Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Samples
2.3. Instrumentation
2.4. Electrophoretic Procedure
2.5. Reference Analytical Method
3. Results and Discussion
3.1. Detection Potential Optimization
3.2. Optimization of the Running Buffer
3.3. Eletrophoretic Parameters
3.4. Method Validation
3.5. Environmental Water Analysis and Comparison with a Reference Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferey, L.; Delaunay, N. Food Analysis on Electrophoretic Microchips. Sep. Purif. Rev. 2016, 45, 193–226. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Uekusa, Y.; Sakuragawa, A. Determination of Sulphite in Wines Using Suppressed Ion Chromatography. Food Chem. 2015, 174, 387–391. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Mei, Y.; Wang, Y.; Sun, W.; Shen, M. Determination of Inorganic Anions in the Whole Blood by Ion Chromatography. J. Pharm. Biomed. Anal. 2019, 163, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Fujiwara, H.; Maruyama, K.; Tanaka, Y.; Kinoshita, M.; Suzuki, S. Simultaneous Determination of Inorganic Anions and Cations in Water and Biological Samples by Capillary Electrophoresis with a Capacitive Coupled Contactless Conductivity Detector Using Capillary Filling Method. Anal. Sci. 2019, 35, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshoeshoe, M.N.; Obuseng, V. Simultaneous Determination of Nitrate, Nitrite and Phosphate in Environmental Samples by High Performance Liquid Chromatography with UV Detection. S. Afr. J. Chem. 2018, 71, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Martínková, E.; Křžek, T.; Coufal, P. Determination of Nitrites and Nitrates in Drinking Water Using Capillary Electrophoresis. Chem. Pap. 2014, 68, 1008–1014. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Zheng, Y.; Huang, Z.; Cheng, Y.; Ye, J.; Chu, Q.; Huang, D. Study on the Potential Application of Salivary Inorganic Anions in Clinical Diagnosis by Capillary Electrophoresis Coupled with Contactless Conductivity Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1014, 70–74. [Google Scholar] [CrossRef]
- Jóźwik, J.; Kałużna-Czaplińska, J. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders. Crit. Rev. Anal. Chem. 2016, 46, 1–14. [Google Scholar] [CrossRef]
- Pereira, E.A.; Petruci, J.F.S.; Cardoso, A.A. Determination of Nitrite and Nitrate in Brazilian Meats Using High Shear Homogenization. Food Anal. Methods 2012, 5, 637–642. [Google Scholar] [CrossRef]
- Cardoso, T.M.G.; Garcia, P.T.; Coltro, W.K.T. Colorimetric Determination of Nitrite in Clinical, Food and Environmental Samples Using Microfluidic Devices Stamped in Paper Platforms. Anal. Methods 2015, 7, 7311–7317. [Google Scholar] [CrossRef]
- Meschiari, C.A.; Zuardi, L.R.; Gomes, V.A.; Costa de Almeida, G.R.; Novaes, A.B.; Gerlach, R.F.; Marcaccini, A.M. Salivary, Blood and Plasma Nitrite Concentrations in Periodontal Patients and Healthy Individuals before and after Periodontal Treatment. Clin. Chim. Acta 2015, 444, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Methods of Quantitative Analysis of the Nitric Oxide Metabolites Nitrite and Nitrate in Human Biological Fluids. Free Radic. Res. 2005, 39, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.K. Determination of Nitrite in Drinking Water and Environmental Samples by Ion Exclusion Chromatography with Electrochemical Detection. Anal. Chem. 1989, 61, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, M.K.; Beg, Y.R.; Nishad, G.R. A Review on Spectroscopic Methods for Determination of Nitrite and Nitrate in Environmental Samples. Talanta 2019, 191, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, C.C.; Oliveira, J.R.; Lima, F.R.D.; Silva, E.A.; Silva, C.A.; Marques, J.J.G.S.M. Lixiviação de Nitrato e Amônio Em Latossolo Vermelho Distroférrico. Rev. Bras. De Ciênci. Agrár. Braz. J. Agric. Sci. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Syers, J.K.; Mosier, A.; Freney, J.R. (Eds.) Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment; Island Press: Washington, DC, USA, 2013; ISBN 1-55963-708-0. [Google Scholar]
