Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Working Principle
3.2. Generation of Droplets
3.3. Digital PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, N.; Salimi, A. Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform. Anal. Chim. Acta 2019, 1091, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Seah, Y.F.S.; Hu, H.; Merten, C.A. Microfluidic single-cell technology in immunology and antibody screening. Mol. Aspects Med. 2018, 59, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, B.; He, M.; Li, X.; Chen, P.; Hu, B. Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry. Talanta 2019, 200, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Siavashy, S.; Soltani, M.; Ghorbani-Bidkorbeh, F.; Fallah, N.; Farnam, G.; Mortazavi, S.A.; Shirazi, F.H.; Tehrani, M.H.H.; Hamedi, M.H. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr. Polym. 2021, 265, 118027. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kitahata, H.; Ito, H. Fabrication of Microparticles with Front-Back Asymmetric Shapes Using Anisotropic Gelation. Micromachines 2021, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Schlenker, F.; Kipf, E.; Borst, N.; Paust, N.; Zengerle, R.; von Stetten, F.; Juelg, P.; Hutzenlaub, T. Centrifugal Microfluidic Integration of 4-Plex ddPCR Demonstrated by the Quantification of Cancer-Associated Point Mutations. Processes 2021, 9, 97. [Google Scholar] [CrossRef]
- Schulz, M.; Probst, S.; Calabrese, S.A.R.H.; Borst, N.; Weiss, M.; von Stetten, F.; Zengerle, R.; Paust, N. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification. Molecules 2020, 25, 1914. [Google Scholar] [CrossRef]
- Stolovicki, E.; Ziblat, R.; Weitz, D.A. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance. Lab. Chip 2017, 18, 132–138. [Google Scholar] [CrossRef]
- Amstad, E.; Chemama, M.; Eggersdorfer, M.; Arriaga, L.R.; Brenner, M.P.; Weitz, D.A. Robust scalable high throughput production of monodisperse drops. Lab. Chip 2016, 16, 4163–4172. [Google Scholar] [CrossRef]
- Sugiura, S.; Nakajima, M.; Tong, J.; Nabetani, H.; Seki, M. Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique. J. Colloid. Interface Sci. 2000, 227, 95–103. [Google Scholar] [CrossRef]
- Opalski, A.S.; Makuch, K.; Lai, Y.K.; Derzsi, L.; Garstecki, P. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. Lab. Chip 2019, 19, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Lin, F.; Kim, H.S.; Park, J. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator. Micromachines 2019, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- Caggioni, M.; Traini, D.; Young, P.M.; Spicer, P.T. Microfluidic production of endoskeleton droplets with controlled size and shape. Powder Technol. 2018, 329, 129–136. [Google Scholar] [CrossRef]
- Filatov, N.A.; Evstrapov, A.A.; Bukatin, A.S. Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device. Micromachines 2021, 12, 662. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.D.; Chen, X.D.; Li, Y.J.; Hu, G.Q.; Cao, T.; Qin, K.R. Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device. Micromachines 2020, 11, 406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, C.; Du, W.; Liu, C.; Fu, T.; Ma, Y.; Li, H.Z. Formation dynamics of elastic droplets in a microfluidic T-junction. Chem. Eng. Res. Design 2018, 139, 188–196. [Google Scholar] [CrossRef]
- Lignel, S.; Salsac, A.-V.; Drelich, A.; Leclerc, E.; Pezron, I. Water-in-oil droplet formation in a flow-focusing microsystem using pressure- and flow rate-driven pumps. Colloid. Surf. A Physicochem. Eng. Aspects 2017, 531, 164–172. [Google Scholar] [CrossRef]
- Bihi, I.; Vesperini, D.; Kaoui, B.; Le Goff, A. Pressure-driven flow focusing of two miscible liquids. Phys. Fluids 2019, 31, 062001. [Google Scholar] [CrossRef]
- Schulz, M.; Calabrese, S.; Hausladen, F.; Wurm, H.; Drossart, D.; Stock, K.; Sobieraj, A.M.; Eichenseher, F.; Loessner, M.J.; Schmelcher, M.; et al. Point-of-care testing system for digital single cell detection of MRSA directly from nasal swabs. Lab. Chip 2020, 20, 2549–2561. [Google Scholar] [CrossRef]
- Clime, L.; Malic, L.; Daoud, J.; Lukic, L.; Geissler, M.; Veres, T. Buoyancy-driven step emulsification on pneumatic centrifugal microfluidic platforms. Lab. Chip 2020, 20, 3091–3095. [Google Scholar] [CrossRef]
- Shin, D.-C.; Morimoto, Y.; Sawayama, J.; Miura, S.; Takeuchi, S. Centrifuge-based step emulsification device for simple and fast generation of monodisperse picoliter droplets. Sens. Actuators B Chem. 2019, 301, 1–22. [Google Scholar] [CrossRef]
- Schulz, M.; von Stetten, F.; Zengerle, R.; Paust, N. Centrifugal Step Emulsification: How Buoyancy Enables High Generation Rates of Monodisperse Droplets. Langmuir 2019, 35, 9809–9815. [Google Scholar] [CrossRef] [PubMed]
