Highly Efficient Four-Rod Pumping Approach for the Most Stable Solar Laser Emission
Abstract
:1. Introduction
2. Description of the Four-Rod Nd:YAG Solar Laser Head for a Heliostat-Parabolic System
2.1. Solar Energy Collection and Concentration System
2.2. Four-Rod Single Solar Laser Head Design
3. Numerical Modeling of the Four-Rod Solar Laser System through ZEMAX® and LASCAD® Software
4. Numerical Analysis of the Four-Rod Solar Laser Approach
4.1. Advances in Multimode Solar Laser Performance
4.2. Tracking Error Compensation Capacity
4.3. LASCAD® Solar Laser Thermal Performance Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goal 7: Affordable and Clean Energy—The Global Goals. Available online: https://www.globalgoals.org/goals/7-affordable-and-clean-energy/ (accessed on 4 August 2022).
- Goal 8: Decent Work and Economic Growth—The Global Goals. Available online: https://www.globalgoals.org/goals/8-decent-work-and-economic-growth/ (accessed on 4 August 2022).
- Lando, M.; Kagan, J.A.; Shimony, Y.; Kalisky, Y.Y.; Noter, Y.; Yogev, A.; Rotman, S.R.; Rosenwaks, S. Solar-Pumped Solid State Laser Program. In Proceedings of the 10th Meeting on Optical Engineering in Israel, Jerusalem, Israel, 22 September 1997; Volume 3110, p. 196. [Google Scholar]
- Summerer, L.; Purcell, O. Concepts for Wireless Energy Transmission via Laser. Available online: https://www.esa.int/gsp/ACT/doc/POW/ACT-RPR-NRG-2009-SPS-ICSOS-concepts-for-laser-WPT.pdf (accessed on 6 September 2022).
- Vasile, M.; Maddock, C.A. Design of a Formation of Solar Pumped Lasers for Asteroid Deflection. Adv. Sp. Res. 2012, 50, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hadi, Y.A. Space-Based Solar Laser System Simulation to Transfer Power onto the Earth. NRIAG J. Astron. Geophys. 2020, 9, 558–562. [Google Scholar] [CrossRef]
- Yabe, T.; Bagheri, B.; Ohkubo, T. 100 W-Class Solar Pumped Laser for Sustainable Magnesium-Hydrogen Energy Cycle. J. Appl. Phys. 2008, 104, 83104. [Google Scholar] [CrossRef]
- Kiss, Z.J.; Lewis, H.R.; Duncan, R.C. Sun Pumped Continuous Optical Maser. Appl. Phys. Lett. 1963, 2, 93–94. [Google Scholar] [CrossRef]
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Yesil, O.; Christiansen, W.H. Optically Pumped Carbon Dioxide Laser Mixtures (Using Solar Radiation). J. Energy 1979, 3, 315–318. [Google Scholar] [CrossRef]
- Schneider, R.T.; Kurzweg, U.H.; Cox, J.D.; Weinstein, N.H. Research on Solar Pumped Liquid Lasers; NASA: Hampton, VA, USA, 1983.
- Young, C.G. A Sun-Pumped CW One-Watt Laser. Appl. Opt. 1966, 5, 993–997. [Google Scholar] [CrossRef]
- Arashi, H.; Oka, Y.; Sasahara, N.; Kaimai, A.; Ishigame, M. A Solar-Pumped CW 18 W Nd:YAG Laser. Jpn. J. Appl. Phys. 1984, 23, 1051–1053. [Google Scholar] [CrossRef]
- Weksler, M.; Shwartz, J. Solar-Pumped Solid-State Lasers. IEEE J. Quantum Electron. 1988, 24, 1222–1228. [Google Scholar] [CrossRef]
- Jenkins, D.; Lando, M.; O’Gallagher, J.; Winston, R. A Solar-Pumped Nd:YAG Laser with a Record Efficiency of 4.7 Watt/m2 of Primary Mirror Area. Bull. ISR. Phys. Soc. 1996, 42, 101. [Google Scholar]
- Lando, M.; Kagan, J.; Linyekin, B.; Dobrusin, V. A Solar-Pumped Nd:YAG Laser in the High Collection Efficiency Regime. Opt. Commun. 2003, 222, 371–381. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J. Highly Efficient Solar-Pumped Nd:YAG Laser. Opt. Express 2011, 19, 26399. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.H.; Ohkubo, T.; Yabe, T.; Kuboyama, H. 120 Watt Continuous Wave Solar-Pumped Laser with a Liquid Light-Guide Lens and an Nd:YAG Rod. Opt. Lett. 2012, 37, 2670–2672. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Almeida, J. Solar-Pumped TEM00 Mode Nd:YAG Laser. Opt. Express 2013, 21, 25107–25112. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Vistas, C.R.; Guillot, E. Highly Efficient End-Side-Pumped Nd:YAG Solar Laser by a Heliostat–Parabolic Mirror System. Appl. Opt. 2015, 54, 1970. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Liang, D.; Vistas, C.R.; Bouadjemine, R.; Guillot, E. 5.5 W Continuous-Wave TEM00-Mode Nd:YAG Solar Laser by a Light-Guide/2V-Shaped Pump Cavity. Appl. Phys. B Lasers Opt. 2015, 121, 473–482. [Google Scholar] [CrossRef]
