mite-Gaussian beams. Opt. Express 2005, 13, 2843. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, X.; Chen, Y.; Wang, F.; Liu, L.; Monfared, Y.E.; Ponomarenko, S.A.; Cai, Y.; Liang, C. Self-healing properties of Her-mite-Gaussian correlated Schell-model beams. Opt. Express 2020, 28, 2828. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, T.; Jia, X. Beam propagation factor of partially coherent Hermite–Gaussian array beams. J. Opt. A Pure Appl. Opt. 2009, 11. [Google Scholar] [CrossRef]
- Siegman, A.E. Hermite–gaussian functions of complex argument as optical-beam eigenfunctions. J. Opt. Soc. Am. 1973, 63, 1093–1094. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhao, D. Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Her-mite-cosine-Gaussian beams. Opt. Express 2012, 20, 2895. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, K.; Zhao, D. Simultaneous trapping of low- and high-index microparticles by using highly focused elegant Hermite-cosh-Gaussian beams. Opt. Lasers Eng. 2013, 51, 761–767. [Google Scholar] [CrossRef]
- Nieminen, T.; Rubinsztein-Dunlop, H.; Heckenberg, N. Calculation and optical measurement of laser trapping forces on non-spherical particles. J. Quant. Spectrosc. Radiat. Transf. 2001, 70, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 1996, 124, 529–541. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Collins, S.A. Lens-System Diffraction Integral Written in Terms of Matrix Optics*. J. Opt. Soc. Am. 1970, 60, 1168. [Google Scholar] [CrossRef]
- Draine, B.T. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 1988, 333, 848–872. [Google Scholar] [CrossRef]
- Michaelides, E.E. Brownian movement and thermophoresis of nanoparticles in liquids. Int. J. Heat Mass Transf. 2015, 81, 179–187. [Google Scholar] [CrossRef]
- Lemons, D.S.; Gythiel, A. Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouve ment brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. Am. J. Phys. 1997, 65, 1079–1081. [Google Scholar] [CrossRef]
- Gillespie, D.T. The mathematics of Brownian motion and Johnson noise. Am. J. Phys. 1996, 64, 225–240. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Li, N.; Mou, J.; Liu, Y.; Chen, X.; Hu, H. Simultaneous Trapping of Two Types of Particles with Focused Elegant Third-Order Hermite–Gaussian Beams. Micromachines 2021, 12, 769. https://doi.org/10.3390/mi12070769
Su J, Li N, Mou J, Liu Y, Chen X, Hu H. Simultaneous Trapping of Two Types of Particles with Focused Elegant Third-Order Hermite–Gaussian Beams. Micromachines. 2021; 12(7):769. https://doi.org/10.3390/mi12070769
Chicago/Turabian StyleSu, Jingjing, Nan Li, Jiapeng Mou, Yishi Liu, Xingfan Chen, and Huizhu Hu. 2021. "Simultaneous Trapping of Two Types of Particles with Focused Elegant Third-Order Hermite–Gaussian Beams" Micromachines 12, no. 7: 769. https://doi.org/10.3390/mi12070769
APA StyleSu, J., Li, N., Mou, J., Liu, Y., Chen, X., & Hu, H. (2021). Simultaneous Trapping of Two Types of Particles with Focused Elegant Third-Order Hermite–Gaussian Beams. Micromachines, 12(7), 769. https://doi.org/10.3390/mi12070769