Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (925)

Search Parameters:
Keywords = buoyancy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4248 KB  
Article
Experimental Verification of Anchor Tip Angles Suitable for Vibratory Penetration into Underwater Saturated Soft Soil
by Akira Ofuchi, Daisuke Fujiwara, Tomohiro Watanabe, Noriaki Mizukami, Yasuhiro Kuwahara, Koji Miyoshi and Kojiro Iizuka
Geotechnics 2025, 5(4), 68; https://doi.org/10.3390/geotechnics5040068 - 1 Oct 2025
Viewed by 159
Abstract
Currently, Japan’s fishing industry is facing a severe decline in its workforce. As a response, fishing mechanization using small underwater robots is promoted. These robots offer advantages due to their compact size, although their operating time is limited. A major source of this [...] Read more.
Currently, Japan’s fishing industry is facing a severe decline in its workforce. As a response, fishing mechanization using small underwater robots is promoted. These robots offer advantages due to their compact size, although their operating time is limited. A major source of this limited operating time is posture stabilization, which requires continuous thruster use and rapidly drains the battery. To reduce power consumption, anchoring the robot to the seabed with anchors is proposed. However, due to neutral buoyancy, the available thrust is limited, making penetration into the seabed difficult and reducing stability. To address this, we focus on composite-shaped anchors and vibration. The anchors combine a conical tip and a cylindrical shaft to achieve both penetrability and holding force. However, a trade-off exists between these functions depending on the tip angle; anchors with larger angles provide better holding capacity but lower penetrability. To overcome this limitation, vibration is applied to reduce soil resistance and facilitate anchor penetration. While vibration is known to aid penetration in saturated soft soils, the effect of tip angle under such conditions remains unclear. This study aims to clarify the optimal tip angle for achieving sufficient penetration and holding performance under vibratory conditions. Experiments in underwater saturated soft soil showed that vibration improves both penetration and holding. This effect was strong in anchors with tip angles optimized for holding force. These findings support the development of energy-efficient anchoring systems for autonomous underwater operations in soft seabed environments. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

14 pages, 784 KB  
Article
Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea
by Chae-ho Kim and Dong-chul Shin
J. Mar. Sci. Eng. 2025, 13(10), 1870; https://doi.org/10.3390/jmse13101870 - 27 Sep 2025
Viewed by 278
Abstract
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis [...] Read more.
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis and utilizing the product as a core material for eco-friendly marine buoys. Biochars were produced at pyrolysis temperatures ranging from 300 °C to 700 °C and characterized for elemental composition, FT-IR spectra, leachability (CODcr), and biodegradability. Higher pyrolysis temperatures resulted in lower H/C and O/C molar ratios, indicating enhanced aromaticity and hydrophobicity. The biochar produced at 700 °C (SFBW-700) exhibited the highest structural and environmental stability, with minimal leachability and resistance to microbial degradation. A composite buoy was fabricated by mixing SFBW-700 with natural binders (beeswax and rosin), forming solid specimens without synthetic polymers or foaming agents. The optimized composition (biochar:beeswax:rosin = 85:10:5) showed excellent performance in density, buoyancy, and impact resistance, while fully meeting the Korean eco-friendly buoy certification criteria. This work presents a circular and scalable approach to mitigating marine macroalgal blooms and replacing plastic-based marine infrastructure with biochar-based eco-friendly composite alternatives. The findings suggest strong potential for the deployment of SH-derived biochar in marine engineering applications. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