- Rajasulochana, P.; Ganesan, Y.; Kumar, P.S.; Mahalaxmi, S.; Tasneem, F.; Ponnuchamy, M.; Kapoor, A. Paper-Based Microfluidic Colorimetric Sensor on a 3D Printed Support for Quantitative Detection of Nitrite in Aquatic Environments. Environ. Res. 2022, 208, 112745. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, A.; Brambilla, G.; Fernández-Cruz, M.L.; Arcella, D.; Bordajandi, L.R.; Cottrill, B.; van Peteghem, C.; Dorne, J.-L. Nitrite in Feed: From Animal Health to Human Health. Toxicol. Appl. Pharmacol. 2013, 270, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Katabami, K.; Hayakawa, M.; Gando, S. Case Report Severe Methemoglobinemia Due to Sodium Nitrite Poisoning. Case Rep. Emerg. Med. 2016, 2016, 9013816. [Google Scholar] [PubMed] [Green Version]
- Yilong, Z.; Dean, Z.; Daoliang, L. Electrochemical and Other Methods for Detection and Determination of Dissolved Nitrite: A Review. Int. J. Electrochem. Sci. 2015, 10, 1144–1168. [Google Scholar]
- Gladwin, M.T.; Schechter, A.N.; Kim-Shapiro, D.B.; Patel, R.P.; Hogg, N.; Shiva, S.; Cannon, R.O.; Kelm, M.; Wink, D.A.; Espey, M.G.; et al. The Emerging Biology of the Nitrite Anion. Nat. Chem. Biol. 2005, 1, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, M.; Wang, S.F.; Huang, C.H.; Alshgari, R.A.; Ouladsmane, M. Colloidal Synthesis of Perovskite-Type Lanthanum Aluminate Incorporated Graphene Oxide Composites: Electrochemical Detection of Nitrite in Meat Extract and Drinking Water. Microchim. Acta 2022, 189, 210. [Google Scholar] [CrossRef]
- Kumar, M.; Puri, A. A Review of Permissible Limits of Drinking Water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Lei, Q.; Li, J.; Hong, C.; Zhao, Z.; Xu, H.; Hu, J. Synthesis and Enhanced Electrochemical Properties of AuNPs@MoS2/RGO Hybrid Structures for Highly Sensitive Nitrite Detection. Microchem. J. 2022, 172, 106904. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.-G.; Zhu, J.-P.; He, L.; Lu, Z.-L. Methods for the Detection and Determination of Nitrite and Nitrate: A Review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Altunay, N.; Gürkan, R.; Olgaç, E. Development of a New Methodology for Indirect Determination of Nitrite, Nitrate, and Total Nitrite in the Selected Two Groups of Foods by Spectrophotometry. Food Anal. Methods 2017, 10, 2194–2206. [Google Scholar] [CrossRef]
- Moorcroft, M.J.; Davis, J.; Compton, R.G. Mathew J Moorcroft 2001 Review Detection and Determination of Nitrate Ions. Talanta 2001, 54, 785–803. [Google Scholar] [CrossRef]
- Nagababu, E.; Rifkind, J.M. Measurement of Plasma Nitrite by Chemiluminescence without Interference of S-, N-Nitroso and Nitrated Species. Free Radic. Biol. Med. 2007, 42, 1146–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, R.D.; Frank, C.W. Determination of Nitrate and Nitrite in Blood and Urine by Chemiluminescence. J. Anal. Toxicol. 1982, 6, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, M.; Folgado Biot, B.; Nabi, A.; Worsfold, P.J. Determination of Nitrate and Nitrite in Freshwaters Using Flow-Injection with Luminol Chemiluminescence Detection. Luminescence 2012, 27, 419–425. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Lin, Y.; Zheng, Y.; Lin, J.M. Peroxynitrous-Acid-Induced Chemiluminescence Detection of Nitrite Based on Microfluidic Chip. Talanta 2016, 154, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Q.; Lu, C.; Zhao, L. Determination of Nitrite in Tap Waters Based on Fluorosurfactant-Capped Gold Nanoparticles-Enhanced Chemiluminescence from Carbonate and Peroxynitrous Acid. Analyst 2011, 136, 2379–2384. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, C.; Van, T. Simultaneous Determination of Nitrite and Nitrate in Dew, Rain, Snow and Lake Water Samples by Ion-Pair High-Performance Liquid Chromatography. Talanta 2006, 70, 281–285. [Google Scholar] [CrossRef]
