Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links
Abstract
:1. Introduction
2. Terahertz Reconfigurable Intelligent Surface
2.1. Electronic Approaches
2.1.1. Complementary Metal-Oxide-Semiconductor (CMOS) Transistor
2.1.2. Schottky Diode
2.1.3. High-Electron Mobility Transistor (HEMT)
2.1.4. Graphene
2.2. Optical Approaches
2.3. Phase-Change Materials
2.3.1. Vanadium Dioxide ()
2.3.2. Chalcogenide Phase-Change Materials
2.3.3. Liquid Crystals
2.4. Micro-Electromechanical-System (MEMS)
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless Communications: Vision and Potential Techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What Should 6G Be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Imoize, A.L.; Adedeji, O.; Tandiya, N.; Shetty, S. 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. Sensors 2021, 21, 1709. [Google Scholar] [CrossRef] [PubMed]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Kleine-Ostmann, T.; Nagatsuma, T. A Review on Terahertz Communications Research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.-S. Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems. IEEE Open J. Commun. Soc. 2019, 1, 1–32. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, J.F.; Ekin, S.; Choi, W.; Song, I. A Perspective on Terahertz Next-Generation Wireless Communications. Technologies 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, M.A.; Nauman, A.; Abbasi, M.A.B.; Kim, S.W. Antenna Selection and Designing for THz Applications: Suitability and Performance Evaluation: A Survey. IEEE Access 2020, 8, 113246–113261. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Rey, S.; Kurner, T. Power-Angular Spectra Correlation Based Two Step Angle of Arrival Estimation for Future Indoor Terahertz Communications. IEEE Trans. Antennas Propag. 2019, 67, 7097–7105. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. In Proceedings of the IEEE Transactions on Wireless Communications; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; Volume 18, pp. 4157–4170. [Google Scholar]
- Basar, E.; Renzo, M.D.; de Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R.; di Renzo, M. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Elmossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Lerosey, G.; Debbah, M.; Fink, M. Reconfigurable Intelligent Surfaces and Metamaterials: The Potential of Wave Propagation Control for 6G Wireless Communications. arXiv 2020, arXiv:2006.11136. [Google Scholar]
- Di, B.; Zhang, H.; Song, L.; Li, Y.; Han, Z.; Poor, H.V. Hybrid Beamforming for Reconfigurable Intelligent Surface Based Multi-User Communications: Achievable Rates with Limited Discrete Phase Shifts. IEEE J. Sel. Areas Commun. 2020, 38, 1809–1822. [Google Scholar] [CrossRef]
- Yang, B.; Cao, X.; Huang, C.; Guan, Y.L.; Yuen, C.; di Renzo, M.; Niyato, D.; Debbah, M.; Hanzo, L. Spectrum Learning-Aided Reconfigurable Intelligent Surfaces for “Green” 6G Networks. IEEE Netw. 2021, 35, 20–26. [Google Scholar] [CrossRef]
- Liaskos, C.; Tsioliaridou, A.; Pitsillides, A.; Akyildiz, I.F.; Kantartzis, N.V.; Lalas, A.X.; Dimitropoulos, X.; Ioannidis, S.; Kafesaki, M.; Soukoulis, C.M. Design and Development of Software Defined Metamaterials for Nanonetworks. IEEE Circuits Syst. Mag. 2015, 15, 12–25. [Google Scholar] [CrossRef]
- Abadal, S.; Liaskos, C.; Tsioliaridou, A.; Ioannidis, S.; Pitsillides, A.; Sole-Pareta, J.; Alarcon, E.; Cabellos-Aparicio, A. Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis. IEEE Access 2017, 5, 6225–6235. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J. A Survey of Intelligent Reflecting Surfaces (IRSs): Towards 6G Wireless Communication Networks. arXiv 2019, arXiv:1907.04789. [Google Scholar]
- Pillay, N.; Xu, H. Large Intelligent Surfaces: Random Waypoint Mobility and Two-Way Relaying. Int. J. Commun. Syst. 2020, 33, e4505. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, J.P.S.; Epstein, A.; Eleftheriades, G.V. Reflectionless Wide-Angle Refracting Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1293–1296. [Google Scholar] [CrossRef]
