MHD Flow of a Hybrid Nano-Fluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle
Abstract
:1. Introduction
2. Physical Model
3. Grid Test
4. Formulation of the Problem
4.1. Equations
- Dimensionless numbers
- Dimensionless variables
4.2. Validation
4.3. Properties of the Hybrid Nano-Fluid
5. Results and Discussion
5.1. Impact of the Nano-Fluid Volume Fraction
5.2. Impact of Rayleigh Number
5.3. Impact of Hartmann Number
5.4. Impact of the Geometrical Features
5.4.1. Effect of Cylinder Placement
5.4.2. Effect of the Rotation of the Cylinder
5.4.3. Effect of the Different Obstacles
6. Conclusions
- Rayleigh number and the volume fraction of the nanoparticles can be considered crucial features in modulating convection.
- The existence of a magnetic field, and therefore increasing Hartmann number, restricts heat transfer.
- Thermal transmission can be improved by using triangular obstacles.
- The angular velocity of the cylinder can alter the efficiency of the convective flow.
- The location of the obstacle is a key parameter to adjust the thermal transfer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
u, v | Velocity components (m·s−1) |
U, V | Dimensionless velocity components |
x, y | Cartesian coordinates (m) |
X, Y | Dimensionless Cartesian coordinates |
p | Pressure (N·m−2) |
P | Dimensionless pressure |
ρ | Density (Kg·m−3) |
g | Gravitational acceleration (m·s−2) |
T | Temperature (K) |
Tavg | Average temperature (K) |
θ | Dimensionless temperature |
α | Thermal diffusivity (m²·s−1) |
υ | Kinematic viscosity (m²·s−1) |
K | Permeability (H·m−1) |
ε | Porosity |
σ | Electric conductivity (Ohm m)−1 |
B0 | Magnetic field density (Tesla) |
k | Thermal conductivity ratio (W K−1 m−1) |
Cp | Specific heat (J K−1 Kg−1) |
β | Thermal expansion (K−1) |
µ | Dynamic viscosity (Kg·m−1·s−1) |
ϕ | Volume fraction of the nanoparticles |
γ | Inclination angle of the magnetic field |
w | Velocity of rotation(rad/s) |
Ψ | Stream function |
L | Length of the enclosure (m) |
Subscripts | |
h | Hot |
c | Cold |
EG | Ethylene glycol |
Cu | Copper |
TiO2 | Titanium dioxide |
MHD | Magneto-hydrodynamic |
Nf | Nano-fluids |
hnf | Hybrid nano-fluid |
Bf | Base fluid |
np | Nanoparticle |
Max | Maximum |
Fc | Forcheimer coefficient |
Ra | Rayleigh |
Nu | Nusselt |
Ha | Hartmann |
Da | Darcy |
Pr | Prandtl |
References
- Unger, S.; Beyer, M.; Pietruske, H.; Szalinski, L.; Hampel, U. Natural convection heat transfer performance of additively manufactured tube bundle heat exchangers with novel fin design. Heat Mass Transf. 2021, 57, 1193–1203. [Google Scholar] [CrossRef]
- Rahimi, A.; Dehghan Saee, A.; Kasaeipoor, A.; Hasani Malekshah, E. A comprehensive review on natural convection flow and heat transfer. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 834–877. [Google Scholar] [CrossRef]
- Baïri, A.; Zarco-Pernia, E.; De María, J.M. A Review on Natural Convection in Enclosures for Engineering Applications. The Particular Case of the Parallelogrammic Diode Cavity. Appl. Therm. Eng. 2014, 63, 304–322. [Google Scholar] [CrossRef]
- Akbari, A.; Mohammadian, E.; Alavi Fazel, S.A.; Shanbedi, M.; Bahreini, M.; Heidari, M.; Babakhani Dehkordi, P.; Che Mohamed Hussein, S.N. Natural Convection from the Outside Surface of an Inclined Cylinder in Pure Liquids at Low Flux. ACS Omega 2019, 4, 7038–7046. [Google Scholar] [CrossRef] [PubMed]
- Saeid, N.H. Natural Convection in a Square Cavity with Discrete Heating at the Bottom with Different Fin Shapes. Heat Transf. Eng. 2018, 39, 154–161. [Google Scholar] [CrossRef]