- Romitelli, F.; Santini, S.A.; Chierici, E.; Pitocco, D.; Tavazzi, B.; Amorini, A.M.; Lazzarino, G.; di Stasio, E. Comparison of Nitrite/Nitrate Concentration in Human Plasma and Serum Samples Measured by the Enzymatic Batch Griess Assay, Ion-Pairing HPLC and Ion-Trap GC-MS: The Importance of a Correct Removal of Proteins in the Griess Assay. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 851, 257–267. [Google Scholar] [CrossRef]
- Helmke, S.M.; Duncan, M.W. Measurement of the NO Metabolites, Nitrite and Nitrate, in Human Biological Fluids by GC-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 851, 83–92. [Google Scholar] [CrossRef]
- He, L.; Zhang, K.; Wang, C.; Luo, X.; Zhang, S. Effective Indirect Enrichment and Determination of Nitrite Ion in Water and Biological Samples Using Ionic Liquid-Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography. J. Chromatogr. A 2011, 1218, 3595–3600. [Google Scholar] [CrossRef]
- Deng, C.; Chen, J.; Nie, Z.; Yang, M.; Si, S. Electrochemical Detection of Nitrite Based on the Polythionine/Carbon Nanotube Modified Electrode. Thin Solid Film. 2012, 520, 7026–7029. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Zhou, F.; Yang, G.; Qu, L.; Miao, X. Development of a Paper-Based, Inexpensive, and Disposable Electrochemical Sensing Platform for Nitrite Detection. Electrochem. Commun. 2017, 81, 74–78. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.P.; Gai, L.; Li, D.J.; Li, Y.B. An Amperometric Sensor Based on Ionic Liquid and Carbon Nanotube Modified Composite Electrode for the Determination of Nitrite in Milk. Sens. Actuators B Chem. 2013, 181, 65–70. [Google Scholar] [CrossRef]
- Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H. Surface Decoration of Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode with Gold Nanoparticles for Electro-Oxidation and Sensitive Determination of Nitrite. Biosens. Bioelectron. 2014, 51, 379–385. [Google Scholar] [CrossRef]
- Muthumariappan, A.; Govindasamy, M.; Chen, S.M.; Sakthivel, K.; Mani, V. Screen-Printed Electrode Modified with a Composite Prepared from Graphene Oxide Nanosheets and Mn3O4 Microcubes for Ultrasensitive Determination of Nitrite. Microchim. Acta 2017, 184, 3625–3634. [Google Scholar] [CrossRef]
- Jayawardane, B.M.; Wei, S.; Mckelvie, I.D.; Kolev, S.D. Microfluidic Paper-Based Analytical Device (ΜPAD) for the Determination of Nitrite and Nitrate Nitrite and Nitrate. Anal. Chem. 2014, 86, 7274–7279. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.R.; Duarte, L.C.; Coltro, W.K.T. Instrument-Free Fabrication of Microfluidic Paper-Based Analytical Devices through 3D Pen Drawing. Sens. Actuators B Chem. 2020, 312, 128018. [Google Scholar] [CrossRef]
- Moravský, L.; Troška, P.; Klas, M.; Masár, M.; Matejčík, Š. Determination of Nitrites and Nitrates in Plasma-Activated Deionized Water by Microchip Capillary Electrophoresis. Contrib. Plasma Phys. 2020, 60, e202000014. [Google Scholar] [CrossRef]
- Quero, R.F.; Costa, B.M.d.C.; da Silva, J.A.F.; de Jesus, D.P. Using Multi-Material Fused Deposition Modeling (FDM) for One-Step 3D Printing of Microfluidic Capillary Electrophoresis with Integrated Electrodes for Capacitively Coupled Contactless Conductivity Detection. Sens. Actuators B Chem. 2022, 365, 131959. [Google Scholar] [CrossRef]
- Quero, R.F.; Bressan, L.P.; da Silva, J.A.F.; de Jesus, D.P. A Novel Thread-Based Microfluidic Device for Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Sens. Actuators B Chem. 2019, 286, 301–305. [Google Scholar] [CrossRef]