- Lupei, V.; Lupei, A.; Gheorghe, C.; Ikesue, A. Emission Sensitization Processes Involving Nd3+ in YAG. J. Lumin. 2016, 170, 594–601. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engineerings, 6th ed.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-29338-7. [Google Scholar]
- Liang, D.; Almeida, J.; Vistas, C.R.; Oliveira, M.; Gonçalves, F.; Guillot, E. High-Efficiency Solar-Pumped TEM00-Mode Nd:YAG Laser. Sol. Energy Mater. Sol. Cells 2016, 145, 397–402. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Vistas, C.R.; Guillot, E. Solar-Pumped Nd:YAG Laser with 31.5 W/m2 multimode and 7.9 W/m2 TEM00-Mode Collection Efficiencies. Sol. Energy Mater. Sol. Cells 2017, 159, 435–439. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Tibúrcio, B.D.; Almeida, J. Solar-Pumped Cr:Nd:YAG Ceramic Laser with 6.7% Slope Efficiency. Sol. Energy Mater. Sol. Cells 2018, 185, 75–79. [Google Scholar] [CrossRef]
- Bruening, S.; Du, K.; Jarczynski, M.; Jenke, G.; Gillner, A. Ultra-Fast Laser Micro Processing by Multiple Laser Spots. Procedia CIRP 2018, 74, 573–580. [Google Scholar] [CrossRef]
- Strite, T.; Gusenko, A.; Grupp, M.; Hoult, T. Fiber Lasers: Multiple Laser Beam Materials Processing. Available online: https://www.laserfocusworld.com/lasers-sources/article/16547084/fiber-lasers-multiple-laser-beam-materials-processing (accessed on 2 August 2022).
- Olsen, F.O.; Hansen, K.S.; Nielsen, J.S. Multibeam Fiber Laser Cutting. J. Laser Appl. 2009, 21, 133–138. [Google Scholar] [CrossRef]
- Gillner, A.; Finger, J.; Gretzki, P.; Niessen, M.; Bartels, T.; Reininghaus, M. High Power Laser Processing with Ultrafast and Multi-Parallel Beams. J. Laser Micro Nanoeng. 2019, 14, 129–137. [Google Scholar] [CrossRef]
- Almeida, J. Numerical Modeling of a Four-Rod Pumping Scheme for Improving TEM00-Mode Solar Laser Performance. J. Photonics Energy 2019, 9, 018001. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Garcia, D.; Tibúrcio, B.D.; Guillot, E.; Vistas, C.R. Simultaneous Solar Laser Emissions from Three Nd:YAG Rods within a Single Pump Cavity. Sol. Energy 2020, 199, 192–197. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Costa, H.; Garcia, D.; Tibúrcio, B.D.; Catela, M.; Vistas, C.R. Seven-Rod Pumping Concept for Simultaneous Emission of Seven TEM00-Mode Solar Laser Beams. J. Photonics Energy 2020, 10, 038001. [Google Scholar] [CrossRef]
- Tibúrcio, B.D.; Liang, D.; Almeida, J.; Garcia, D.; Vistas, C.R.; Morais, P.J. Highly Efficient Side-Pumped Solar Laser with Enhanced Tracking-Error Compensation Capacity. Opt. Commun. 2020, 460, 125156. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Tibúrcio, B.; Catela, M.; Garcia, D.; Costa, H.; Vistas, C. Seven-Rod Pumping Approach for the Most Efficient Production of TEM00-Mode Solar Laser Power by a Fresnel Lens. J. Sol. Energy Eng. 2021, 143, 061004. [Google Scholar] [CrossRef]
- Tibúrcio, B.D.; Liang, D.; Almeida, J.; Garcia, D.; Catela, M.; Costa, H.; Vistas, C.R. Tracking Error Compensation Capacity Measurement of a Dual-Rod Side-Pumping Solar Laser. Renew. Energy 2022, 195, 1253–1261. [Google Scholar] [CrossRef]
