Novel Blood Clot Retriever for Ischemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Clot Retriever Design
2.2. Finite Element Analysis
2.2.1. Material Properties
2.2.2. Manufacturing Simulation
- Step 1: Expand the 2.0 mm diameter blood clot retriever to 4.5 mm in diameter.
- Step 2: Anneal the blood clot retriever to eliminate residual stress.
- Step 3: Weld the strut end.
- Step 4: Crimp the blood clot retriever into a 1.4 mm diameter catheter.
2.3. Materials and Prototype Manufacturing
2.3.1. Laser Cutting
2.3.2. Annealing and Shaping
2.3.3. Sandblasting and Electrolytic Polishing
2.4. In Vitro Bloot Clot Removal Test
3. Results
3.1. Novel Blood Clot Retriever Design
3.2. Finite Element Analysis
3.3. Laser Cutting
3.4. In Vitro Retrieval Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Disease Burden and Mortality Estimates. Available online: http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html (accessed on 29 June 2018).
- Amarenco, P.; Bogousslavsky, J.; Caplan, L.R.; Donnan, G.; Hennerici, M.G. Classification of Stroke Subtypes. Cerebrovasc. Dis. 2009, 27, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.-I.; Lien, L.-M.; Chen, S.-T.; Bai, C.-H.; Sun, M.-C.; Tseng, H.-P.; Chen, Y.-W.; Chen, C.-H.; Jeng, J.-S.; Tsai, C.-F.; et al. Get with The Guidelines-Stroke Performance Indicators: Surveillance of Stroke Care in the Taiwan Stroke Registry. Circulation 2011, 122, 1116–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, R.; Hill, M.D.; Shobha, N.; Menon, B.; Bal, S.; Kochar, P.; Watson, T.; Goyal, M.; Demchuk, A.M. Low Rates of Acute Recanalization with Intravenous Recombinant Tissue Plasminogen Activator in Ischemic Stroke: Real-World Experience and a Call for Action. Stroke 2010, 42, 2254–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chon, C.C. Characterization of Thrombus Stiffening in radio frequency (rf). Mechanical Thrombectomy. In Proceedings of the IEEE Engineering and Medicine Biology Society, Lake Buena Vista (Orlando), FL, USA, 16–20 August 2016; pp. 355–358. [Google Scholar]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y. Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. Adv. Mater. 2019, 31, 1805452. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.G.; Nagesh, S.C. Acute Ischemic Stroke: A Review of Imaging, Patient Selection, and Management in the Endovascular Era. Part II: Patient Selection, Endovascular Thrombectomy, and Postprocedure Management. J. Clin. Interv. Radiol. ISVIR 2018, 2, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Chon, C.H. In-Vitro Testing of RF-Enabled Low Force Mechanical Thrombectomy for Ischemic Stroke. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Muschenborn, A.D.; Hearon, K.; Volk, B.L.; Conway, J.W.; Maitland, D.J. Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device. Smart Mater. Res. 2014, 12, 971087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broderick, J.P.; Palesch, Y.Y.; Demchuk, A.M.; Yeatts, S.D.; Khatri, P.; Hill, M.; Jauch, E.C.; Jovin, T.G.; Yan, B.; Silver, F.L.; et al. Endovascular Therapy after Intravenous t-PA versus t-PA Alone for Stroke. N. Engl. J. Med. 2013, 368, 893–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raychev, R.; Saver, J. Mechanical thrombectomy devices for treatment of stroke. Neurol. Clin. Pract. 2012, 2, 231–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Qi, Y.; Erdman, A.; Li, Z. The Role of Simulation in the Design of a Semi-Enclosed Tubular Embolus Retrieval. J. Med. Devices 2017, 11, 0210011–0210017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Qi, Y.; Erdman, A.G. The Wall Apposition Evaluation for a Mechanical Embolus Retrieval Device. J. Healthc. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.-M.; Chiu, Y.-H.; Lee, K.-H.; Lin, C.-H. Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior. Comput. Des. 2012, 44, 757–765. [Google Scholar] [CrossRef]
- Hsiao, H.-M.; Lin, C.-H.; Shen, Y.-K.; Chou, T.-Y.; Hsu, Y.-Y. Rhombic-Shaped Channel Stent with Enhanced Drug Capacity and Fatigue Life. Micromachines 2018, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, H.-M.; Yeh, C.-T.; Chiu, Y.-H.; Wang, C.; Chen, C.-P. New clinical failure mode triggered by a new coronary stent design. Biomed. Mater. Eng. 2014, 24, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.M.; DeHerrera, M.; Sun, W. Mechanics of Biological Systems and Materials; Proceedings of the Society for Experimental Mechanics Series; Springer: New York, NY, USA, 2011; Volume 2. [Google Scholar]
- Liebig, T.; Reinartz, J.; Hannes, R.; Miloslavski, E.; Henkes, H. Comparative in vitro study of five mechanical embolectomy systems: Effectiveness of clot removal and risk of distal embolization. Neuroradiology 2018, 50, 43–52. [Google Scholar] [CrossRef]
- Wenger, K.; Nagl, F.; Wagner, M.; Berkefeld, J. Improvement of Stent Retriever Design and Efficacy of Mechanical Thrombectomy in a Flow Model. Cardiovasc. Interv. Radiol. 2013, 36, 192–197. [Google Scholar] [CrossRef]
- Smith, W.S. Mechanical Thrombectomy for Acute Ischemic Stroke. Stroke 2008, 39, 1205–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidat, O.O.; Lazzaro, M.A.; Liebeskind, D.S.; Janjua, N.; Wechsler, L.; Nogueira, R.G.; Edgell, R.C.; Kalia, J.; Badruddin, A.; English, J.; et al. Revascularization grading in endovascular acute ischemic stroke therapy. Neurology 2012, 79, S110–S116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Weight before Removal (g) | Weight after Removal (g) | Retrieval Rate % |
---|---|---|
1.538 | 1.378 | 89 |
1.546 | 1.419 | 68 |
1.566 | 1.402 | 80 |
1.557 | 1.385 | 87 |
1.568 | 1.409 | 76 |
1.567 | 1.394 | 84 |
1.552 | 1.423 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.-Y.; Yang, C.-K.; Chen, J.-H.; Lin, L.-H.; Hsiao, H.-M. Novel Blood Clot Retriever for Ischemic Stroke. Micromachines 2021, 12, 928. https://doi.org/10.3390/mi12080928
Hung M-Y, Yang C-K, Chen J-H, Lin L-H, Hsiao H-M. Novel Blood Clot Retriever for Ischemic Stroke. Micromachines. 2021; 12(8):928. https://doi.org/10.3390/mi12080928
Chicago/Turabian StyleHung, Ming-Ya, Chun-Kai Yang, Jiong-Hong Chen, Li-Han Lin, and Hao-Ming Hsiao. 2021. "Novel Blood Clot Retriever for Ischemic Stroke" Micromachines 12, no. 8: 928. https://doi.org/10.3390/mi12080928
APA StyleHung, M. -Y., Yang, C. -K., Chen, J. -H., Lin, L. -H., & Hsiao, H. -M. (2021). Novel Blood Clot Retriever for Ischemic Stroke. Micromachines, 12(8), 928. https://doi.org/10.3390/mi12080928