Detecting the Knowledge Domains of Compound Semiconductors
Abstract
:1. Introduction
2. Detection and Visualization of Knowledge Domains
3. Methods
3.1. CiteSpace
3.2. Network Analysis and Visualization
3.3. Bibliographic Records
4. Results of Scientometric Analysis
4.1. Document Co-Citation Analysis
4.2. Verification and Justification of Clusters
4.3. Most Active Clusters
4.4. References with Strongest Citation Bursts
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Nirmal, D.; Ajayan, J. Handbook for III-V High Electron Mobility Transistor Technologies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 25–29. [Google Scholar]
- Scholz, F. Compound Semiconductors: Physics, Technology, and Device Concepts, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 2–5. [Google Scholar]
- Allied Market Research, Compound Semiconductor Market. 2020. Available online: https://www.alliedmarketresearch.com/compound-smiconductor-market (accessed on 4 October 2021).
- Bouich, A.; Ullah, S.; Ullah, H.; Mari, B.; Hartiti, B.; Ebn Touhami, M.; Santos, D.M.F. Deposit on different back contacts: To high-quality CuInGaS2 thin films for photovoltaic application. J. Mater. Sci. Mater. Electron. 2019, 30, 20832–20839. [Google Scholar] [CrossRef]
- Chen, C. How to Use CiteSpace; Leanpub: Victoria, BC, Canada, 2020; pp. 71–75. [Google Scholar]
- Lee, Y.-C.; Chen, C.; Tsai, X.-T. Visualizing the knowledge domain of nanoparticle drug delivery technologies: A scientometric review. Appl. Sci. 2016, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Paul, R.J. Visualizing a knowledge domain’s intellectual structure. Computer 2001, 34, 65–71. [Google Scholar] [CrossRef]
- Hu, C.; Racherla, P. Visual representation of knowledge networks: A social network analysis of hospitality research domain. Int. J. Hosp. Manag. 2008, 27, 302–312. [Google Scholar] [CrossRef]
- Yalaki, Y.; Dogan, N.; İrez, S.; Dogan, N.; Çakmakçi, G.; Kara, B.E. Measuring Nature of Science Views of Middle School Students. Int. J. Assess. Tool. Educ. 2019, 6, 461–475. [Google Scholar] [CrossRef]
- Chen, C. The Dynamics of Scientific Knowledge. In Mapping Scientific Frontiers, 4th ed.; Springer: London, UK, 2016; pp. 1–6. [Google Scholar]
- Long, S.I. Compound Semiconductor Integrated Circuit Technology. In The VLSI Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 71-3–71-9. [Google Scholar]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature, 1st ed.; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 41–44. [Google Scholar]
- Chen, C. Mapping Scientific Frontiers: The Quest for Knowledge Visualization, 2nd ed.; Springer: London, UK, 2013; pp. 321–323. [Google Scholar]
- Wei, F.; Grubesic, T.H.; Bishop, B.W. Exploring the GIS Knowledge Domain Using CiteSpace. Prof. Geogr. 2015, 67, 374–384. [Google Scholar] [CrossRef]
- Derek, J. de Solla Price Networks of Scientific Papers: The pattern of bibliographic references indicates the nature of the scientific research front. Science 1965, 149, 510–515. [Google Scholar]
- Chen, C.; Dubin, R.; Kim, M.C. Orphan drugs and rare diseases: A scientometric review (2000–2014). Expert Opin. Orphan Drugs 2014, 2, 709–724. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Del Alamo, J.A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Shi, J.; Li, Z.; Sang, D.K.; Xiang, Y.; Li, J.; Zhang, S.; Zhang, H. THz photonics in two dimensional materials and metamaterials: Properties, devices and prospects. J. Mater. Chem. C 2018, 6, 1291–1306. [Google Scholar] [CrossRef]
- Brar, V.W.; Sherrott, M.C.; Jariwala, D. Emerging photonic architectures in two-dimensional opto-electronics. Chem. Soc. Rev. 2018, 47, 6824–6844. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, X.; Huang, Y.; Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, W. Perovskite tandem solar cells: From fundamentals to commercial deployment. Chem. Rev. 2020, 120, 9835–9950. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Meng, L.; Lien, S.Y.; Gao, P. Perovskite-Based tandem solar cells: Get the most out of the sun. Adv. Func. Mater. 2020, 30, 2001904. [Google Scholar] [CrossRef]
- Jayawardena, K.D.G.I.; Silva, S.; Misra, R. Solution processed perovskite incorporated tandem photovoltaics: Developments, manufacturing, and challenges. J. Mater. Chem. C 2020, 8, 10641–10675. [Google Scholar] [CrossRef]
- Ojo, A.; Cranton, W.; Dharmadasa, I. Next Generation Multilayer Graded Bandgap Solar Cells, 2nd ed.; Springer: Cham, Switzerland, 2019; pp. 32–38. [Google Scholar]