- Moradian, A.; Mostaghimi, J. Effects of injection angle on the measurement of surface tension coefficient by drop weight method. Phys. Chem. Liquids 2011, 49, 32–51. [Google Scholar] [CrossRef]
- Yildirim, O.E.; Xu, Q.; Basaran, O.A. Analysis of the drop weight method. Phys. Fluids 2005, 17, 062107. [Google Scholar] [CrossRef]
- Peng, H.; Zhu, M.; Gao, Z.; Liao, C.; Jia, C.; Wang, H.; Zhou, H.; Zhao, J. A centrifugal microfluidic emulsifier integrated with oil storage structures for robust digital LAMP. Biomed. Microdev. 2020, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Leung, W.W.F. Numerical Investigation of Cell Encapsulation for Multiplexing Diagnostic Assays Using Novel Centrifugal Microfluidic Emulsification and Separation Platform. Micromachines 2016, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Schuler, F.; Schwemmer, F.; Trotter, M.; Wadle, S.; Zengerle, R.; von Stetten, F.; Paust, N. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. Lab. Chip 2015, 15, 2759–2766. [Google Scholar] [CrossRef] [PubMed]
- Schuler, F.; Siber, C.; Hin, S.; Wadle, S.; Paust, N.; Zengerle, R.; von Stetten, F. Digital droplet LAMP as a microfluidic app on standard laboratory devices. Analyt. Methods 2016, 8, 2750–2755. [Google Scholar] [CrossRef]
- Madadelahi, M.; Madou, M.J.; Nokoorani, Y.D.; Shamloo, A.; Martinez-Chapa, S.O. Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres. Sens. Actuators B Chem. 2020, 311, 603. [Google Scholar] [CrossRef]
- Schuler, F.; Trotter, M.; Geltman, M.; Schwemmer, F.; Wadle, S.; Dominguez-Garrido, E.; Lopez, M.; Cervera-Acedo, C.; Santibanez, P.; von Stetten, F.; et al. Digital droplet PCR on disk. Lab. Chip 2016, 16, 208–216. [Google Scholar] [CrossRef]
- Kang, S.M.; Lee, G.W.; Huh, Y.S. Centrifugal Force-Driven Modular Micronozzle System: Generation of Engineered Alginate Microspheres. Sci. Rep. 2019, 9, 12776. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Onoe, H.; Yanagisawa, M.; Ito, H.; Ichikawa, M.; Fujiwara, K.; Saito, H.; Takinoue, M. Droplet-Shooting and Size-Filtration (DSSF) Method for Synthesis of Cell-Sized Liposomes with Controlled Lipid Compositions. Chembiochem 2015, 16, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, Y.; Luo, Z.; Li, Y.; Li, M.; He, L. A 3D easily-assembled Micro-Cross for droplet generation. Lab. Chip 2014, 14, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gerard, C.J.J.; Ikni, A.; Ferry, G.; Vuillard, L.M.; Boutin, J.A.; Ferte, N.; Grossier, R.; Candoni, N.; Veesler, S. Microfluidic platform for optimization of crystallization conditions. J. Cryst. Growth 2017, 472, 18–28. [Google Scholar] [CrossRef]
- Kwak, C.H.; Kang, S.-M.; Jung, E.; Haldorai, Y.; Han, Y.-K.; Kim, W.-S.; Yu, T.; Huh, Y.S. Customized microfluidic reactor based on droplet formation for the synthesis of monodispersed silver nanoparticles. J. Ind. Eng. Chem. 2018, 63, 405–410. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J. Multiphasic Sensory Alginate Particle Having Polydiacetylene Liposome for Selective and More Sensitive Multitargeting Detection. Chem. Mater. 2012, 24, 2817–2822. [Google Scholar] [CrossRef]
- Maeda, K.; Onoe, H.; Takinoue, M.; Takeuchi, S. Observation and Manipulation of a Capillary Jet in a Centrifuge-Based Droplet Shooting Device. Micromachines 2015, 6, 1526–1533. [Google Scholar] [CrossRef]
- De Lora, J.A.; Velasquez, J.L.; Carroll, N.J.; Freyer, J.P.; Shreve, A.P. Centrifugal Generation of Droplet-Based 3D Cell Cultures. SLAS Technol. 2020, 25, 436–445. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, P.; Zhang, F.; Jiang, M.; Zhu, Y.; Huang, Y. Centrifugal micro-channel array droplet generation for highly parallel digital PCR. Lab. Chip 2017, 17, 235–240. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, F.; Zhang, X.; Yin, J.; Du, M.; Jiang, M.; Liu, L.; Li, J.; Huang, Y.; Wang, J. High-throughput single-cell whole-genome amplification through centrifugal emulsification and eMDA. Commun. Biol. 2019, 2, 147. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Liu, C.; Zhang, T.; Jiang, K.; Li, H.; Zhang, Z.; Tang, Y. Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR. Micromachines 2022, 13, 171. https://doi.org/10.3390/mi13020171
Zhou W, Liu C, Zhang T, Jiang K, Li H, Zhang Z, Tang Y. Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR. Micromachines. 2022; 13(2):171. https://doi.org/10.3390/mi13020171
Chicago/Turabian StyleZhou, Wuping, Cong Liu, Tao Zhang, Keming Jiang, Haiwen Li, Zhiqiang Zhang, and Yuguo Tang. 2022. "Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR" Micromachines 13, no. 2: 171. https://doi.org/10.3390/mi13020171
APA StyleZhou, W., Liu, C., Zhang, T., Jiang, K., Li, H., Zhang, Z., & Tang, Y. (2022). Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR. Micromachines, 13(2), 171. https://doi.org/10.3390/mi13020171