15 pages, 1486 KB  
Article
Investigating Neural Reward Sensitivity in the School Grade Incentive Delay Task and Its Relation to Academic Buoyancy
by Myrthe J. B. Vel Tromp, Hilde M. Huizenga, Brenda R. J. Jansen, Anna C. K. van Duijvenvoorde and Ilya M. Veer
Behav. Sci. 2025, 15(10), 1321; https://doi.org/10.3390/bs15101321 - 26 Sep 2025
Viewed by 154
Abstract
Understanding the mechanisms behind academic buoyancy, the ability to effectively cope with everyday academic challenges, is essential for identifying the factors and mechanisms that help students maintain their motivation and cope with routine academic pressures. One potential underlying mechanism is reward sensitivity, or [...] Read more.
Understanding the mechanisms behind academic buoyancy, the ability to effectively cope with everyday academic challenges, is essential for identifying the factors and mechanisms that help students maintain their motivation and cope with routine academic pressures. One potential underlying mechanism is reward sensitivity, or the capacity to experience pleasure both in anticipating and receiving reward-related stimuli. We hypothesized that individuals with higher sensitivity to anticipated reward would exhibit greater academic buoyancy. To test this in an academic context, we modified the Monetary Incentive Delay (MID) task into a School Grade Incentive Delay (SGID) task, where participants work towards a fictitious school grade by winning or losing points on each of the trials. In this study, we investigated whether the SGID activates the neural reward circuitry similar to the traditional MID and whether this is associated with academic buoyancy. The SGID task activated key brain regions associated with reward anticipation, validating its use for studying reward processing in academic contexts. Importantly, we found a negative association between academic buoyancy and right amygdala activation during reward anticipation, suggesting that buoyant students may benefit from reduced emotional reactivity when anticipating rewards. Further research in larger samples is needed to capture the full complexity of reward processing in relation to academic buoyancy. Full article
Show Figures

Figure 1

13 pages, 1515 KB  
Article
Regional Emission Performance Benchmarks for Cookstove Stacking in the Purepecha Region, Mexico
by Víctor M. Ruiz-García, Rufus D. Edwards, Paulo C. Medina Mendoza, María de Lourdes Cinco Izquierdo, Minerva Lopez, Juan Vázquez, Víctor Berrueta and Omar Masera
Atmosphere 2025, 16(10), 1127; https://doi.org/10.3390/atmos16101127 - 26 Sep 2025
Viewed by 254
Abstract
The National Cookstove Program has been launched by the Federal Government of Mexico, attempting to reach one million rural homes by the year 2030. Voluntary ISO emission standards for fine particulate matter (PM2.5) and carbon monoxide (CO) relate emission rates from [...] Read more.
The National Cookstove Program has been launched by the Federal Government of Mexico, attempting to reach one million rural homes by the year 2030. Voluntary ISO emission standards for fine particulate matter (PM2.5) and carbon monoxide (CO) relate emission rates from stoves to indoor air concentrations using a single zone box model (SZM) to derive performance tiers. Region-specific emission benchmarks for cookstove performance that are linked to estimated benefits in reduced indoor air concentrations and resultant health impacts will be important in product selection. Here we compare the SZM to measured indoor PM2.5 and CO concentrations for five stove stacking combinations using controlled cooking tests of typical foods from the Purepecha region of Mexico to derive region-specific benchmarks. The results demonstrate that the SZM systematically overpredicted PM2.5 emissions based on thermal plume effects and ventilation which can be adjusted based on strong relationships (Adjusted r2 = 0.96, p < 0.001) with emission rates and air changes per hour. Adjustment of PM2.5 ISO voluntary standards for systematic bias caused by plume buoyancy and ventilation is important in ensuring that the ISO benchmarks reflect the actual indoor concentrations measured in homes. The ISO benchmarks for CO should be revisited as the indoor concentrations from traditional stoves met the most stringent benchmarks but were in the range of concentrations associated with adverse health impacts in adults and psychosocial impacts in children. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