- Kent, E.F. Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls. Mech. Res. Commun. 2009, 36, 497–508. [Google Scholar] [CrossRef]
- Das, D.; Roy, M.; Basak, T. Studies on natural convection within enclosures of various (non-square) shapes—A review. Int. J. Heat Mass Transf. 2017, 106, 356–406. [Google Scholar] [CrossRef]
- Teamah, M.A.; Shehata, A.I. Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. Alex. Eng. J. 2016, 55, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Mebarek-Oudina, F.; Keerthi Reddy, N.; Sankar, M. Heat Source location Effects on Buoyant Convection of Nanofluids in an Annulus. In Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2021; pp. 923–937. [Google Scholar] [CrossRef]
- Chang, B.H.; Mills, A.F. Effect of aspect ratio on forced convection heat transfer from cylinders. Int. J. Heat Mass Transf. 2004, 47, 1289–1296. [Google Scholar] [CrossRef]
- Muthtamilselvan, M.; Sureshkumar, S. Impact of aspect ratio on a nanofluid-saturated porous enclosure. Mech. Ind. 2017, 18, 501. [Google Scholar] [CrossRef]
- Mohammadifar, H.; Sajjadi, H.; Rahnama, M.; Jafari, S.; Wang, Y. Investigation of Nanofluid Natural Convection Heat Transfer in Open Ended L-shaped Cavities utilizing LBM. J. Appl. Comput. Mech. 2021, 7, 2064–2083. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jain, S.S.; Jadhav, A.J.; Pinjari, D.V. Chapter 14—Scale-Up Technologies for Advanced Nanomaterials for Green Energy: Feasibilities and Challenges. In Nanomaterials for Green Energy; Bhanvase, B.A., Pawade, V.B., Dhoble, S.J., Sonawane, S.H., Ashokkumar, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 433–455. [Google Scholar]
- Hwang, Y.J.; Ahn, Y.C.; Shin, H.S.; Lee, C.G.; Kim, G.T.; Park, H.S.; Lee, J.K. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr. Appl. Phys. 2006, 6, 1068–1071. [Google Scholar] [CrossRef]
- Ali, N.; Teixeira, J.A.; Addali, A. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J. Nanomater. 2018, 2018, 6978130. [Google Scholar] [CrossRef]
- Sajid, M.U.; Ali, H.M. Thermal conductivity of hybrid nanofluids: A critical review. Int. J. Heat Mass Transf. 2018, 126, 211–234. [Google Scholar] [CrossRef]
- Dhif, K.; Mebarek-Oudina, F.; Chouf, S.; Vaidya, H.; Chamkha, A.J. Thermal Analysis of the Solar Collector Cum Storage System using a Hybrid-Nanofluids. J. Nanofluids 2021, 10, 634–644. [Google Scholar] [CrossRef]
- Das, P.K. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 2017, 240, 420–446. [Google Scholar] [CrossRef]
- Dadheech, P.K.; Agrawal, P.; Mebarek-Oudina, F.H.; Abu-Hamdeh, N.; Sharma, A. Comparative heat transfer analysis of MoS2/C2H6O2 and MoS2—SiO2/C2H6O2 nanofluids with natural convection and inclined magnetic field. J. Nanofluids 2020, 9, 161–167. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Mebarek-Oudina, F. Mixed Convective Magneto Flow of SiO2–MoS2/C2H6O2 Hybrid Nanoliquids Through a Vertical Stretching/Shrinking Wedge: Stability Analysis. Arab. J. Sci. Eng. 2020, 45, 9061–9073. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Eshgarf, H.; Kalbasi, R.; Maleki, A.; Shadloo, M.S.; Karimipour, A. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J. Therm. Anal. Calorim. 2021, 144, 1959–1983. [Google Scholar] [CrossRef]
- Kahveci, K. Buoyancy Driven Heat Transfer of Nanofluids in a Tilted Enclosure. J. Heat Transf. 2010, 132, 062501. [Google Scholar] [CrossRef]
- Torki, M.; Etesami, N. Experimental investigation of natural convection heat transfer of SiO2/water nanofluid inside inclined enclosure. J. Therm. Anal. Calorim. 2019, 139, 1565–1574. [Google Scholar] [CrossRef]