- Chen, M.; Abdo-Sánchez, E.; Epstein, A.; Eleftheriades, G.V. Theory, Design, and Experimental Verification of a Reflectionless Bianisotropic Huygens’ Metasurface for Wide-Angle Refraction. Phys. Rev. B 2018, 97, 125433. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.S.; Qiu, B.; Tanabe, Y.; Yeh, A.J.; Fan, S.; Poon, A.S.Y. Planar Immersion Lens with Metasurfaces. Phys. Rev. B-Condens. Matter Mater. Phys. 2015, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.P.; Chen, R.; Fan, Z.B.; Pang, X.N.; Dong, J.W. High Focusing Efficiency in Subdiffraction Focusing Metalens. Nanophotonics 2019, 8, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Raeker, B.O.; Nguyen, D.T.; Miller, J.D.; Xiong, Z.; Grbic, A.; Ho, J.S. Antireflection and Wavefront Manipulation with Cascaded Metasurfaces. Phys. Rev. Appl. 2020, 14, 064044. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- della Giovampaola, C.; Engheta, N. Digital Metamaterials. Nat. Mater. 2014, 13, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.H.; Cheng, Q.; Yang, J.; Ma, S.J.; Zhao, J.; Liu, S.; Chen, H.B.; He, Q.; Jiang, W.X.; Ma, H.F.; et al. Broadband Diffusion of Terahertz Waves by Multi-Bit Coding Metasurfaces. Light Sci. Appl. 2015, 4, e324. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Cui, T.J.; Zhang, L.; Xu, Q.; Wang, Q.; Wan, X.; Gu, J.Q.; Tang, W.X.; Qing Qi, M.; Han, J.G.; et al. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Adv. Sci. 2016, 3, 1600156. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Shi, C.B.; Bai, G.D.; Chen, T.Y.; Noor, A.; Cui, T.J. Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit. Adv. Opt. Mater. 2017, 5, 1700548. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J. Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials. Adv. Opt. Mater. 2017, 5, 1700624. [Google Scholar] [CrossRef]
- Ma, Q.; Chen, L.; Jing, H.B.; Hong, Q.R.; Cui, H.Y.; Liu, Y.; Li, L.; Cui, T.J. Controllable and Programmable Nonreciprocity Based on Detachable Digital Coding Metasurface. Adv. Opt. Mater. 2019, 7, 1901285. [Google Scholar] [CrossRef]
- Wu, L.W.; Ma, H.F.; Wu, R.Y.; Xiao, Q.; Gou, Y.; Wang, M.; Wang, Z.X.; Bao, L.; Wang, H.L.; Qing, Y.M.; et al. Transmission-Reflection Controls and Polarization Controls of Electromagnetic Holograms by a Reconfigurable Anisotropic Digital Coding Metasurface. Adv. Opt. Mater. 2020, 8, 2001065. [Google Scholar] [CrossRef]
- Wan, X.; Qi, M.Q.; Chen, T.Y.; Cui, T.J. Field-Programmable Beam Reconfiguring Based on Digitally-Controlled Coding Metasurface. Sci. Rep. 2016, 6, 20663. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Cao, X.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A Programmable Metasurface with Dynamic Polarization, Scattering and Focusing Control. Sci. Rep. 2016, 6, 35692. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Hu, Z.; Wang, C.; Holloway, J.; Yi, X.; Kim, M.; Mawdsley, J. Filling the Gap: Silicon Terahertz Integrated Circuits Offer Our Best Bet. IEEE Microw. Mag. 2019, 20, 80–93. [Google Scholar] [CrossRef]
- Abadal, S.; Cui, T.J.; Low, T.; Georgiou, J. Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 6–19. [Google Scholar] [CrossRef]
- Bao, L.; Cui, T.J. Tunable, Reconfigurable, and Programmable Metamaterials. Microw. Opt. Technol. Lett. 2020, 62, 9–32. [Google Scholar] [CrossRef]
- Tsilipakos, O.; Tasolamprou, A.C.; Pitilakis, A.; Liu, F.; Wang, X.; Mirmoosa, M.S.; Tzarouchis, D.C.; Abadal, S.; Taghvaee, H.; Liaskos, C.; et al. Toward Intelligent Metasurfaces: The Progress from Globally Tunable Metasurfaces to Software-Defined Metasurfaces with an Embedded Network of Controllers. Adv. Opt. Mater. 2020, 8, 2000783. [Google Scholar] [CrossRef]
- Pitchappa, P.; Kumar, A.; Singh, R.; Lee, C.; Wang, N. Terahertz MEMS Metadevices. J. Micromech. Microeng. 2021, 31, 113001. [Google Scholar] [CrossRef]
- Xu, J.; Yang, R.; Fan, Y.; Fu, Q.; Zhang, F. A Review of Tunable Electromagnetic Metamaterials with Anisotropic Liquid Crystals. Front. Phys. 2021, 9, 67. [Google Scholar] [CrossRef]
