Electroforming-Free Bipolar Resistive Switching Memory Based on Magnesium Fluoride
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characteriazation of MgFx Thin Film
3.2. Electrical Characteristics of Ti/MgFx/Pt Device
3.3. Conduction and Resistive Switching Mechanism
3.3.1. Area Dependency
3.3.2. Thickness Dependency
3.3.3. Schematics of Conduction and Switching Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prakash, A.; Jana, D.; Maikap, S. TaOx-based resistive switching memories: Prospective and challenges. Nanoscale Res. Lett. 2013, 8, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, N.K.; Jiang, H.; Wang, Z.; Asapu, S.; Xia, Q.; Joshua Yang, J. Emerging Memory Devices for Neuromorphic Computing. Adv. Mater. Technol. 2019, 4, 1800589. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.S.; Schroeder, H.; Breuer, U.; Waser, R. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 2008, 104, 123716. [Google Scholar] [CrossRef] [Green Version]
- Das, N.C.; Oh, S.I.; Rani, J.R.; Hong, S.M.; Jang, J.H. Multilevel bipolar electroforming-free resistive switching memory based on silicon oxynitride. Appl. Sci. 2020, 10, 3506. [Google Scholar] [CrossRef]
- Fang, Z.; Yu, H.Y.; Li, X.; Singh, N.; Lo, G.Q.; Kwong, D.L. HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity. IEEE Electron Device Lett. 2011, 32, 566–568. [Google Scholar] [CrossRef]
- Wan, Z.; Darling, R.B.; Majumdar, A.; Anantram, M.P. A forming-free bipolar resistive switching behavior based on ITO/V2O5/ITO structure. Appl. Phys. Lett. 2017, 111, 041601. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lee, H.Y.; Chen, P.S.; Wu, T.Y.; Wang, C.C.; Tzeng, P.J.; Chen, F.; Tsai, M.J.; Lien, C. An ultrathin forming-free HfOx resistance memory with excellent electrical performance. IEEE Electron Device Lett. 2010, 31, 1473–1475. [Google Scholar] [CrossRef]
- Kawai, M.; Ito, K.; Ichikawa, N.; Shimakawa, Y. Thermally formed conducting filaments in a single-crystalline NiO thin film. Appl. Phys. Lett 2010, 96, 72106. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Gao, X.; Yu, W.; Liu, X.; Zhang, Y.; Chen, L.; Cheng, X. Forming-free colossal resistive switching effect in rare-earth-oxide films for memristor applications. J. Appl. Phys 2009, 106, 73723. [Google Scholar] [CrossRef] [Green Version]
- Park, S.P.; Kim, H.J.; Lee, J.H.; Kim, H.J. Glucose-based resistive random access memory for transient electronics. J. Inf. Disp. 2019, 20, 231–237. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsang, M.; Chen, I.W. Biodegradable resistive switching memory based on magnesium difluoride. Nanoscale 2016, 8, 15048–15055. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Xu, H.; Song, B.; Li, N.; Li, Q.; Liu, S. Transition from rectification to resistive-switching in Ti/MgF2/Pt memory. AIP Adv. 2019, 9, 105117. [Google Scholar] [CrossRef]
- Yang, H.-H.; Park, G.-C. A Study on the Properties of MgF2 Antireflection Film for Solar Cells. Trans. Electr. Electron. Mater. 2010, 11, 33–36. [Google Scholar] [CrossRef]
- Pilvi, T.; Hatanpää, T.; Puukilainen, E.; Arstila, K.; Bischoff, M.; Kaiser, U.; Kaiser, N.; Leskelä, M.; Ritala, M. Study of a novel ALD process for depositing MgF2 thin films. J. Mater. Chem. 2007, 17, 5077–5083. [Google Scholar] [CrossRef]
- Valov, I.; Tsuruoka, T. Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D Appl. Phys. 2018, 51, 413001. [Google Scholar] [CrossRef]
- Dumas, L.; Quesnel, E.; Robic, J.-Y.; Pauleau, Y. Characterization of magnesium fluoride thin films deposited by direct electron beam evaporation. J. Vac. Sci. Technol. A Vac. Surf. Films 2000, 18, 465–469. [Google Scholar] [CrossRef]
- Wuttke, S.; Vimont, A.; Lavalley, J.C.; Daturi, M.; Kemnitz, E. Infrared investigation of the acid and basic properties of a sol-gel prepared MgF2. J. Phys. Chem. C 2010, 114, 5113–5120. [Google Scholar] [CrossRef]
- Selvam, N.C.S.; Kumar, R.T.; Kennedy, L.J.; Vijaya, J.J. Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 2011, 509, 9809–9815. [Google Scholar] [CrossRef]
- Lübben, M.; Wiefels, S.; Waser, R.; Valov, I. Processes and Effects of Oxygen and Moisture in Resistively Switching TaOx and HfOx. Adv. Electron. Mater. 2018, 4, 1–11. [Google Scholar] [CrossRef]
- Gao, R.; Lei, D.; He, Z.; Chen, Y.; Huang, Y.; En, Y.; Xu, X.; Zhang, F. Effect of Moisture Stress on the Resistance of HfO2/TaOx-Based 8-Layer 3D Vertical Resistive Random Access Memory. IEEE Electron Device Lett. 2020, 41, 38–41. [Google Scholar] [CrossRef]
- Bagdzevicius, S.; Maas, K.; Boudard, M.; Burriel, M. Interface-type resistive switching in perovskite materials. J. Electroceram. 2017, 39, 157–184. [Google Scholar] [CrossRef]
- Kurinec, S.K.; Iniewski, K. Nanoscale Semiconductor Memories: Technology and Applications; CRC Press: Boca Raton, FL, USA, 2013; pp. 361–412. [Google Scholar] [CrossRef]