- Mansour, M.A.; Rama Subba Reddy, G.; Sadia, S.; Rashad, A.M.; Salah, T. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle. Int. J. Nonlinear Sci. Numer. Simul. 2021, 000010151520200138. [Google Scholar] [CrossRef]
- Alsabery, A.; Sheremet, M.; Chamkha, A.; Hashim, I. MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model. Sci. Rep. 2018, 8, 7410. [Google Scholar] [CrossRef]
- Selcuk, S.; Ziyaddin, R.; Erol, A. Combined effects of magnetic and electrical field on the hydrodynamic and thermophysical parameters of magnetoviscous fluid flow. Int. J. Heat Mass Transf. 2015, 86, 426–432. [Google Scholar]
- Zhang, J.; Anjal, H.A.; Msmali, A.; Wange, F.; Nofal, T.A.; Selim, M.M. Heat transfer of nanomaterial with involve of MHD through an enclosure. Case Stud. Therm. Eng. 2022, 30, 101747. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Mejri, I.; Abbassi, M.A.; Omri, A. Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder Technol. 2014, 256, 257–271. [Google Scholar] [CrossRef]
- Shahsavar, A.; Noori, S.; Toghraie, D.; Barnoon, P. Free convection of non-Newtonian nanofluid flow inside an eccentric annulus from the point of view of first-law and second-law of thermodynamics. J. Appl. Math. Mech. 2020, 101, e202000266. [Google Scholar] [CrossRef]
- Barnoon, P. Numerical assessment of heat transfer and mixing quality of a hybrid nanofluid in a microchannel equipped with a dual mixer. Int. J. 2021, 12, 100111. [Google Scholar] [CrossRef]
- Barnoon, P.; Ashkiyan, M.; Toghraie, D. Embedding multiple conical vanes inside a circular porous channel filled by two-phase nanofluid to improve thermal performance considering entropy generation. Int. Commun. Heat Mass Transf. 2021, 124, 105209. [Google Scholar] [CrossRef]
- Asogwa, K.; Mebarek-Oudina, F.; Animasaun, I. Comparative investigation of Water-based Al2O3 Nanoparticles through Water-based CuO Nanoparticles over an Exponentially Accelerated Radiative Riga Plate Surface via Heat Transport. Arab. J. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Karimipour, A. Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field. J. Therm. Anal. Calorim. 2021, 145, 3301–3323. [Google Scholar] [CrossRef]
- Khan, M.R.; Mao, S.; Deebani, W.; Elsiddieg, A.M.A. Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid. Int. Commun. Heat Mass Transf. 2022, 131, 105843. [Google Scholar] [CrossRef]
- Warke, A.S.; Ramesh, K.; Mebarek-Oudina, F.; Abidi, A. Numerical Investigation of Nonlinear Radiation with Magnetomicropolar Stagnation Point Flow past a Heated Stretching Sheet. J. Therm. Anal. Calorim. 2021, 135, 533–549. [Google Scholar] [CrossRef]
- Ravnik, J.; Škerget, L.; Yeigh, B. Nanofluid natural convection around a cylinder by BEM. WIT Trans. Model. Simul. 2015, 61, 261–271. [Google Scholar]
- Ishak, M.S.; Alsabery, A.I.; Hashim, I.; Chamkha, A.J. Entropy production and mixed convection within trapezoidal cavity having nanofluids and localised solid cylinder. Sci. Rep. 2021, 11, 14700. [Google Scholar] [CrossRef] [PubMed]
- Mebarek-Oudina, F.; Fares, R.; Aissa, A.; Lewis, R.W.; Abu-Hamdeh, N. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int. Commun. Heat Mass Transf. 2021, 125, 105279. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Pop, I.; Shahi, M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int. J. Therm. Sci. 2012, 59, 126–140. [Google Scholar] [CrossRef]
- Majdi, H.S.; Abed, A.M.; Habeeb, L.J. Mixed Convection Heat Transfer of Cuo-H2O Nanofluid in A Triangular Lid-Driven Cavity With Circular Inner Body. J. Mech. Eng. Res. Dev. 2021, 44, 164–175. [Google Scholar]
- Wang, Y.-F.; Xu, X.; Tian, T.; Fan, L.W.; Wang, W.L.; Yu, Z.T. Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: Simulations based on the measured thermal conductivity and viscosity. J. Zhejiang Univ. Sci. A 2015, 16, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Triveni, M.; Panua, R. Numerical analysis of natural convection in a triangular cavity with different configurations of hot wall. Int. J. Heat Technol. 2017, 35, 19–24. [Google Scholar] [CrossRef]
- Hussain, S.; Rahomey, M. Comparison of Natural Convection around a Circular Cylinder with Different Geometries of Cylinders inside a Square Enclosure Filled with Ag-Nanofluid Superposed Porous-Nanofluid Layers. J. Heat Transf. 2018, 141, 22501. [Google Scholar] [CrossRef]
- Ali, F.H.; Hamzah, H.K.; Abdulkadhim, A. Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder. Heat Transf. Asian Res. 2018, 48, 343–360. [Google Scholar] [CrossRef]
- Pushpa, B.V.; Sankar, M.; Mebarek-Oudina, F. Buoyant convective flow and heat dissipation of Cu-H2O nanoliquids in an annulus through a thin baffle. J. Nanofluids 2021, 10, 292–304. [Google Scholar] [CrossRef]
- Marzougui, S.; Mebarek-Oudina, F.; Magherbi, M.; Mchirgui, A. Entropy Generation and Heat transport of Cu-water Nanoliquid in Porous lid-driven Cavity through Magnetic Field. Int. J. Numer. Methods Heat Fluid Flow 2021. [Google Scholar] [CrossRef]
- Swain, K.; Mahanthesh, B.; Mebarek-Oudina, F. Heat transport and stagnation-point flow of magnetized nanoliquid with variable thermal conductivity with Brownian moment and thermophoresis aspects. Heat Transf. 2021, 50, 754–764. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F.; Aissa, A.; Mahanthesh, B.; Oztop, H.F. Heat Transport of Magnetized Newtonian Nanoliquids in an Annular Space between Porous Vertical Cylinders with Discrete Heat Source. Int. Comm. Heat Mass Transf. 2020, 117, 104737. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F. Convective Heat Transfer of Titania Nanofluids of different base fluids in Cylindrical Annulus with discrete Heat Source. Heat Transf. Asian Res. 2019, 48, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Swain, K.; Mebarek-Oudina, F.; Abo-Dahab, S.M. Influence of MWCNT/Fe3O4 hybrid-nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim. 2022, 147, 1561–1570. [Google Scholar] [CrossRef]
- Abood, F.A.; Ismael, A.M. Steady Laminar Natural Convection Heat Transfer inside Air- Filled Horizontal Triangular Enclosure Containing Three Cylindrical Rods. BasrahJ. Eng. 2011, 65–79. [Google Scholar]
- Das, D.; Basak, T. Analysis of entropy generation during natural convection in discretely heated porous square and triangular enclosures. Numer. Heat Transf. Part A Appl. 2017, 71, 979–1003. [Google Scholar] [CrossRef]
- Djebali, R.; Mebarek-Oudina, F.; Choudhari, R. Similarity solution analysis of dynamic and thermal boundary layers: Further formulation along a vertical flat plate. Physica Scripta 2021, 96, 85206. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, Z.; Shi, J. Analysis of Condensation Heat Transfer Performance in Curved Triangle Microchannels Based on the Volume of Fluid Method. Microgravity Sci. Technol. 2017, 29, 433–443. [Google Scholar] [CrossRef]
- Qi, C.; Liu, M.; Tang, J. Influence of triangle tube structure with twisted tape on the thermo-hydraulic performance of nanofluids in heat-exchange system based on thermal and exergy efficiency. Energy Convers. Manag. 2019, 192, 243–268. [Google Scholar] [CrossRef]
- Gothäll, H. How to Inspect Your Mesh in COMSOL Multiphysics ®. Available online: https://www.comsol.com/blogs/how-toinspect-your-mesh-in-comsol-multiphysics/ (accessed on 10 January 2021).