16 pages, 3546 KB  
Article
Heat and Mass Transfer Simulation of Nano-Modified Oil-Immersed Transformer Based on Multi-Scale
by Wenxu Yu, Xiangyu Guan and Liang Xuan
Energies 2025, 18(19), 5086; https://doi.org/10.3390/en18195086 - 24 Sep 2025
Viewed by 220
Abstract
The fast and accurate calculation of the internal temperature rise in the oil-immersed transformer is the premise to realize the thermal health management and load energy evaluation of the in-service transformer. In view of the influence of nanofluids on the heat transfer process [...] Read more.
The fast and accurate calculation of the internal temperature rise in the oil-immersed transformer is the premise to realize the thermal health management and load energy evaluation of the in-service transformer. In view of the influence of nanofluids on the heat transfer process of transformer, a numerical simulation algorithm based on lattice Boltzmann method (LBM) and finite difference method (FDM) is proposed to study the heat and mass transfer process inside nano-modified oil-immersed transformer. Firstly, the D2Q9 lattice model is used to solve the fluid and thermal lattice Boltzmann equations inside the oil-immersed transformer at the mesoscopic scale, and the temperature field and velocity field are obtained by macroscopic transformation. Secondly, the electric field distribution inside the oil-immersed transformer is calculated by FDM. The viscous resistance in LBM analysis and the electric field force in FDM analysis, as well as the gravity and buoyancy of particles, are used to explore the motion characteristics of nanoparticles and metal particles. Finally, compared with the thermal ring method and the finite volume method (FVM), the relative error is less than 5%, which verifies the effectiveness of the numerical model and provides a method for studying the internal electrothermal convection of nano-modified oil-immersed transformers. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 799 KB  
Article
Uncovering the Relationship Between Buoyancy and Academic Achievement in Language Learning: The Multiple Mediating Roles of Burnout and Engagement
by Yicheng Cai and Honggang Liu
Behav. Sci. 2025, 15(10), 1304; https://doi.org/10.3390/bs15101304 - 24 Sep 2025
Viewed by 395
Abstract
English learning buoyancy is a proactive and adaptable capacity that allows academic growth. However, the relationship between buoyancy, burnout, engagement, and achievement in English learning remains complex and underexplored. Grounded in the control–value theory of achievement emotions and the situated expectancy–value theory, this [...] Read more.
English learning buoyancy is a proactive and adaptable capacity that allows academic growth. However, the relationship between buoyancy, burnout, engagement, and achievement in English learning remains complex and underexplored. Grounded in the control–value theory of achievement emotions and the situated expectancy–value theory, this study investigated the impact of buoyancy and academic achievement in language learning, especially the multiple mediating roles of burnout and engagement in between. The study involved 522 senior high school students in China, who learn English as a second language. Questionnaires were employed to assess their English learning buoyancy, burnout (i.e., demotivation and exhaustion), and engagement (i.e., behavioral and agentic engagement). Academic achievement was represented by their most recent English scores. The results demonstrate that English learning buoyancy predicts academic achievement through multiple indirect paths. Specifically, exhaustion and behavioral engagement each independently mediate this relationship, and a sequential mediating pathway was identified from burnout components to behavioral engagement. The study provides pedagogical implications for English teaching. Full article
(This article belongs to the Section Educational Psychology)
Show Figures