- Mandal, A.; Cui, Y.; McRae, L.; Gholipour, B. Reconfigurable Chalcogenide Phase Change Metamaterials: A Material, Device, and Fabrication Perspective. J. Phys. Photonics 2021, 3, 022005. [Google Scholar] [CrossRef]
- Guo, T.; Argyropoulos, C. Recent Advances in Terahertz Photonic Technologies Based on Graphene and Their Applications. Adv. Photonics Res. 2021, 2, 2000168. [Google Scholar] [CrossRef]
- Li, L.; Jun Cui, T.; Ji, W.; Liu, S.; Ding, J.; Wan, X.; Bo Li, Y.; Jiang, M.; Qiu, C.W.; Zhang, S. Electromagnetic Reprogrammable Coding-Metasurface Holograms. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.G.; Jiang, W.X.; Jiang, H.L.; Wang, Q.; Tian, H.W.; Bai, L.; Luo, Z.J.; Sun, S.; Luo, Y.; Qiu, C.W.; et al. An Optically Driven Digital Metasurface for Programming Electromagnetic Functions. Nat. Electron. 2020, 3, 165–171. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Yang, J.; Sun, B.; Zhao, B.; Luo, X. Reconfigurable Metasurface for Multifunctional Control of Electromagnetic Waves. Adv. Opt. Mater. 2017, 5, 1700485. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Q.; Zhang, X.G.; Wu, J.W.; Dai, J.Y.; Zhang, L.; Wu, H.T.; Zhang, H.C.; Ma, H.F.; Cheng, Q.; et al. Intensity-Dependent Metasurface with Digitally Reconfigurable Distribution of Nonlinearity. Adv. Opt. Mater. 2019, 7, 1900792. [Google Scholar] [CrossRef]
- Venkatesh, S.; Lu, X.; Saeidi, H.; Sengupta, K. A High-Speed Programmable and Scalable Terahertz Holographic Metasurface Based on Tiled CMOS Chips. Nat. Electron. 2020, 3, 785–793. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, T.; Xu, Y.; Wu, X.; Bai, Z.; Sun, Y.; Li, H.; Zhang, H.; Chen, K.; Ruan, C.; et al. Active Tunable THz Metamaterial Array Implemented in CMOS Technology. J. Phys. D Appl. Phys. 2021, 54, 085107. [Google Scholar] [CrossRef]
- Chen, H.T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active Terahertz Metamaterial Devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.L.; Chen, H.T.; Taylor, A.J.; Brener, I.; Cich, M.J.; Mittleman, D.M. A Spatial Light Modulator for Terahertz Beams. Appl. Phys. Lett. 2009, 94, 213511. [Google Scholar] [CrossRef] [Green Version]
- Shrekenhamer, D.; Montoya, J.; Krishna, S.; Padilla, W.J. Four-Color Metamaterial Absorber THz Spatial Light Modulator. Adv. Opt. Mater. 2013, 1, 905–909. [Google Scholar] [CrossRef]
- Karl, N.; Reichel, K.; Chen, H.T.; Taylor, A.J.; Brener, I.; Benz, A.; Reno, J.L.; Mendis, R.; Mittleman, D.M. An Electrically Driven Terahertz Metamaterial Diffractive Modulator with More than 20 DB of Dynamic Range. Appl. Phys. Lett. 2014, 104, 091115. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Ouyang, C.; Xu, N.; Cao, W.; Wei, X.; Song, G.; Gu, J.; Tian, Z.; O’Hara, J.F.; Han, J.; et al. Active Metasurface Terahertz Deflector with Phase Discontinuities. Opt. Express 2015, 23, 27152. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M. Shallow Water Analogy for a Ballistic Field Effect Transistor: New Mechanism of Plasma Wave Generation by Dc Current. Phys. Rev. Lett. 1993, 71, 2465. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M. Detection, Mixing, and Frequency Multiplication of Terahertz Radiation by Two-Dimensional Electronic Fluid. IEEE Trans. Electron Devices 1996, 43, 380–387. [Google Scholar] [CrossRef]
- Shrekenhamer, D.; Rout, S.; Strikwerda, A.C.; Bingham, C.; Averitt, R.D.; Sonkusale, S.; Padilla, W.J. High Speed Terahertz Modulation from Metamaterials with Embedded High Electron Mobility Transistors. Opt. Express 2011, 19, 9968–9975. [Google Scholar] [CrossRef]
- Rout, S.; Sonkusale, S.R. A Low-Voltage High-Speed Terahertz Spatial Light Modulator Using Active Metamaterial. APL Photonics 2016, 1, 086102. [Google Scholar] [CrossRef] [Green Version]
- Nouman, M.T.; Kim, H.W.; Woo, J.M.; Hwang, J.H.; Kim, D.; Jang, J.H. Terahertz Modulator Based on Metamaterials Integrated with Metal-Semiconductor-Metal Varactors. Sci. Rep. 2016, 6, 26452. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, L.; Zhang, Y.; Qiao, S.; Liang, S.; Zhou, T.; Zhang, X.; Guo, X.; Feng, Z.; Lan, F.; et al. High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 Nm Two-Dimensional Electron Gas Metasurface. Nano Lett. 2019, 19, 7588–7597. [Google Scholar] [CrossRef]
