Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure
Abstract
:1. Introduction
2. Theoretical Model and Working Principle
3. Electrical Output Performance of a Single Triboelectric Nanogenerator
3.1. Influence of Structural Parameters on Electrical Output Performance
3.2. Influence of Wave Parameters on Electrical Output Performance
3.3. Results and Disscussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TENG | Triboelectric Nanogenerator |
A-TENG | Annular Triboelectric Nanogenerator |
References
- Wang, Z.L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672. [Google Scholar] [CrossRef]
- Chen, H.Y.; Miao, L.M.; Su, Z.M.; Song, Y.; Han, M.D.; Chen, X.X.; Cheng, X.L.; Chen, D.M.; Zhang, H.X. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 2017, 40, 65–72. [Google Scholar] [CrossRef]
- Yang, W.Q.; Chen, J.; Zhu, G.; Wen, X.N.; Bai, P.; Su, Y.J.; Lin, Y.; Wang, Z.L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, J.L.; Deng, L.C.; Wen, Z.Y. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit. Sensors 2014, 14, 3323–3341. [Google Scholar] [CrossRef]
- Yang, W.Q.; Chen, J.; Jing, Q.S.; Yang, J.; Wen, X.N.; Su, Y.J.; Zhu, G.; Bai, P.; Wang, Z.L. 3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Adv. Funct. Mater. 2014, 24, 4090–4096. [Google Scholar] [CrossRef]
- Rezaeisaray, M.; Gowini, M.E.; Sameoto, D.; Raboud, D.; Moussa, W. Low frequency piezoelectric energy harvesting at multi vibration mode shapes. Sens. Actuators A Phys. 2015, 228, 104–111. [Google Scholar] [CrossRef]
- Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef] [PubMed]
- Dincer, I.; Rosen, M.A. Energy, environment and sustainable development. Appl. Energy 1999, 64, 427–440. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Adams, D.E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304–306. [Google Scholar] [CrossRef]
- Marilena, K.; Elias, C. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Tao, J.; Wang, X.D.; Zhu, J.; Pan, C.F.; Wang, Z.L. Networks of High Performance Triboelectric Nanogenerators Based on Liquid–Solid Interface Contact Electrification for Harvesting Low-Frequency Blue Energy. Adv. Energy Mater. 2018, 8, 1800705. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, Z.B.; Shan, X.B.; Sun, Y.B.; Xie, T.; Zi, Y.L. Capturing Flow Energy from Ocean and Wind. Energies 2019, 12, 2184. [Google Scholar] [CrossRef]
- Wang, Z.L. New wave power. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, S.M.; Hu, H.P. Development and Prospect of Wave Power Generation Devices. Ocean Dev. Manag. 2016, 33, 86–92. [Google Scholar]
- Liu, Y.J.; Jia, R.; Zhang, J. Research status and development prospect of wave power generation technology. J. Ocean Technol. 2016, 35, 100–104. [Google Scholar]
- Wang, Z.L. Catch wave power in floating nets. Nature 2017, 542, 242–246. [Google Scholar] [CrossRef]
- Jia, P.Y. Structure and principle analysis of triboelectric nanogenerator. South. Agric. Mach. 2017, 48, 42. [Google Scholar]
- Wang, Z.L. Triboelectric Nanogenerator (A-TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef]
- Siddique, A.; Mahmud, S.; VanHeyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 2015, 106, 728–747, Nano Energy2019, 58, 669–672. [Google Scholar] [CrossRef]
- Wang, Z.L. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Suzuki, Y. Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans. Electr. Electron. Eng. 2011, 6, 101–111. [Google Scholar] [CrossRef]
- Li, X.; Lau, T.H.; Dong, G.; Zi, Y. A Universal Method for Quantitative Analysis of Triboelectric Nanogenerators. Mater. Chem. A 2019, 7, 19485–19494. [Google Scholar] [CrossRef]