Figure 1

23 pages, 9388 KB  
Article
Optimized Line-of-Sight Active Disturbance Rejection Control for Depth Tracking of Hybrid Underwater Gliders in Disturbed Environments
by Yan Zhao, Hefeng Zhou, Pan Xu, Yongping Jin, Zhangfu Tian and Yun Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1835; https://doi.org/10.3390/jmse13101835 - 23 Sep 2025
Viewed by 232
Abstract
Hybrid underwater gliders (HUGs) combine buoyancy-driven gliding with propeller-assisted propulsion, offering extended endurance and enhanced mobility for complex underwater missions. However, precise depth control remains challenging due to system uncertainties, environmental disturbances, and inadequate adaptability of conventional control methods. This study proposes a [...] Read more.
Hybrid underwater gliders (HUGs) combine buoyancy-driven gliding with propeller-assisted propulsion, offering extended endurance and enhanced mobility for complex underwater missions. However, precise depth control remains challenging due to system uncertainties, environmental disturbances, and inadequate adaptability of conventional control methods. This study proposes a novel optimized line-of-sight active disturbance rejection control (OLOS-ADRC) strategy for HUG depth tracking in the vertical plane. First, an Optimized Line-of-Sight (OLOS) guidance dynamically adjusts the look-ahead distance based on real-time cross-track error and velocity, mitigating error accumulation during path following. Second, a Tangent Sigmoid-based Tracking Differentiator (TSTD) enhances the disturbance estimation capability of the Extended State Observer (ESO) within the Active Disturbance Rejection Control (ADRC) framework, improving robustness against unmodeled dynamics and ocean currents. As a critical step before costly sea trials, this study establishes a high-fidelity simulation environment to validate the proposed method. The comparative experiments under gliding and hybrid propulsion modes demonstrated that OLOS-ADRC has significant advantages: the root mean square error (RMSE) for depth tracking was reduced by 83% compared to traditional ADRC, the root mean square error for pitch angle was decreased by 32%, and the stabilization time was shortened by 14%. This method effectively handles ocean current interference through real-time disturbance compensation, providing a reliable solution for high-precision HUG motion control. The simulation results provide a convincing foundation for future field validation in oceanic environments. Despite these improvements, the study is limited to vertical plane control and simulations; future work will involve full ocean trials and 3D path tracking. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3704 KB  
Article
Study on the Charge Characteristics and Migration Characteristics of Amorphous Alloy Core Debris
by Wenxu Yu and Xiangyu Guan
Materials 2025, 18(18), 4415; https://doi.org/10.3390/ma18184415 - 22 Sep 2025
Viewed by 278
Abstract
Compared with a traditional distribution transformer with silicon steel sheet as the core material, the no-load loss of an amorphous alloy transformer is greatly reduced due to its core using iron-based amorphous metal material, which has been applied in many countries. However, due [...] Read more.
Compared with a traditional distribution transformer with silicon steel sheet as the core material, the no-load loss of an amorphous alloy transformer is greatly reduced due to its core using iron-based amorphous metal material, which has been applied in many countries. However, due to the brittleness of its amorphous strip, an amorphous alloy transformer is prone to debris in the process of production, transportation and work. The charge and migration characteristics of these debris will reduce the insulation strength of the transformer oil and endanger the safe operation of the transformer. In this paper, a charge measurement platform of amorphous alloy debris is set up, and the charging characteristics of amorphous alloy core debris under different flow velocities, particle radius and plate electric field strength are obtained. The results show that with an increase in pipeline flow velocity, the charge-to-mass ratio of the debris increases first and then decreases. With an increase in electric field strength, the charge-to-mass ratio of the debris increases; with an increase in the number of debris, the charge-to-mass ratio of the debris decreases; with an increase in debris size, the charge-to-mass ratio of the debris increases. The debris with different charge-to-mass ratios and types obtained from the above experiments are added to the simulation model of an amorphous alloy transformer. The lattice Boltzmann method (LBM) coupled with the discrete element method (DEM) is used to simulate the migration process of metal particles in an amorphous alloy transformer under the combined action of gravity, buoyancy, electric field force and oil flow resistance under electrothermal excitation boundary. The results show that the trajectory of the debris is related to the initial position, electric field strength and oil flow velocity. The LBM–DEM calculation model and charge measurement platform proposed in this paper can provide a reference for studying the charge mechanism and migration characteristics of amorphous alloy core debris in insulating oil. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 4303 KB  
Article
Revisiting Tundish Flow Characterization: A Combined Eulerian-Lagrangian Study on the Effects of Dams, Baffles, and Side-Wall Inclination
by Ali Mostafazade Abolmaali, Mohamad Bayat, Venkata Karthik Nadimpalli, Thomas Dahmen and Jesper Hattel
Materials 2025, 18(18), 4392; https://doi.org/10.3390/ma18184392 - 20 Sep 2025
Viewed by 358
Abstract
This study aims to use Computational Fluid Dynamics (CFD) analysis to improve inclusion removal efficiency in tundishes used in the steelmaking industry, with the broader goal of promoting more sustainable steel production and supporting circular economy objectives by producing cleaner steel. Inclusions are [...] Read more.
This study aims to use Computational Fluid Dynamics (CFD) analysis to improve inclusion removal efficiency in tundishes used in the steelmaking industry, with the broader goal of promoting more sustainable steel production and supporting circular economy objectives by producing cleaner steel. Inclusions are non-metallic particles, such as alumina, that enter the tundish with the molten steel and travel through it; if not removed, they can exit through the nozzles and adversely affect the mechanical properties of the final product and process yield. An existing tundish design is modified using three passive techniques, including adding a vertical dam, adding a horizontal baffle, and inclining the side walls, to assess their influence on fluid flow behavior and inclusion removal. Residence time distribution (RTD) analysis is employed to evaluate flow characteristics via key metrics such as dead zone and plug flow volume fractions, as well as plug-to-dead and plug-to-mixed flow ratios. In parallel, a discrete phase model (DPM) analysis is conducted to track inclusion trajectories for particles ranging from 5 to 80 μm. Results show that temperature gradients due to heat losses significantly influence flow patterns via buoyancy-driven circulation, changing RTD characteristics. Among the tested modifications, inclining the side walls proves most effective, achieving average inclusion removal improvements of 8% (Case B1) and 19% (Case B2), albeit with increased heat loss due to greater top surface exposure. Vertical dam and horizontal baffle, despite showing favorable RTD metrics, generally reduce the inclusion removal rate, highlighting a disconnect between RTD-based predictions and DPM-based outcomes. These findings demonstrate the limitations of relying solely on RTD metrics for evaluating tundish performance and suggest that DPM analysis is essential for a more accurate assessment of inclusion removal capability. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 11011 KB  
Article
Design Optimization and Experiments of Composite Structure Based Pressure Hull for Full-Ocean-Depth Underwater Vehicles
by Zhiduo Tan, Hongbo Li, Jiancheng Yu, Shaoze Yan, Kai Ren and Zhen Wang
J. Mar. Sci. Eng. 2025, 13(9), 1737; https://doi.org/10.3390/jmse13091737 - 9 Sep 2025
Viewed by 429
Abstract
This study addresses the limitations of buoyancy factor and compensation capacity in pressure hulls for full-ocean-depth underwater gliders operating in extreme deep-sea conditions. A novel lightweight multifunctional composite structure pressure hull (CSPH) is proposed, utilizing a carbon fiber cylindrical shell as the primary [...] Read more.
This study addresses the limitations of buoyancy factor and compensation capacity in pressure hulls for full-ocean-depth underwater gliders operating in extreme deep-sea conditions. A novel lightweight multifunctional composite structure pressure hull (CSPH) is proposed, utilizing a carbon fiber cylindrical shell as the primary load-bearing structure and silicone oil as the buoyancy compensation medium. A mechanical model of the carbon fiber cylindrical shell under hydrostatic pressure was developed based on three-dimensional elastic mechanics theory. Furthermore, a comprehensive performance evaluation model for the CSPH was created, incorporating both the buoyancy factor (Bf) and buoyancy fluctuation coefficient (fB). The NSGA-II optimization algorithm was employed to simultaneously minimize Bf and fB by co-optimizing the carbon fiber ply parameters and the silicone oil volume (VC). This optimization resulted in a Pareto optimal solution balancing buoyancy and compensation performance. The accuracy of the mechanical model and optimization results was validated through finite element analysis and pressure testing. The results show that, compared to traditional metallic pressure hull designs, the CSPH reduces the buoyancy factor by 48% and enhances buoyancy compensation performance by 2.5 times. The developed CSPH has been successfully deployed on the “Sea-Wing 11000” full-ocean-depth underwater glider, significantly improving its endurance and motion stability for long-term deep-sea observation missions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