- Lee, G.; Nouman, M.T.; Hwang, J.H.; Kim, H.W.; Jang, J.H. Enhancing the Modulation Depth of a Dynamic Terahertz Metasurface by Integrating into an Asymmetric Fabry-Pérot Cavity. AIP Adv. 2018, 8, 095310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Qiao, S.; Liang, S.; Wu, Z.; Yang, Z.; Feng, Z.; Sun, H.; Zhou, Y.; Sun, L.; Chen, Z.; et al. Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure. Nano Lett. 2015, 15, 3501–3506. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Liang, S.; Zhang, B.; Wang, L.; Zhou, T.; Kou, W.; Lan, F.; Zeng, H.; Han, J.; et al. Large Phase Modulation of THz Wave via an Enhanced Resonant Active HEMT Metasurface. Nanophotonics 2018, 8, 153–170. [Google Scholar] [CrossRef]
- Carrasco, E.; Tamagnone, M.; Perruisseau-Carrier, J. Tunable Graphene Reflective Cells for THz Reflectarrays and Generalized Law of Reflection. Appl. Phys. Lett. 2013, 102, 104103. [Google Scholar] [CrossRef]
- Wang, R.; Ren, X.G.; Yan, Z.; Jiang, L.J.; Sha, W.E.I.; Shan, G.C. Graphene Based Functional Devices: A Short Review. Front. Phys. 2019, 14, 13603. [Google Scholar] [CrossRef]
- Sensale-Rodriguez, B.; Yan, R.; Rafique, S.; Zhu, M.; Li, W.; Liang, X.; Gundlach, D.; Protasenko, V.; Kelly, M.M.; Jena, D.; et al. Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-Absorption Modulators. Nano Lett. 2012, 12, 4518–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sensale-Rodriguez, B.; Rafique, S.; Yan, R.; Zhu, M.; Protasenko, V.; Jena, D.; Liu, L.; Xing, H.G. Terahertz Imaging Employing Graphene Modulator Arrays. Opt. Express 2013, 21, 2324–2330. [Google Scholar] [CrossRef]
- Malevich, Y.; Ergoktas, M.S.; Bakan, G.; Steiner, P.; Kocabas, C. Video-Speed Graphene Modulator Arrays for Terahertz Imaging Applications. ACS Photonics 2020, 7, 2374–2380. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Huang, J.; Bai, W.; Zhang, J.; Zhang, Z.; Xu, S.; Xie, W. The Novel Graphene Metasurfaces Based on Split-Ring Resonators for Tunable Polarization Switching and Beam Steering at Terahertz Frequencies. Carbon 2019, 154, 350–356. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Huang, J.; Zhang, Z.; Xie, W.; Jiang, X.; He, X.; Han, Y.; Zhang, Z.; Yu, Y. Continuously Tunable Metasurfaces Controlled by Single Electrode Uniform Bias-Voltage Based on Nonuniform Periodic Rectangular Graphene Arrays. Opt. Express 2020, 28, 29306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Y.; Zhao, J.; Jiang, T.; Zhu, B. Terahertz Beam Switching by Electrical Control of Graphene-Enabled Tunable Metasurface. Sci. Rep. 2017, 7, 14147. [Google Scholar] [CrossRef]
- Xu, J.; Liu, W.; Song, Z. Graphene-Based Terahertz Metamirror with Wavefront Reconfiguration. Opt. Express 2021, 29, 39574. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, Y.; Tong, S.; Yu, J.; Xiao, L. Novel Tunable Graphene-Encoded Metasurfaces on an Uneven Substrate for Beam-Steering in Far-Field at the Terahertz Frequencies. Opt. Express 2020, 28, 7125. [Google Scholar] [CrossRef]
- Xu, J.; Liu, W.; Song, Z. Terahertz Dynamic Beam Steering Based on Graphene Coding Metasurfaces. IEEE Photonics J. 2021, 13, 4600409. [Google Scholar] [CrossRef]
- Momeni, A.; Rouhi, K.; Rajabalipanah, H.; Abdolali, A. An Information Theory-Inspired Strategy for Design of Re-Programmable Encrypted Graphene-Based Coding Metasurfaces at Terahertz Frequencies. Sci. Rep. 2018, 8, 6200. [Google Scholar] [CrossRef] [Green Version]
- Hosseininejad, S.E.; Rouhi, K.; Neshat, M.; Faraji-Dana, R.; Cabellos-Aparicio, A.; Abadal, S.; Alarcón, E. Reprogrammable Graphene-Based Metasurface Mirror with Adaptive Focal Point for THz Imaging. Sci. Rep. 2019, 9, 2868. [Google Scholar] [CrossRef] [Green Version]
- Hosseininejad, S.E.; Rouhi, K.; Neshat, M.; Cabellos-Aparicio, A.; Abadal, S.; Alarcon, E. Digital Metasurface Based on Graphene: An Application to Beam Steering in Terahertz Plasmonic Antennas. IEEE Trans. Nanotechnol. 2019, 18, 734–746. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Lu, Y.; Li, G. Full 360° Terahertz Dynamic Phase Modulation Based on Doubly Resonant Graphene–Metal Hybrid Metasurfaces. Nanomaterials 2021, 11, 3157. [Google Scholar] [CrossRef] [PubMed]