- Payziyev, S.; Makhmudov, K.; Bakhramov, S.; Sherniyozov, A.; Zikrillayev, K. Solar-Pumped Multi-Rod Laser on a Separate Heliostat of Big Solar Furnace. Appl. Sol. Energy 2022, 57, 541–551. [Google Scholar] [CrossRef]
- Skouri, S.; Ben Haj Ali, A.; Bouadila, S.; Ben Salah, M.; Ben Nasrallah, S. Design and Construction of Sun Tracking Systems for Solar Parabolic Concentrator Displacement. Renew. Sustain. Energy Rev. 2016, 60, 1419–1429. [Google Scholar] [CrossRef]
- Finster, C. El Heliostato de La Universidad Santa Maria. Scientia 1962, 119, 5–20. [Google Scholar]
- McFee, R.H. Power Collection Reduction by Mirror Surface Nonflatness and Tracking Error for a Central Receiver Solar Power System. Appl. Opt. 1975, 14, 1493–1502. [Google Scholar] [CrossRef]
- Roth, P.; Georgiev, A.; Boudinov, H. Cheap Two Axis Sun Following Device. Energy Convers. Manag. 2005, 46, 1179–1192. [Google Scholar] [CrossRef]
- Mwithiga, G.; Kigo, S.N. Performance of a Solar Dryer with Limited Sun Tracking Capability. J. Food Eng. 2006, 74, 247–252. [Google Scholar] [CrossRef]
- Nsengiyumva, W.; Chen, S.G.; Hu, L.; Chen, X. Recent Advancements and Challenges in Solar Tracking Systems (STS): A Review. Renew. Sustain. Energy Rev. 2018, 81, 250–279. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar Energy Engineering: Processes and Systems, 2nd ed.; Academic press: Cambridge, MA, USA, 2014; ISBN 9780123972705. [Google Scholar]
- Sallaberry, F.; Pujol-Nadal, R.; Larcher, M.; Rittmann-Frank, M.H. Direct Tracking Error Characterization on a Single-Axis Solar Tracker. Energy Convers. Manag. 2015, 105, 1281–1290. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, Y.; Gao, S.; Yang, G.; Du, J. A Multipurpose Dual-Axis Solar Tracker with Two Tracking Strategies. Renew. Energy 2014, 72, 88–98. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Almeida, J.; Tibúrcio, B.D.; Garcia, D. Side-Pumped Continuous-Wave Nd:YAG Solar Laser with 5.4% Slope Efficiency. Sol. Energy Mater. Sol. Cells 2019, 192, 147–153. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Garcia, D.; Catela, M.; Tibúrcio, B.D.; Costa, H.; Guillot, E.; Almeida, J. Uniform and Non-Uniform Pumping Effect on Ce:Nd:YAG Side-Pumped Solar Laser Output Performance. Energies 2022, 15, 3577. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Garcia, D.; Tibúrcio, B.D.; Costa, H.; Catela, M.; Guillot, E.; Vistas, C.R. 40 W Continuous Wave Ce:Nd:YAG Solar Laser through a Fused Silica Light Guide. Energies 2022, 15, 3998. [Google Scholar] [CrossRef]
- ASTM G173-03(2012); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM: West Conshohocken, PA, USA, 2012.
- Zhao, B.; Zhao, C.; He, J.; Yang, S. The Study of Active Medium for Solar-Pumped Solid-State Lasers. Acta Opt. Sin 2007, 27, 1797–1801. [Google Scholar]
- Lei, C.; Chen, Z.; Wang, Z.; Zhou, P.; Xiao, H.; Leng, J.; Wang, X.; Hou, J.; Chen, J.; Liu, Z.; et al. Incoherent Beam Combining of Fiber Lasers by an All-Fiber 7x1 Signal Combiner at a Power Level of 14 KW. Opt. Express 2018, 26, 10421–10427. [Google Scholar] [CrossRef] [PubMed]
Parameters | Four-Rod | Five-Rod |
---|---|---|
Rod dimensions | DR = 4.55 mm LR = 15 mm | DR = 3.8 mm LR = 15 mm |
Total multimode laser power | 43.7 W | 44.4 W |
Multimode laser collection efficiency | 24.7 W/m2 | 25.1 W/m2 |
Multimode solar-to-laser conversion efficiency | 2.6% | 2.6% |
TEW10% | 0.76° | 0.66° |
∆p±0.1° | 0.05% | 0.02% |
∆p±0.2° | 0.30% | 1.06% |
System complexity | Simple | More complex |
Parameters | Tibúrcio et al., 2020 [34] | Liang et al., 2020 [32] | Almeida et al., 2019 [31] | Almeida et al., 2020 [33] | Liang et al., 2021 [35] | This Work | ||