45 pages, 2842 KB  
Review
Bio-Based Sorbents for Marine Oil Spill Response: Advances in Modification, Circularity, and Waste Valorization
by Célia Karina Maia Cardoso, Ícaro Thiago Andrade Moreira, Antônio Fernando de Souza Queiroz, Olívia Maria Cordeiro de Oliveira and Ana Katerine de Carvalho Lima Lobato
Resources 2025, 14(9), 140; https://doi.org/10.3390/resources14090140 - 8 Sep 2025
Viewed by 954
Abstract
Marine oil spills remain a recurring environmental concern, particularly in coastal and estuarine areas. Among the available strategies for managing spilled oil, sorbents derived from natural fibers have attracted considerable interest as viable alternatives to synthetic materials due to their biodegradability, low cost, [...] Read more.
Marine oil spills remain a recurring environmental concern, particularly in coastal and estuarine areas. Among the available strategies for managing spilled oil, sorbents derived from natural fibers have attracted considerable interest as viable alternatives to synthetic materials due to their biodegradability, low cost, and alignment with circular economy principles. This review synthesizes recent advances by connecting technical and environmental aspects with operational applications. It emphasizes structural and surface modifications of lignocellulosic fibers to enhance petroleum sorption capacity, selectivity, buoyancy, and reusability. Physical, chemical, and biological approaches are discussed, focusing on how these modifications influence sorption dynamics under realistic conditions. The review also highlights the incorporation of agricultural and industrial residues as raw materials, along with regeneration and reuse strategies that support waste valorization. However, significant gaps remain, such as the lack of studies with weathered crude oils, the limitation of larger-scale testing, and the need for standardized methods and evaluation of the final fate of exhausted biosorbents. Through the integration of technical, environmental, and operational criteria, this review provides a critical foundation for developing more efficient and circular marine oil spill response technologies. Full article
Show Figures