- Tamagnone, M.; Capdevila, S.; Lombardo, A.; Wu, J.; Centeno, A.; Zurutuza, A.; Ionescu, A.M.; Ferrari, A.C.; Mosig, J.R. Graphene Reflectarray Metasurface for Terahertz Beam Steering and Phase Modulation. arXiv 2018, arXiv:1806.02202. [Google Scholar]
- Cong, L.; Srivastava, Y.K.; Zhang, H.; Zhang, X.; Han, J.; Singh, R. All-Optical Active THz Metasurfaces for Ultrafast Polarization Switching and Dynamic Beam Splitting. Light Sci. Appl. 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Singh, R. Spatiotemporal Dielectric Metasurfaces for Unidirectional Propagation and Reconfigurable Steering of Terahertz Beams. Adv. Mater. 2020, 32, 2001418. [Google Scholar] [CrossRef]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-Change Materials for Non-Volatile Photonic Applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Raeis-Hosseini, N.; Rho, J. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices. Materials 2017, 10, 1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, Y.; Guo, X.; Chen, T.; Liang, H.; Hao, X.; Hou, X.; Kou, W.; Zhao, Y.; Zhou, T.; et al. A Review of THz Modulators with Dynamic Tunable Metasurfaces. Nanomaterials 2019, 9, 965. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.R.M.; Yang, S.H.; Wang, T.; Sepúlveda, N.; Jarrahi, M. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces. Sci. Rep. 2016, 6, 35439. [Google Scholar] [CrossRef]
- Ding, F.; Zhong, S.; Bozhevolnyi, S.I. Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies. Adv. Opt. Mater. 2018, 6, 1701204. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Li, J.; Zhang, Y.; Zhang, Z.; Zhao, H.; Li, F.; Tang, T.; Dai, H.; Yao, J. All-Optical Switchable Vanadium Dioxide Integrated Coding Metasurfaces for Wavefront and Polarization Manipulation of Terahertz Beams. Adv. Theory Simul. 2020, 3, 1900783. [Google Scholar] [CrossRef]
- Wang, S.; Kang, L.; Werner, D.H. Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO2). Sci. Rep. 2017, 7, 4326. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Deng, L.; Zhang, C.; Qu, M.; Wang, L.; Li, S. Dual-Band Reconfigurable Coding Metasurfaces Hybridized with Vanadium Dioxide for Wavefront Manipulation at Terahertz Frequencies. Microw. Opt. Technol. Lett. 2019, 61, 2847–2853. [Google Scholar] [CrossRef]
- Pan, W.-M.; Li, J.-S.; Zhou, C. Switchable Digital Metasurface Based on Phase Change Material in the Terahertz Region. Opt. Mater. Express 2021, 11, 1070. [Google Scholar] [CrossRef]
- Shabanpour, J.; Beyraghi, S.; Cheldavi, A. Ultrafast Reprogrammable Multifunctional Vanadium-Dioxide-Assisted Metasurface for Dynamic THz Wavefront Engineering. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, F.; Zhang, L.; Quan, B.; Xu, W.; Du, H.; Xie, D.; Chen, Y. Electrically Triggered VO2 Reconfigurable Metasurface for Amplitude and Phase Modulation of Terahertz Wave. J. Lightwave Technol. 2021, 39, 3488–3494. [Google Scholar] [CrossRef]
- Chen, B.; Wu, J.; Li, W.; Zhang, C.; Fan, K.; Xue, Q.; Chi, Y.; Wen, Q.; Jin, B.; Chen, J.; et al. Programmable Terahertz Metamaterials with Non-Volatile Memory. Laser Photonics Reviews 2022, 2100472. [Google Scholar] [CrossRef]
- Pitchappa, P.; Kumar, A.; Prakash, S.; Jani, H.; Venkatesan, T.; Singh, R. Chalcogenide Phase Change Material for Active Terahertz Photonics. Adv. Mater. 2019, 31, 1808157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, C.H.; Coutu, R.A. Tunable Split-Ring Resonators Using Germanium Telluride. Appl. Phys. Lett. 2016, 108, 231901. [Google Scholar] [CrossRef] [Green Version]
- Gwin, A.H.; Kodama, C.H.; Laurvick, T.V.; Coutu, R.A.; Taday, P.F. Improved Terahertz Modulation Using Germanium Telluride (GeTe) Chalcogenide Thin Films. Appl. Phys. Lett. 2015, 107, 031904. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.W.; Wong, H.; Huitema, L.; Crunteanu, A. Coding Metasurfaces with Reconfiguration Capabilities Based on Optical Activation of Phase-Change Materials for Terahertz Beam Manipulations. Adv. Opt. Mater. 2021, 10, 2101699. [Google Scholar] [CrossRef]