---|---|---|---|---|---|---|---|---|
DR = 3.00 mm LR = 20 mm | DR = 4.55 mm LR = 15 mm | |||||||
Primary concentrator | Parabolic mirror | Parabolic mirror | Parabolic mirror | Parabolic mirror | Fresnel Lens | Parabolic mirror | ||
Effective collection area | 1.560 m2 | 1.000 m2 | 3.070 m2 | 1.767 m2 | 4.000 m2 | 1.767 m2 | ||
Solar irradiance | 890 W/m2 | 830 W/m2 | 1000 W/m2 | 950 W/m2 | 950 W/m2 | 950 W/m2 | ||
Number of rods | 2 | 3 | 4 | 7 | 7 | 4 | ||
Pumping configuration | Side-pumping | End-side-pumping | End-side-pumping | End-side-pumping | End-side-pumping | End-side-pumping | ||
Total multimode laser power | 37.7 W | 18.6 W | 59.0 W | 32.2 W | 107.0 W | 51.2 W | 43.7 W | |
Multimode laser collection efficiency | 24.2 W/m2 | 18.6 W/m2 | 19.2 W/m2 | 18.2 W/m2 | 26.8 W/m2 | 29.0 W/m2 | 24.7 W/m2 | |
Multimode solar-to-laser conversion efficiency | 2.9% | 2.2% | 2.0% | 1.9% | 2.8% | 3.1% | 2.6% | |
TEW10% | Horizontal | 0.50° | - | - | - | - | 0.44° | 0.76° |
Vertical | 0.70° | |||||||
∆p±0.1° | Horizontal | 2.32% | - | - | - | - | 1.59% | 0.05% |
Vertical | 0.31% | |||||||
∆p±0.2° | Horizontal | 11.54% | - | - | - | - | 8.47% | 0.30% |
Vertical | 2.13% | |||||||
Characteristics | Efficient for side-pumping | Simple approach | Complex concentration system design | Complex laser head design | Lower cost primary concentrator | Simple approach | ||
Asymmetric solar tracking error compensation capacity | Unpromising solar tracking error compensation capacity | No shared absorption | No shared absorption | Complex resonator system | Potential for efficient solar laser emission with uniform solar tracking error compensation capacity |
Parameters | Tibúrcio et al., 2022 [36] (Experimental) | Liang et al., 2020 [32] (Experimental) | This Work (Numerical) | Improvement over Previous Record (Times) | ||
---|---|---|---|---|---|---|
DR = 4.55 mm LR = 15 mm | ||||||
Effective collection area | 1.050 m2 | 1.000 m2 | 1.767 m2 | - | ||
Solar irradiance | 783 W/m2 | 830 W/m2 | 950 W/m2 | - | ||
Number of rods | 2 | 3 | 4 | - | ||
Total multimode laser power | 14.8 W | 18.3 W | 43.7 W | - | ||
Multimode laser collection efficiency | 14.1 W/m2 | 18.3 W/m2 | 24.7 W/m2 | 1.75 [36] | 1.58 [32] | |
Multimode solar-to-laser conversion efficiency | 1.8% | 2.2% | 2.6% | 1.44 [36] | 1.41 [32] | |
TEW10% | Horizontal | 0.60° | - | 0.76° | 1.27 [36] | |
Vertical | 1.40° | 0.54 [36] | ||||
∆p±0.1° | Horizontal | 3.74% | - | 0.05% | 74.80 [36] | |
Vertical | 0.75% | 15.00 [36] | ||||
∆p±0.2° | Horizontal | 6.49% | - | 0.30% | 21.63 [36] | |
Vertical | 2.63% | 8.77 [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catela, M.; Liang, D.; Vistas, C.R.; Garcia, D.; Costa, H.; Tibúrcio, B.D.; Almeida, J. Highly Efficient Four-Rod Pumping Approach for the Most Stable Solar Laser Emission. Micromachines 2022, 13, 1670. https://doi.org/10.3390/mi13101670
Catela M, Liang D, Vistas CR, Garcia D, Costa H, Tibúrcio BD, Almeida J. Highly Efficient Four-Rod Pumping Approach for the Most Stable Solar Laser Emission. Micromachines. 2022; 13(10):1670. https://doi.org/10.3390/mi13101670
Chicago/Turabian StyleCatela, Miguel, Dawei Liang, Cláudia R. Vistas, Dário Garcia, Hugo Costa, Bruno D. Tibúrcio, and Joana Almeida. 2022. "Highly Efficient Four-Rod Pumping Approach for the Most Stable Solar Laser Emission" Micromachines 13, no. 10: 1670. https://doi.org/10.3390/mi13101670
APA StyleCatela, M., Liang, D., Vistas, C. R., Garcia, D., Costa, H., Tibúrcio, B. D., & Almeida, J. (2022). Highly Efficient Four-Rod Pumping Approach for the Most Stable Solar Laser Emission. Micromachines, 13(10), 1670. https://doi.org/10.3390/mi13101670