Figure 1

31 pages, 12038 KB  
Article
Co-Occurrence of Toxic Bloom-Forming Cyanobacteria Planktothrix, Cyanophage, and Symbiotic Bacteria in Ohio Water Treatment Waste: Implications for Harmful Algal Bloom Management
by Angela Brooke Davis, Morgan Evans, Katelyn McKindles and Jiyoung Lee
Toxins 2025, 17(9), 450; https://doi.org/10.3390/toxins17090450 - 5 Sep 2025
Viewed by 694
Abstract
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages [...] Read more.
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages that infect cyanobacteria), and bacteria. Cyanophages are known to affect bloom formation and growth dynamics, so there is a need to understand viral-host dynamics between phage and bacteria in these ecosystems for managing cyanobacteria. This study isolated and characterized lytic cyanophages from WTRs of a HAB-affected lake in Ohio that infect toxic bloom-forming filamentous cyanobacteria Planktothrix agardhii. Phage infections in the Lake Erie cyanobacteria culture were examined visually and via microscopy and fluorometry. Whole genome sequencing and metagenomic analyses were also conducted. Observed changes in Planktothrix included sheared and shriveled filaments, reduced clumping, and buoyancy changes. Photosynthetic pigmentation was unexpectedly more apparent during phage infection. Metagenomic analyses identified nineteen phages and seven other co-existing bacterial genera. Annotated bacterial genomes contained metabolic pathways that may influence phage infection efficiency. Viral genomes were successfully tied to microbial hosts, and annotations identified important viral infection proteins. This study examines cyanobacterial-phage interactions that may have potential for bioremedial applications. Full article
Show Figures

Figure 1

20 pages, 2828 KB  
Article
A Combined Theoretical and Experimental Study on Predicting the Repose Angle of Cuttings Beds in Extended-Reach Well Drilling
by Hui Zhang, Heng Wang, Yinsong Liu, Liang Tao, Jingyu Qu and Chao Liang
Processes 2025, 13(9), 2836; https://doi.org/10.3390/pr13092836 - 4 Sep 2025
Viewed by 472
Abstract
In extended-reach wells, cuttings bed formation in high-deviation sections presents a major challenge for hole cleaning and borehole stability. This study analyzes the morphological and mechanical behavior of cuttings beds, focusing on particle size distribution and repose angle as key indicators of accumulation [...] Read more.
In extended-reach wells, cuttings bed formation in high-deviation sections presents a major challenge for hole cleaning and borehole stability. This study analyzes the morphological and mechanical behavior of cuttings beds, focusing on particle size distribution and repose angle as key indicators of accumulation behavior. The modeling approach considers dominant interparticle forces, including buoyancy and cohesion, while neglecting secondary microscale forces for clarity. A theoretical model is developed to predict repose angles under both rolling and sliding regimes and is calibrated through laboratory-scale experiments using simulated drilling fluid with field-representative rheological properties. Results show that cohesive effects are negligible when cuttings are of similar size but exhibit higher densities. Laboratory measurements reveal that the repose angle of cuttings beds varies between 23.9° and 31.7°, with increasing polyacrylamide (PAM) concentration and particle size contributing to steeper repose angles. Additionally, the rolling repose angle is found to be relatively stable, ranging from 25° to 30°, regardless of fluid or particle property variations. These findings provide a predictive framework and practical guidelines for optimizing hole cleaning strategies and designing more effective models in extended-reach drilling. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