- Gabriel, E.F.M.; Lucca, B.G.; Duarte, G.R.M.; Coltro, W.K.T. Recent Advances in Toner-Based Microfluidic Devices for Bioanalytical Applications. Anal. Methods 2018, 10, 2952–2962. [Google Scholar] [CrossRef]
- Castro, E.R.; Manz, A. Present State of Microchip Electrophoresis: State of the Art and Routine Applications. J. Chromatogr. A 2015, 1382, 66–85. [Google Scholar] [CrossRef]
- Chagas, C.L.S.; de Souza, F.R.; Cardoso, T.M.G.; Moreira, R.C.; da Silva, J.A.F.; de Jesus, D.P.; Coltro, W.K.T. A Fully Disposable Paper-Based Electrophoresis Microchip with Integrated Pencil-Drawn Electrodes for Contactless Conductivity Detection. Anal. Methods 2016, 8, 6682–6686. [Google Scholar] [CrossRef]
- Freitas, C.B.; Moreira, R.C.; de Oliveira Tavares, M.G.; Coltro, W.K.T. Monitoring of Nitrite, Nitrate, Chloride and Sulfate in Environmental Samples Using Electrophoresis Microchips Coupled with Contactless Conductivity Detection. Talanta 2016, 147, 335–341. [Google Scholar] [CrossRef]
- Pinheiro, K.M.P.; Moreira, R.C.; Rezende, K.C.A.; Talhavini, M.; Logrado, L.P.L.; Baio, J.A.F.; Lanza, M.R.V.; Coltro, W.K.T. Rapid Separation of Post-Blast Explosive Residues on Glass Electrophoresis Microchips. Electrophoresis 2019, 40, 462–468. [Google Scholar] [CrossRef]
- Troška, P.; Chudoba, R.; Danč, L.; Bodor, R.; Horčičiak, M.; Tesařová, E.; Masár, M. Determination of Nitrite and Nitrate in Cerebrospinal Fluid by Microchip Electrophoresis with Microsolid Phase Extraction Pre-Treatment. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 930, 41–47. [Google Scholar] [CrossRef]
- Natiele Tiago da Silva, E.; Marques Petroni, J.; Gabriel Lucca, B.; Souza Ferreira, V. Pencil Graphite Leads as Simple Amperometric Sensors for Microchip Electrophoresis. Electrophoresis 2017, 38, 2733–2740. [Google Scholar] [CrossRef] [PubMed]
- Petroni, J.M.; Lucca, B.G.; Ferreira, V.S. Simple Approach for the Fabrication of Screen-Printed Carbon-Based Electrode for Amperometric Detection on Microchip Electrophoresis. Anal. Chim. Acta 2017, 954, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Kikura-Hanajiri, R.; Martin, R.S.; Lunte, S.M. Indirect Measurement of Nitric Oxide Production by Monitoring Nitrate and Nitrite Using Microchip Electrophoresis with Electrochemical Detection. Anal. Chem. 2002, 74, 6370–6377. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M.; Schilly, K.M.; Wijesinghe, M.B.; Caruso, G.; Fresta, C.G.; Lunte, S.M. Optimization of a Microchip Electrophoresis Method with Electrochemical Detection for the Determination of Nitrite in Macrophage Cells as an Indicator of Nitric Oxide Production. Anal. Methods 2019, 11, 148–156. [Google Scholar] [CrossRef]
- Kubáň, P.; Hauser, P.C. Fundamentals of Electrochemical Detection Techniques for CE and MCE. Electrophoresis 2009, 30, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Fernández-la-Villa, A.; Pozo-Ayuso, D.F.; Castaño-Álvarez, M. New Analytical Portable Instrument for Microchip Electrophoresis with Electrochemical Detection. Electrophoresis 2010, 31, 2641–2649. [Google Scholar] [CrossRef] [PubMed]
- Arul, P.; Huang, S.T.; Mani, V.; Hu, Y.C. Ultrasonic Synthesis of Bismuth-Organic Framework Intercalated Carbon Nanofibers: A Dual Electrocatalyst for Trace-Level Monitoring of Nitro Hazards. Electrochim. Acta. 2021, 381, 138280. [Google Scholar] [CrossRef]
- Mani, V.; Govindasamy, M.; Chen, S.-M.; Chen, T.-W.; Kumar, A.S.; Huang, S.-T. Core-Shell Heterostructured Multiwalled Carbon Nanotubes@reduced Graphene Oxide Nanoribbons/Chitosan, a Robust Nanobiocomposite for Enzymatic Biosensing of Hydrogen Peroxide and Nitrite. Sci. Rep. 2017, 7, 11910. [Google Scholar]
- Fan, Z.H.; Harrison, D.J. Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections. Anal. Chem. 1994, 66, 177–184. [Google Scholar] [CrossRef]
- Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip. Science 1993, 261, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Lacher, N.A.; Garrison, K.E.; Martin, R.S.; Lunte, S.M. Microchip Capillary Electrophoresis/ Electrochemistry. Electrophoresis 2001, 22, 2526–2536. [Google Scholar] [CrossRef]
- Guo, Y.X.; Zhang, Q.F.; Shangguang, X.; Zhen, G. Spectrofluorimetric Determination of Trace Nitrite with O-Phenylenediamine Enhanced by Hydroxypropyl-β-Cyclodextrin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 101, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Piela, B.; Wrona, P.K. Oxidation of Nitrites on Solid Electrodes. J. Electrochem. Soc. 2002, 149, E55. [Google Scholar] [CrossRef]
- Duarte-Junior, G.F.; Ismail, A.; Griveau, S.; D’Orlyé, F.; Fracassi Da Silva, J.A.; Coltro, W.K.T.; Bedioui, F.; Varenne, A. Integrated Microfluidic Device for the Separation, Decomposition and Detection of Low Molecular Weight S-Nitrosothiols. Analyst 2019, 144, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, M.; Frankenfeld, C.; Coltro, W.K.T.; Carrilho, E.; Diamond, D.; Lunte, S.M. Dual Contactless Conductivity and Amperometric Detection on Hybrid PDMS/Glass Electrophoresis Microchips. Analyst 2010, 135, 96–103. [Google Scholar] [CrossRef]
- Gunasekara, D.B.; Hulvey, M.K.; Lunte, S.M. In-Channel Amperometric Detection for Microchip Electrophoresis Using a Wireless Isolated Potentiostat. Electrophoresis 2011, 32, 832–837. [Google Scholar] [CrossRef] [Green Version]
- Ollikainen, E.; Aitta-aho, T.; Koburg, M.; Kostiainen, R.; Sikanen, T. Rapid Analysis of Intraperitoneally Administered Morphine in Mouse Plasma and Brain by Microchip Electrophoresis-Electrochemical Detection. Sci. Rep. 2019, 9, 3311. [Google Scholar] [CrossRef]
Parameter | Intra-Day | Inter-Day | Inter-Chip |
---|---|---|---|
RSD Intensity (%) | 0.1 | 12.3 | 11.8 |
RSD Area (%) | 2.3 | 15.6 | 9.8 |
RSD Migration Time (%) | 0.6 | 3.3 | 3.4 |
Sample | Analytical Technique | Analysis Time (s) | LOD (μmol L−1) | Portable | Ref |
---|---|---|---|---|---|
blood | IC—conductivity detection | ~1920 | 0.078 | No | [3] |
water | HPLC—UV/DAD | 180 | 9.78 | No | [4] |
food | CPE/UV–Vis | ~900 | 0.003 | No | [26] |
water and food | Paper-based electrochemical devices | N/E | 0.1 | Yes | [38] |
water | Paper-based colorimetric devices | ~900 | 2.6 | Yes | [17] |
Saliva | Paper-based colorimetric devices | ~300 | 4.8 | Yes | [43] |
Meat and water | Electrocatalysis/AD | ~120 | 0.020 | No | [41] |
water | Electrocatalysis/AD | ~3 | 0.038 | No | [24] |
water | Electrocatalysis/AD | ~50 | 0.000184 | No | [59] |
water | ME-conductivity detection | ~350 * | 0.652 | No | [44] |
post-blast explosive residues | ME–C4D | 150 | 9.5 | Yes | [51] |
water | ME–AD | 80 | 2.8 | No | [53] |
water | ME–AD | 70 | 8.2 | No | [54] |
Cells | ME–AD | 35 | 0.50 | No | [56] |
water | ME–AD | 50 | 1.3 | Yes | This study |
Sample | Reference Methodology (µmol L−1) | ME-DA (µmol L−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
D1 | 32.2 ± 0.3 | 30.4 ± 1.0 | 90.7–97.1 | 3.3 |
D2 | 52.2 ± 0.5 | 46.3 ± 5.3 | 88.8–98.6 | 6.3 |
D3 | 72.2 ± 0.6 | 67.1 ± 0.5 | 92.5–93.8 | 0.7 |
A1 | 30.0 ± 0.3 | 28.7 ± 1.6 | 90.1–100.8 | 5.6 |
A2 | 40.0 ± 0.4 | 35.9 ± 2.9 | 83.5–97.7 | 8.1 |
A3 | 60.0 ± 0.5 | 56.6 ± 5.0 | 87.8–103.8 | 8.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, S.B.; Duarte, L.M.; Rezende, K.C.A.; Coltro, W.K.T. Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection. Micromachines 2022, 13, 1736. https://doi.org/10.3390/mi13101736
Lucas SB, Duarte LM, Rezende KCA, Coltro WKT. Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection. Micromachines. 2022; 13(10):1736. https://doi.org/10.3390/mi13101736
Chicago/Turabian StyleLucas, Simone Bernardino, Lucas Mattos Duarte, Kariolanda Cristina Andrade Rezende, and Wendell Karlos Tomazelli Coltro. 2022. "Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection" Micromachines 13, no. 10: 1736. https://doi.org/10.3390/mi13101736