- Abed, M.; Aissa, A.; Mebarek-Oudina, F.; Jamshed, W.; Ahmed, W.; Ali, H.M.; Rashad, A.M. Galerkin Finite Element Analysis of Thermal Aspects of Fe3O4-MWCNT/Water Hybrid Nanofluid Filled in Wavy Enclosure with Uniform Magnetic Field Effect. Int. Commun. Heat Mass Transf. 2021, 126, 105461. [Google Scholar] [CrossRef]
- Kadhim, H.T.; Jabbar, F.A.; Rona, A. Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium. Int. J. Mech. Sci. 2020, 186, 105889. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 2017. [Google Scholar]
- Yuanqing, W.; Jisheng, K.; Shuyu, S.; Yu-Shu, W. Thermodynamically consistent Darcy–Brinkman–Forchheimer framework in matrix acidization. Oil Gas Sci. Technol.—Rev. Energ. Nouv. 2021, 76, 8. [Google Scholar]
- Varol, Y.; Avci, E.; Koca, A.; Oztop, H.F. Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Int. Commun. Heat Mass Transf. 2007, 34, 887–896. [Google Scholar] [CrossRef]
- Ikram, M.D.; Asjad, M.I.; Akgül, A.; Baleanu, D. Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. Alex. Eng. J. 2021, 60, 3593–3604. [Google Scholar] [CrossRef]
- Garud, K.S.; Lee, M.-Y. Numerical Investigations on Heat Transfer Characteristics of Single Particle and Hybrid Nanofluids in Uniformly Heated Tube. Symmetry 2021, 13, 876. [Google Scholar] [CrossRef]
- Okello, J.A.; Mutuku, W.; Oyem, A. Analysis of Ethylene Glycol (EG)-based ((Cu-Al2O3), (Cu-TiO2), (TiO2-Al2O3)) Hybrid Nanofluids for Optimal Car Radiator Coolant. J. Eng. Res. Rep. 2020, 17, 34–50. [Google Scholar] [CrossRef]
- Ferhi, M.; Djebali, R.; Mebarek-Oudina, F.; H. Abu-Hamdeh, N.; Abboudi, S. MHD free convection through entropy generation analysis of eco-friendly nanoliquid in a divided L-shaped heat exchanger with LBM simulation. J. Nanofluids 2022, 11, 99–112. [Google Scholar]
- Monaledi, R.L.; Makinde, O.D. Entropy generation analysis in a microchannel Poiseuille flows of nanofluid with nanoparticles injection and variable properties. J. Therm. Anal. Calorim. 2021, 143, 1855–1865. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, L.; Yu, H.; Wang, Y.; Zhao, T. Study on natural convection heat transfer in a closed cavity with hot and cold tubes. Sci. Prog. 2021, 104, 965. [Google Scholar] [CrossRef] [PubMed]
Ha | 2550 | 100 | |
B0 (Tesla) | 1351 | 2702 | 5404 |
Mesh | Extra Coarse | Coarse | Fine | Extra Fine |
---|---|---|---|---|
Maximum element size (m) | 0.13 | 0.067 | 0.035 | 0.013 |
Minimum element size (m) | 0.005 | 0.003 | 0.001 | 0.00015 |
Curvature factor | 0.8 | 0.4 | 0.3 | 0.25 |
Growth rate | 1.3 | 1.2 | 1.13 | 1.08 |
Number of elements | 840 | 1984 | 3944 | 22184 |
Average quality | 0.7110 | 0.7736 | 0.7803 | 0.8003 |
Mesh Quality | Nu | Nu Deviation % |
---|---|---|
0.7110 | 3.9 | 12.05% |
0.7736 | 4.37 | 7.09% |
0.7803 | 4.68 | 0.64% |
0.8003 | 4.71 | / |
Cu | TiO2 | EG | |
---|---|---|---|
CP (J. K−1·Kg−1) | 385 | 686.2 | 2415 |
ρ(Kg·m−3) | 8933 | 4250 | 1114 |
k(W. K−1·m−1) | 401 | 8.95 | 0.252 |
(K−1) | 1.67 × | 0.9 × | 57 × |
(Ohm·m)−1 | 5.96 × | 2.38 × | 5.5 × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabani, I.; Mebarek-Oudina, F.; Ismail, A.A.I. MHD Flow of a Hybrid Nano-Fluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle. Micromachines 2022, 13, 224. https://doi.org/10.3390/mi13020224
Chabani I, Mebarek-Oudina F, Ismail AAI. MHD Flow of a Hybrid Nano-Fluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle. Micromachines. 2022; 13(2):224. https://doi.org/10.3390/mi13020224
Chicago/Turabian StyleChabani, Ines, Fateh Mebarek-Oudina, and Abdel Aziz I. Ismail. 2022. "MHD Flow of a Hybrid Nano-Fluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle" Micromachines 13, no. 2: 224. https://doi.org/10.3390/mi13020224
APA StyleChabani, I., Mebarek-Oudina, F., & Ismail, A. A. I. (2022). MHD Flow of a Hybrid Nano-Fluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle. Micromachines, 13(2), 224. https://doi.org/10.3390/mi13020224