18 pages, 2057 KB  
Article
Numerical Simulation on Effect of Pulsed Water Mist on Temperature and Thermal Radiation in Long and Narrow Underground Space During Fire
by Yanli Deng, Beifang Gu, Ruiqing Zhang, Lielie Li and Lihua Niu
Fire 2025, 8(9), 350; https://doi.org/10.3390/fire8090350 - 3 Sep 2025
Viewed by 701
Abstract
This study numerically investigated how varying pulse durations of water mist systems influence fire dynamics in long, narrow underground enclosures. A Fire Dynamics Simulator (FDS) model was built to represent a pulse-actuated, fine water mist test rig, and simulations of oil pan fires [...] Read more.
This study numerically investigated how varying pulse durations of water mist systems influence fire dynamics in long, narrow underground enclosures. A Fire Dynamics Simulator (FDS) model was built to represent a pulse-actuated, fine water mist test rig, and simulations of oil pan fires were performed to quantify the evolution of temperature and radiative heat flux. Results show that an 8 s spray followed by an 8 s pause yields the most effective suppression cycle. When spray and pause durations are equal, periodic momentum exchange resonates with the buoyant plume, intensifying the mixing of gas and enhancing cooling near the fire seat. Compared with continuous discharge, pulsed mist generates stronger buoyancy-driven disturbances and delivers superior performance in terms of local heat’s extraction and extinguishment. This study has, for the first time, determined the optimal pulse cycle (8 s spray/8 s stop) for oil pool fires in narrow and long underground spaces through FDS simulation, and revealed the enhancement effect of the gas disturbance resonance mechanism on fire suppression efficiency. Full article
Show Figures

Figure 1

22 pages, 10287 KB  
Article
Spatial and Seasonal Characteristics of the Submesoscale Energetics in the Northwest Pacific Subtropical Ocean
by Yunlong Fei, Shaoqing Zhang, Kaidi Wang, Yangyang Yu, Yang Gao and Tong Cui
J. Mar. Sci. Eng. 2025, 13(9), 1691; https://doi.org/10.3390/jmse13091691 - 2 Sep 2025
Viewed by 404
Abstract
The spatial and seasonal characteristics of submesoscales in the Northwest Pacific Subtropical Ocean are thoroughly investigated here using a submesoscale-permitting model within a localized multiscale energetics framework, in which three scale windows termed background, mesoscale, and submesoscale are decomposed. It is found that [...] Read more.
The spatial and seasonal characteristics of submesoscales in the Northwest Pacific Subtropical Ocean are thoroughly investigated here using a submesoscale-permitting model within a localized multiscale energetics framework, in which three scale windows termed background, mesoscale, and submesoscale are decomposed. It is found that submesoscale energetics are highly geographically inhomogeneous. In the Luzon Strait, baroclinic and barotropic instabilities are the primary mechanisms for generating submesoscale available potential energy (APE) and kinetic energy (KE), and they exhibit no significant seasonal variations. Although buoyancy conversion experiences pronounced seasonal cycles and serves as the main sink of submesoscale APE in winter and spring, its contribution to submesoscale KE is negligible. The major sinks of submesoscale KE are advection, horizontal pressure work, and dissipation. In the Western Boundary Current transition and Subtropical Countercurrent (STCC) interior open ocean zone, submesoscales undergo significant seasonality, with large magnitudes in winter and spring. In spring and winter, baroclinic instability dominates the generation of submesoscale APE via forward cascades, while KE is mainly energized by buoyancy conversion and dissipated by the residual term. Meanwhile, in summer and autumn, submesoscales are considerably weak. Additionally, submesoscale energetics in the Western Boundary Current transition zone are slightly greater than those in the STCC interior open ocean zone, which is attributed to the strengthened straining of the Western Boundary Current and mesoscale eddies. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop