An Investigation on the Efficacy of Orotic Acid as a Bio-Nucleating Agent for Poly-Lactic Acid under Quiescent Condition and Injection Molding
Abstract
:1. Introduction
1.1. PLA and Additives for PLA
1.2. Orotic Acid as a Nucleating Agent for PLA
1.3. Injection Molding of PLA Products
2. Sample Preparation and Characterization Technique
2.1. Material Selection
2.2. Injection Molding Processing Parameters
2.3. Characterization Techniques
2.3.1. Isothermal DSC Characterization Technique
2.3.2. Dynamic DSC Characterization Technique
3. Data Treatment Technique
4. Result and Discussions
4.1. Overall Crystallinity Development under Quiescent Conditions
4.2. Crystallization Behavior under Quiescent Conditions
4.3. Crystallinity of Injection Molded Parts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auras, R. Poly(Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Anderson, K.S.; Hillmyer, M.A. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 2006, 47, 2030–2035. [Google Scholar] [CrossRef]
- Gao, P.; Kundu, A.; Alqosaibi, K.; Coulter, J. Enhanced crystallinity development of poly-lactic acid by dynamic melt manipulation. In Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition, Virtual, 1–5 November 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Harris, A.M.; Lee, E.C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L. The crystallization and melting processes of poly(L-lactic acid). Macromol. Symp. 2006, 234, 176–183. [Google Scholar] [CrossRef]
- Tsuji, H.; Takai, H.; Fukuda, N.; Takikawa, H. Non-isothermal crystallization behavior of poly(L-lactic acid) in the presence of various additives. Macromol. Mater. Eng. 2006, 291, 325–335. [Google Scholar] [CrossRef]
- Tsuji, H.; Tashiro, K.; Bouapao, L.; Narita, J. Polyglycolide as a biodegradable nucleating agent for poly(L-lactide). Macromol. Mater. Eng. 2008, 293, 947–951. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 2011, 44, 1233–1237. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Z.; Yang, W. Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). Compos. Sci. Technol. 2009, 69, 627–632. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z. Effect of Orotic Acid on the Crystallization Kinetics and Morphology of Biodegradable Poly( L -lactide) as an Efficient Nucleating Agent. Ind. Eng. Chem. Res. 2011, 50, 12299–12303. [Google Scholar] [CrossRef]
- Salač, J.; Šerá, J.; Jurča, M.; Verney, V.; Marek, A.A.; Koutný, M. Photodegradation and biodegradation of poly(lactic) acid containing orotic acid as a nucleation agent. Materials 2019, 12, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Qiu, Z. Biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: Enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 2010, 43, 1499–1506. [Google Scholar] [CrossRef]
- Pan, P.; Liang, Z.; Cao, A.; Inoue, Y. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl. Mater. Interfaces 2009, 1, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, F.J.; Duhduh, A.A.; Gao, P.; Coulter, J.P. The influence of cooling rate and mold temperature on polymers crystallization kinetics in injection molding. In Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition, Virtual, 1–5 November 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Gao, P.; Duhduh, A.; Xing, J.; Kundu, A.; Coulter, J.P. An investigation of the crystallinity in vibration assisted injection molded poly-lactic ACID. In ANTEC 2020—Proceedings of the Technical Conference & Exhibition; Society of Plastics Engineers: Danbury, CT, USA, 2020; Volume 2, pp. 202–207. [Google Scholar]
- Feng, Y.; Ma, P.; Xu, P.; Wang, R.; Dong, W.; Chen, M.; Joziasse, C. The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Int. J. Biol. Macromol. 2018, 106, 955–962. [Google Scholar] [CrossRef]
- Zhang, Z.-C.; Sang, Z.-H.; Huang, Y.-F.; Ru, J.-F.; Zhong, G.-J.; Ji, X.; Wang, R.; Li, Z.-M. Enhanced heat deflection resistance via shear flow-induced stereocomplex crystallization of polylactide systems. ACS Sustain. Chem. Eng. 2017, 5, 1692–1703. [Google Scholar] [CrossRef]
- Liu, D.; Tian, N.; Huang, N.; Cui, K.; Wang, Z.; Hu, T.; Yang, H.; Li, X.; Li, L. Extension-induced nucleation under near-equilibrium conditions: The mechanism on the transition from point nucleus to shish. Macromolecules 2014, 47, 6813–6823. [Google Scholar] [CrossRef]
- Lorenzo, A.T.; Arnal, M.L.; Albuerne, J.; Müller, A.J. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym. Test. 2007, 26, 222–231. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Wang, W.; Fang, H.; Xu, Z.; Chen, X.; Wang, Z. Stereocomplex Crystallite-Assisted Shear-Induced Crystallization Kinetics at a High Temperature for Asymmetric Biodegradable PLLA/PDLA Blends. ACS Sustain. Chem. Eng. 2016, 4, 273–283. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; Te Nijenhuis, K. Chapter 19—Crystallisation and Recrystallisation. In Properties of Polymers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 703–746. ISBN 9780080548197. [Google Scholar] [CrossRef]
- Gao, P.; Kundu, A.; Coulter, J.P. Vibration-assisted injection molding: An efficient process for enhanced crystallinity development and mechanical characteristics for poly lactic acid Int. J. Adv. Manuf. Technol. 2022, 121, 3111–3124. [Google Scholar] [CrossRef]
Material | PLA 2500HP | PLA-OA Blend |
---|---|---|
Melt Temperature (°C) | 215 | |
Mold Temperature (°C) | 40, 60, 70, 80, 90, 95 | 80, 90 |
Injection Pressure (MPa) | 64 | |
Packing Pressure (MPa) | 36 | |
Cooling Time (s) | 180, 360 | 180 |
Isotherm Temperature (°C) | Crystallinity (%) of PLA-OA Blend | Crystallinity (%) of Neat PLA |
---|---|---|
80 | 63 | 26 |
90 | 60 | 52 |
100 | 66 | 54 |
120 | 64 | 55 |
Isotherm Temp. (°C) | Incubation Time (min) | Initial Crystallization Rate (%/min) | ||
---|---|---|---|---|
Neat PLA | PLA-OA Blend | Neat PLA | PLA-OA Blend | |
80 | 5.89 | 4.99 | 0.16 | 4.19 |
90 | 5.85 | 2.89 | 0.40 | 17.29 |
100 | 2.63 | 2.56 | 1.38 | 31.30 |
120 | 3.47 | 2.34 | 1.15 | 27.59 |
Isotherm Temp. (°C) | Crystallization Rate Factor k | Avrami Index n | ||||
---|---|---|---|---|---|---|
Neat PLA | PLA-OA | Neat PLA | PLA-OA | Neat PLA | PLA-OA | |
80 | 1.08 × 10−3 | - | 1.6 | - | 0.35 | - |
90 | 1.09 × 10−3 | 0.18 | 1.6 | 1.5 | 0.82 | 0.82 |
100 | 3.73 × 10−3 | 0.57 | 1.7 | 1.2 | 0.90 | 0.82 |
120 | 3.05 × 10−3 | 0.42 | 1.6 | 1.7 | 0.90 | 0.88 |
Material and Mold Temperature | Crystallinity (%) |
---|---|
Neat PLA 40 °C | 2.6 |
PLA-OA 80 °C | 25.3 |
PLA-OA 90 °C | 58.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Masato, D.; Kundu, A.; Coulter, J.P. An Investigation on the Efficacy of Orotic Acid as a Bio-Nucleating Agent for Poly-Lactic Acid under Quiescent Condition and Injection Molding. Micromachines 2022, 13, 2186. https://doi.org/10.3390/mi13122186
Gao P, Masato D, Kundu A, Coulter JP. An Investigation on the Efficacy of Orotic Acid as a Bio-Nucleating Agent for Poly-Lactic Acid under Quiescent Condition and Injection Molding. Micromachines. 2022; 13(12):2186. https://doi.org/10.3390/mi13122186
Chicago/Turabian StyleGao, Peng, Davide Masato, Animesh Kundu, and John P. Coulter. 2022. "An Investigation on the Efficacy of Orotic Acid as a Bio-Nucleating Agent for Poly-Lactic Acid under Quiescent Condition and Injection Molding" Micromachines 13, no. 12: 2186. https://doi.org/10.3390/mi13122186
APA StyleGao, P., Masato, D., Kundu, A., & Coulter, J. P. (2022). An Investigation on the Efficacy of Orotic Acid as a Bio-Nucleating Agent for Poly-Lactic Acid under Quiescent Condition and Injection Molding. Micromachines, 13(12), 2186. https://doi.org/10.3390/mi13122186