- Ielmini, D.; Spiga, S.; Nardi, F.; Cagli, C.; Lamperti, A.; Cianci, E.; Fanciulli, M. Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices. J. Appl. Phys. 2011, 109, 034506. [Google Scholar] [CrossRef]
- Lu, Y.; Lee, J.H.; Yang, X.; Chen, I.W. Distinguishing uniform switching from filamentary switching in resistance memory using a fracture test. Nanoscale 2016, 8, 18113–18120. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Liu, Y.; Wang, Y.L.; Wang, M.; Tian, X.P.; Yang, L.M.; Lin, Y.Y. Low reset current in stacked AlOx/WOx resistive switching memory. IEEE Electron Device Lett. 2011, 32, 1439–1441. [Google Scholar] [CrossRef]
- Lu, Y.; Lee, J.H.; Chen, I.W. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices. Nanoscale 2017, 9, 12690–12697. [Google Scholar] [CrossRef] [PubMed]
- Traore, B.; Blaise, P.; Sklenard, B.; Vianello, E.; Magyari-Kope, B.; Nishi, Y. HfO2/Ti Interface Mediated Conductive Filament Formation in RRAM: An Ab Initio Study. IEEE Trans. Electron Devices 2018, 65, 507–513. [Google Scholar] [CrossRef]
- Janousch, M.; Meijer, G.I.; Staub, U.; Delley, B.; Karg, S.E.; Andreasson, B.P. Role of oxygen vacancies in cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 2007, 19, 2232–2235. [Google Scholar] [CrossRef] [Green Version]
- Schindler, C.; Staikov, G.; Waser, R. Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 2009, 94, 2007–2010. [Google Scholar] [CrossRef] [Green Version]
- Inoue, I.H.; Yasuda, S.; Akinaga, H.; Takagi, H. Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 035105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.P.; Wang, H.; Xu, J.W.; Yang, L.; Qiu, W.; Li, Z. Da Effect of ZnMn2O4 thickness on its resistive switching characteristics. Indian J. Eng. Mater. Sci. 2014, 21, 563–566. [Google Scholar]
- Yang, Y.C.; Pan, F.; Zeng, F. Bipolar resistance switching in high-performance Cu/ZnO: MMn/Pt nonvolatile memories: Active region and influence of Joule heating. New J. Phys. 2010, 12, 023008. [Google Scholar] [CrossRef]
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chen, H.L.; Young, T.F.; Chang, T.C.; Tsai, T.M.; Chang, K.C.; Zhang, R.; Chen, K.H.; Lou, J.C.; Chu, T.J.; et al. Hydrogen induced redox mechanism in amorphous carbon resistive random access memory. Nanoscale Res. Lett. 2014, 9, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.P.; De Han, P.; Zhang, Z.X.; Zhang, C.L.; Xu, B.S. Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: The first-principles study. Comput. Mater. Sci. 2013, 77, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Chiu, F.C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Long, S.B.; Liu, Q.; Lü, H.B.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chin. Sci. Bull. 2011, 56, 3072–3078. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.W.; Ismail, R. Conduction mechanism of valence change resistive switching memory: A survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Chiu, F.C.; Chou, H.W.; Lee, J.Y.M. Electrical conduction mechanisms of metal La2O3 Si structure. J. Appl. Phys. 2005, 97, 103503. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Ohno, T.; Samukawa, S. Film-Nanostructure-Controlled Inerasable-to-Erasable Switching Transition in ZnO-Based Transparent Memristor Devices: Sputtering-Pressure Dependency. ACS Appl. Electron. Mater. 2019, 1, 2184–2189. [Google Scholar] [CrossRef]
- Park, D.S.; Nowick, A.S. Ionic conductivity and point defects in pure and doped MnF2 and MgF2 single crystals. J. Phys. Chem. Solids 1976, 37, 607–617. [Google Scholar] [CrossRef]
- Field, B.R.; Ielmini, D. Modeling the Universal Set/Reset Characteristics of Filament Growth. IEEE Trans. Electron Devices 2011, 58, 1–9. [Google Scholar]
- Yuan, X.C.; Tang, J.L.; Zeng, H.Z.; Wei, X.H. Abnormal coexistence of unipolar, bipolar, and threshold resistive switching in an Al/NiO/ITO structure. Nanoscale Res. Lett. 2014, 9, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.Y.; Wu, C.Y.; Wu, C.Y.; Tseng, T.Y.; Hu, C. Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 2007, 102, 094101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, N.C.; Kim, M.; Rani, J.R.; Hong, S.-M.; Jang, J.-H. Electroforming-Free Bipolar Resistive Switching Memory Based on Magnesium Fluoride. Micromachines 2021, 12, 1049. https://doi.org/10.3390/mi12091049
Das NC, Kim M, Rani JR, Hong S-M, Jang J-H. Electroforming-Free Bipolar Resistive Switching Memory Based on Magnesium Fluoride. Micromachines. 2021; 12(9):1049. https://doi.org/10.3390/mi12091049
Chicago/Turabian StyleDas, Nayan C., Minjae Kim, Jarnardhanan R. Rani, Sung-Min Hong, and Jae-Hyung Jang. 2021. "Electroforming-Free Bipolar Resistive Switching Memory Based on Magnesium Fluoride" Micromachines 12, no. 9: 1049. https://doi.org/10.3390/mi12091049