- Zhu, G.; Bai, P.; Chen, J.; Jing, Q.S.; Wang, Z.L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 2015, 14, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.M.; Zhang, M.Y.; Dai, Y.T.; Zeng, H.; Sun, C.; Han, Y.C.; Xing, L.L.; Wang, S.; Xue, X.Y.; Zhan, Y.; et al. A self-powered brain multi-perception receptor for sensory-substitution application. Nano Energy 2018, 44, 43–52. [Google Scholar] [CrossRef]
- Dai, Y.T.; Fu, Y.M.; Zeng, H.; Xing, L.L.; Zhang, Y.; Zhan, Y.; Xue, X.Y. A Self-Powered Brain-Linked Vision Electronic-Skin Based on Triboelectric-Photodetecing Pixel-Addressable Matrix for Visual-Image Recognition and Behavior Intervention. Adv. Funct. Mater. 2018, 28, 1800275. [Google Scholar] [CrossRef]
- Zi, Y.L.; Wu, C.S.; Ding, W.B.; Wang, Z.L. Maximized Effective Energy Output of Contact-SeparationTriggered Triboelectric Nanogenerators as Limited by Air Breakdow. Adv. Funct. Mater. 2017, 27, 1700049. [Google Scholar] [CrossRef]
- Wang, S.H.; Xie, Y.N.; Niu, S.M.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, T.; Wu, J.P.; Xu, T.T.; Wang, X.D.; Han, X.; Cui, H.Z.; Xu, X.F.; Pan, C.F.; Li, X.Y. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. Adv. Mater. 2022, 34, 2202238. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, Z.H.; Yang, S.H.; Li, H.; Jiang, Q.S.; Xiao, G.H. Simulation study on output performance of point-absorbing wave energy triboelectric nano-power generation system. J. Ocean Technol. 2021, 40, 75–83. [Google Scholar]
- Liu, Z.W.; Liu, K.; Yang, S.H.; Xiao, G.H.; Zhang, Q.J. Simulation analysis of submerged wave energy triboelectric nanogenerator. J. Guangzhou Inst. Navig. 2021, 29, 75−81+86. [Google Scholar]
- Yin, W.Y.; Zhang, Y.N. Statistical analysis of wind and wave characteristics in the Bohai Strait. J. Dalian Marit. Univ. 2006, 4, 84–88. [Google Scholar]
- Qiu, Y.; Pei, J.L.; Yang, D.C.; Li, B.; Wang, X.N. Power generation characteristics of spherical triboelectric nanogenerator based on COMSOL simulation. Phys. Exp. 2017, 37, 1−5+11. [Google Scholar]
- Chen, W.X.; Gao, F.; Meng, X.D. Oscillating Body Design for A 3-DOF Wave Energy Converter. China Ocean. Eng. 2018, 32, 453–460. [Google Scholar] [CrossRef]
Horizontal Velocity Vx (m/s) | Vertical Velocity Vy (m/s) | Frequency f (Hz) | Ring Size S (Major * Minor Radii/mm) |
---|---|---|---|
0.1 | 0.25 | 0.5 | 30 * 15 |
0.2 | 0.5 | 1 | 50 * 25 |
0.3 | 0.75 | 1.5 | 70 * 35 |
0.4 | 1 | 2 | 90 * 45 |
Origin | Type III Sum of Squares | Degrees of Freedom | Mean Square | F | Salience |
---|---|---|---|---|---|
Corrected model | 3.066 | 12 | 0.255 | 10.086 | 0.041 |
Intercept | 4.965 | 1 | 4.965 | 196.013 | 0.001 |
Vx | 1.525 | 3 | 40.508 | 20.063 | 0.017 |
Vy | 0.889 | 3 | 0.296 | 11.7 | 0.037 |
f | 0.316 | 3 | 0.105 | 4.156 | 0.136 |
A | 0.336 | 3 | 0.112 | 4.425 | 0.127 |
Error | 0.076 | 3 | 0.025 | ||
Total | 8.107 | 16 | |||
Corrected total | 3.142 | 15 | |||
a. R-square = 0.937 (Adjusted R-square = 0.686) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.J.; Meng, F.; Fu, Q.; Fan, C.H.; Cui, L. Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. Micromachines 2022, 13, 1619. https://doi.org/10.3390/mi13101619
Wang CJ, Meng F, Fu Q, Fan CH, Cui L. Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. Micromachines. 2022; 13(10):1619. https://doi.org/10.3390/mi13101619
Chicago/Turabian StyleWang, Chun Jie, Fan Meng, Qiang Fu, Chen Hui Fan, and Lin Cui. 2022. "Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure" Micromachines 13, no. 10: 1619. https://doi.org/10.3390/mi13101619
APA StyleWang, C. J., Meng, F., Fu, Q., Fan, C. H., & Cui, L. (2022). Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. Micromachines, 13(10), 1619. https://doi.org/10.3390/mi13101619