- Savo, S.; Shrekenhamer, D.; Padilla, W.J. Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications. Adv. Opt. Mater. 2014, 2, 275–279. [Google Scholar] [CrossRef]
- Vasic, B.; Isic, G.; Beccherelli, R.; Zografopoulos, D.C. Tunable Beam Steering at Terahertz Frequencies Using Reconfigurable Metasurfaces Coupled with Liquid Crystals. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7701609. [Google Scholar] [CrossRef]
- Buchnev, O.; Podoliak, N.; Kaltenecker, K.; Walther, M.; Fedotov, V.A. Metasurface-Based Optical Liquid Crystal Cell as an Ultrathin Spatial Phase Modulator for THz Applications. ACS Photonics 2020, 7, 3199–3206. [Google Scholar] [CrossRef]
- Wu, J.; Shen, Z.; Ge, S.; Chen, B.; Shen, Z.; Wang, T.; Zhang, C.; Hu, W.; Fan, K.; Padilla, W.; et al. Liquid Crystal Programmable Metasurface for Terahertz Beam Steering. Appl. Phys. Lett. 2020, 116, 131104. [Google Scholar] [CrossRef]
- Liu, C.X.; Yang, F.; Fu, X.J.; Wu, J.W.; Zhang, L.; Yang, J.; Cui, T.J. Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals. Adv. Opt. Mater. 2021, 9, 2100932. [Google Scholar] [CrossRef]
- Oberhammer, J. THz MEMS-Micromachining Enabling New Solutions at Millimeter and Submillimeter Frequencies. In Proceedings of the 2016 Global Symposium on Millimeter Waves, GSMM 2016 and ESA Workshop on Millimetre-Wave Technology and Applications, Kuala Lumpur, Malaysia, 13–16 November 2017. [Google Scholar]
- Kappa, J.; Sokoluk, D.; Klingel, S.; Shemelya, C.; Oesterschulze, E.; Rahm, M. Electrically Reconfigurable Micromirror Array for Direct Spatial Light Modulation of Terahertz Waves over a Bandwidth Wider Than 1 THz. Sci. Rep. 2019, 9, 2597. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Pitchappa, P.; Wu, Y.; Ke, L.; Lee, C.; Singh, N.; Yang, H.; Singh, R. Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms. Adv. Opt. Mater. 2017, 5, 1600716. [Google Scholar] [CrossRef]
- Manjappa, M.; Pitchappa, P.; Singh, N.; Wang, N.; Zheludev, N.I.; Lee, C.; Singh, R. Reconfigurable MEMS Fano Metasurfaces with Multiple-Input–Output States for Logic Operations at Terahertz Frequencies. Nat. Commun. 2018, 9, 4056. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, J.; Wang, Q.; Qiao, X.; Wang, Y.; Xu, D. Broadband Tunable Terahertz Beam Deflector Based on Liquid Crystals and Graphene. Crystals 2021, 11, 1141. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Cui, Q.; Wang, Y.; Yu, J. Theoretical Design of a Reconfigurable Broadband Integrated Metamaterial Terahertz Device. Opt. Express 2020, 28, 40060. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.; Chen, X.; Wu, T.; Wang, Q.; Zhang, Z.; Xu, Q.; Han, J.; Zhang, W. Active Dielectric Metasurfaces for Switchable Terahertz Beam Steering and Focusing. IEEE Photonics J. 2021, 13, 4600111. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, B.; Fang, X.; Cheng, K.; Chen, W.; Wang, Z.; Hong, D.; Zhang, M. Microfluid-Based Soft Metasurface for Tunable Optical Activity in THz Wave. Opt. Express 2021, 29, 8786. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T.L.; Maier, S.A.; Glembocki, O.J. Low-Loss, Infrared and Terahertz Nanophotonics Using Surface Phonon Polaritons. Nanophotonics 2015, 4, 44–68. [Google Scholar] [CrossRef] [Green Version]
- Basov, D.N.; Fogler, M.M.; García De Abajo, F.J. Polaritons in van Der Waals Materials. Science 2016, 354, aag1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in Layered Two-Dimensional Materials. Nat. Mater. 2017, 16, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Hu, G.; Ou, Q.; Zhang, L.; Xia, F.; Garcia-Vidal, F.J.; Qiu, C.W.; Bao, Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem. Rev. 2020, 120, 6197–6246. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Shabbir, B.; Ou, Q.; Dong, Y.; Chen, H.; Li, P.; Zhang, X.; Lu, Y.; Bao, Q. Anisotropic Polaritons in van Der Waals Materials. InfoMat 2020, 2, 777–790. [Google Scholar] [CrossRef]
- Song, M.; Jayathurathnage, P.; Zanganeh, E.; Krasikova, M.; Smirnov, P.; Belov, P.; Kapitanova, P.; Simovski, C.; Tretyakov, S.; Krasnok, A. Wireless Power Transfer Based on Novel Physical Concepts. Nat. Electron. 2021, 4, 707–716. [Google Scholar] [CrossRef]
- Ni, G.X.; McLeod, A.S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K.W.; Sunku, S.S.; Jiang, B.Y.; Hone, J.; Dean, C.R.; et al. Fundamental Limits to Graphene Plasmonics. Nature 2018, 557, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Alonso-González, P.; Nikitin, A.Y.; Gao, Y.; Woessner, A.; Lundeberg, M.B.; Principi, A.; Forcellini, N.; Yan, W.; Vélez, S.; Huber, A.J.; et al. Acoustic Terahertz Graphene Plasmons Revealed by Photocurrent Nanoscopy. Nat. Nanotechnol. 2017, 12, 31–35. [Google Scholar] [CrossRef]
- Walsh, B.M.; Foster, J.C.; Erickson, P.J.; Sibeck, D.G. Tunable Phonon Polaritons in Atomically Thin van Der Waals Crystals of Boron Nitride. Science 2014, 343, 1122–1125. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Alonso-González, P.; Li, S.; Nikitin, A.Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P.; Vélez, S.; et al. In-Plane Anisotropic and Ultra-Low-Loss Polaritons in a Natural van Der Waals Crystal. Nature 2018, 562, 557–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Xu, N.; Oscurato, S.L.; Tamagnone, M.; Sun, F.; Jiang, Y.; Ke, Y.; Chen, J.; Huang, W.; Wilson, W.L.; et al. A Mid-Infrared Biaxial Hyperbolic van Der Waals Crystal. Sci. Adv. 2019, 5, eaav86902019. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ou, Q.; Yin, Y.; Li, Y.; Ma, W.; Yu, W.; Liu, G.; Cui, X.; Bao, X.; Duan, J.; et al. Chemical Switching of Low-Loss Phonon Polaritons in α-MoO3 by Hydrogen Intercalation. Nat. Commun. 2020, 11, 2646. [Google Scholar] [CrossRef]
- Taboada-Gutiérrez, J.; Álvarez-Pérez, G.; Duan, J.; Ma, W.; Crowley, K.; Prieto, I.; Bylinkin, A.; Autore, M.; Volkova, H.; Kimura, K.; et al. Broad Spectral Tuning of Ultra-Low-Loss Polaritons in a van Der Waals Crystal by Intercalation. Nat. Mater. 2020, 19, 964–968. [Google Scholar] [CrossRef]
- Wu, Y.; Ou, Q.; Dong, S.; Hu, G.; Si, G.; Dai, Z.; Qiu, C.W.; Fuhrer, M.S.; Mokkapati, S.; Bao, Q. Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces. Adv. Mater. 2021, 33, 2008070. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; et al. Topological Polaritons and Photonic Magic Angles in Twisted α-MoO3 Bilayers. Nature 2020, 582, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ma, Q.; Liu, M.K.; Andersen, T.; Fei, Z.; Goldflam, M.D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; et al. Graphene on Hexagonal Boron Nitride as a Tunable Hyperbolic Metamaterial. Nat. Nanotechnol. 2015, 10, 682–686. [Google Scholar] [CrossRef]
- Zhang, Q.; Ou, Q.; Hu, G.; Liu, J.; Dai, Z.; Fuhrer, M.S.; Bao, Q.; Qiu, C.W. Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO3and Polar Dielectric Interfaces. Nano Lett. 2021, 21, 3112–3119. [Google Scholar] [CrossRef]
- Álvarez-Pérez, G.; González-Morán, A.; Capote-Robayna, N.; Voronin, K.V.; Duan, J.; Volkov, V.S.; Alonso-González, P.; Nikitin, A.Y. Active Tuning of Highly Anisotropic Phonon Polaritons in Van Der Waals Crystal Slabs by Gated Graphene. ACS Photonics 2022. [Google Scholar] [CrossRef]
- Zeng, Y.; Ou, Q.; Liu, L.; Zheng, C.; Wang, Z.; Gong, Y.; Liang, X.; Zhang, Y.; Hu, G.; Yang, Z.; et al. Tailoring Topological Transition of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. arXiv 2022, arXiv:2201.01412. [Google Scholar]
- Huang, C.X.; Zhang, J.; Cheng, Q.; Cui, T.J. Polarization Modulation for Wireless Communications Based on Metasurfaces. Adv. Funct. Mater. 2021, 31, 2103379. [Google Scholar] [CrossRef]
- Chen, X.; Ke, J.C.; Tang, W.; Chen, M.Z.; Dai, J.Y.; Basar, E.; Jin, S.; Cheng, Q.; Cui, T.J. Design and Implementation of MIMO Transmission Based on Dual-Polarized Reconfigurable Intelligent Surface. IEEE Wirel. Commun. Lett. 2021, 10, 2155–2159. [Google Scholar] [CrossRef]
- Wong, H.; Wang, K.X.; Huitema, L.; Crunteanu, A. Active Meta Polarizer for Terahertz Frequencies. Sci. Rep. 2020, 10, 15382. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Nakata, Y.; Urade, Y.; Okimura, K. Broadband Operation of Active Terahertz Quarter-Wave Plate Achieved with Vanadium-Dioxide-Based Metasurface Switchable by Current Injection. Appl. Phys. Lett. 2020, 117, 091102. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, W.; Liu, A.Q.; Li, F.C.; Lan, C.F. Tunable Polarization Conversion and Rotation Based on a Reconfigurable Metasurface. Sci. Rep. 2017, 7, 091102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.S.L.; Nirantar, S.; Headland, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Broadband Terahertz Circular-Polarization Beam Splitter. Adv. Opt. Mater. 2018, 6, 1700852. [Google Scholar] [CrossRef]
- Castaldi, G.; Zhang, L.; Moccia, M.; Hathaway, A.Y.; Tang, W.X.; Cui, T.J.; Galdi, V. Joint Multi-Frequency Beam Shaping and Steering via Space–Time-Coding Digital Metasurfaces. Adv. Funct. Mater. 2021, 31, 2007620. [Google Scholar] [CrossRef]
Tuning Element | Tuning Mechanism | Control Method | Frequency (THz) | Array Size | No. of State/Pixel | Modulation Depth | Modulation Speed | Power Consumption | Ref. |
---|---|---|---|---|---|---|---|---|---|
CMOS transistor | Field-effect-transistor (FET)-based switch | Bias voltage | 0.3 | 12 × 12 | 256 | 25 dB | 5 GHz | ~mW (1.2 V) | Exp. [52] |
Schottky diode | Depletion of substrate charge carrier | Bias voltage | 0.36 | 4 × 4 | 2 | 40% | 3 kHz | 14 V | Exp. [55] |
Bias voltage | 2.72, 3.27, 3.81, 4.34 | 8 × 8 | 2 | 62% | 12 MHz | −26.5 V | Exp. [56] | ||
HEMT | Depletion of channel-carrier density | Bias voltage | 0.45 | 2 × 2 | 2 | 36% | 10 MHz | <1 mW (1 V) | Exp. [62] |
Graphene | Fermi level | Bias voltage | 0.59 | 4 × 4 | 2 | ~50 to ~30% | 6 kHz | −10 V | Exp. [71] |
Bias voltage | 0.1 | 16 × 16 | 2 | 80% | 1 kHz | 4 V | Exp. [72] | ||
GST | Joule heating | Bias current | 0.69, 0.64, 0.6, 0.56 | 2 × 2 | 8 | 100% | 15 s | 850 mA | Exp. [98] |
Liquid crystal | Birefringence effect | Bias voltage | 3.670 | 6 × 6 | 2 | 75% | 1 kHz | 15 V | Exp. [102] |
MEMS | Structural deformation | Bias voltage | 0.97 to 2.28 | 4 × 6 | 2 | 50% | 1 kHz | 37 V | Exp. [108] |
Tuning Element | Tuning Mechanism | Control Method | Frequency (THz) | Deflection Angle | Modulation Speed | Power Consumption | Ref. |
---|---|---|---|---|---|---|---|
CMOS transistor | Field-effect-transistor (FET)-based switch | Bias voltage | 0.3 | 5 GHz | 240 µW (1.2 V) | Exp. [52] | |
Schottky diode | Depletion of substrate charge carrier | Bias voltage | 0.4 | 1 kHz | −13 V | Exp. [57] | |
Bias voltage | 0.55–0.83 | 3 kHz | −10 V | Exp. [58] | |||
Graphene | Fermi level | Bias voltage | 0.8–1.4 | 42°–23° | ps | -- | Sim. [73] |
Bias voltage | 1.05 | 5°, 11°, 17°, 23° | ps | -- | Sim. [82] | ||
Bias voltage | 1 | −5°,10°,17.5°, | 60 GHz | 26 V, −44 V | Exp. [83] | ||
Silicon | Photoconductivity | Laser pulses | 0.6–1 | 51°–28° | 30 ps | 1.9 mJ/ | Exp. [84] |
Laser pulses | 0.586 | 14 ps | 5.0 mW | Exp. [85] | |||
Phase change | Joule heating | 0.7–1 | <1 kHz | -- | Sim. [90] | ||
Joule heating | 0.1 | , −14°, 12° | <1 kHz | 10 mV | Exp. [89] | ||
GeTe | Phase change | Laser pulses | 0.3 | 35 ns | 190 mJ/ | Exp. [101] | |
Liquid crystals | Birefringence effect | Bias voltage | 0.8 | 75 ms | 20 V | Exp. [104] | |
Bias voltage | 0.672 | ,, | 100 Hz | 40 V | Exp. [105] | ||
Bias voltage | 0.426 | ,,, ,, | 1 kHz | 10 V | Exp. [106] | ||
MEMS | Structural deformation | Bias voltage | 0.8 | , | sub-MHz | 20 V | Sim. [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Pitchappa, P.; Wang, N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines 2022, 13, 285. https://doi.org/10.3390/mi13020285
Yang F, Pitchappa P, Wang N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines. 2022; 13(2):285. https://doi.org/10.3390/mi13020285
Chicago/Turabian StyleYang, Fengyuan, Prakash Pitchappa, and Nan Wang. 2022. "Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links" Micromachines 13, no. 2: 285. https://doi.org/10.3390/mi13020285
APA StyleYang, F., Pitchappa, P., & Wang, N. (2022). Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines, 13(2), 285. https://doi.org/10.3390/mi13020285