- Bouich, A.; Mari, B.; Atourki, L.; Ullah, S.; Touhami, M.E. Shedding light on the effect of diethyl ether antisolvent on the growth of (CH3NH3) PbI3 thin films. JOM 2021, 73, 551–557. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Lee, K.H.; Araki, K.; Kojima, N. A review of recent progress in heterogeneous silicon tandem solar cells. J. Phys. D Appl. Phys. 2018, 51, 133002. [Google Scholar] [CrossRef]
- Yip, S.; Shen, L.; Ho, J. Recent advances in III-Sb nanowires: From synthesis to applications. Nanotechnology 2019, 30, 202003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazibegovic, S.; Badawy, G.; Buckers, T.L.J.; Leubner, P.; Shen, J.; de Vries, F.K.; Koelling, S.; Kouwenhoven, L.P.; Verheijen, M.A.; Bakkers, E.P.A.M. Bottom-Up Grown 2D InSb Nanostructures. Adv. Mater. 2019, 31, 1808181. [Google Scholar] [CrossRef]
- Aseev, P.; Wang, G.; Binci, L.; Singh, A.; Martí-Sánchez, S.; Botifoll, M.; Stek, L.J.; Bordin, A.; Watson, J.D.; Boekhout, F. Ballistic InSb nanowires and networks via metal-sown selective area growth. Nano Lett. 2019, 19, 9102–9111. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, Z.G.; Dargusch, M.S.; Zou, J. High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 2018, 8, 1701797. [Google Scholar] [CrossRef]
- Hong, M.; Zou, J.; Chen, Z.G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv. Mater. 2019, 31, 1807071. [Google Scholar] [CrossRef]
- Gamage, G.A.; Chen, K.; Chen, G.; Tian, F.; Ren, Z. Effect of nucleation sites on the growth and quality of single-crystal boron arsenide. Mater. Today Phys. 2019, 11, 100160. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Ren, Z. High thermal conductivity in boron arsenide: From prediction to reality. Angew. Chem. 2019, 131, 5882–5889. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Su, X.; Hadjiev, V.G.; Dai, S.; Qin, Z.; Calderon Benavides, H.A.; Ni, Y.; Li, Q.; Jian, J. Extrinsic green photoluminescence from the edges of 2D cesium lead halides. Adv. Mater. 2019, 31, 1902492. [Google Scholar] [CrossRef] [Green Version]
- Leveillee, J.; Katan, C.; Even, J.; Ghosh, D.; Nie, W.; Mohite, A.D.; Tretiak, S.; Schleife, A.; Neukirch, A.J. Tuning electronic structure in layered hybrid perovskites with organic spacer substitution. Nano Lett. 2019, 19, 8732–8740. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Choi, D.; Harris, J.S.; McIntyre, P.C. Pre-atomic layer deposition surface cleaning and chemical passivation of (100) In0.2Ga0.8As and deposition of ultrathin Al2O3 gate insulators. Appl. Phys. Lett. 2008, 93, 052911. [Google Scholar] [CrossRef]
- Milojevic, M.; Aguirre-Tostado, F.S.; Hinkle, C.L.; Kim, H.C.; Vogel, E.M.; Kim, J.; Wallace, R.M. Half-cycle atomic layer deposition reaction studies of Al2O3 on In0.2Ga0.8As (100) surfaces. Appl. Phys. Lett. 2008, 93, 202902. [Google Scholar] [CrossRef]
- Li, L.; Yang, F.; Ye, G.J.; Zhang, Z.; Zhu, Z.; Lou, W.; Zhou, X.; Li, L.; Watanabe, K.; Taniguchi, T. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky—Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef]
- Wachter, S.; Polyushkin, D.K.; Bethge, O.; Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2016, 10, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
Cited Frequency | Title | Author | Year | Betweenness Centrality | Journal |
---|---|---|---|---|---|
62 | A graphene-based broadband optical modulator | Liu, M., et al. | 2011 | 0.01 | Nature |
37 | Nanometre-scale electronics with III–V compound semiconductors | del Alamo, J. | 2011 | 0.00 | Nature |
31 | Black phosphorus field-effect transistors | Li, L. K., et al. | 2014 | 0.01 | Nat Nanotechnol |
29 | Phosphorene: An unexplored 2D semiconductor with a high hole mobility | Liu, H., et al. | 2014 | 0.00 | ACS Nano |
29 | The 2018 GaN power electronics roadmap | Amano, H., et al. | 2018 | 0.00 | J Phys D Appl Phys |
ID | Size | Silhouette | Label terms (LSI) | Label terms (LLR) | Label terms (MI) | Mean (Cited Year) |
---|---|---|---|---|---|---|
0 | 81 | 0.929 | Black phosphorus, van der Waals (vdW) heterostructure | Solar cell, black phosphorus | Reconfigurable graphene | 2016 |
3 | 33 | 0.995 | Solar cell, perovskite tandem | Solar cell, perovskite tandem | ZnSnO (zinc-tin-oxide) buffer layer, reconfigurable graphene | 2018 |
4 | 30 | 0.971 | Hetero-epitaxy, III-Sb (antimony) nanowire | III-Sb nanowire, 2D InSb (indium antimonide) Nanostructure | Si microcone array | 2016 |
6 | 18 | 0.993 | Thermoelectric material, thermoelectric GeTe (germanium telluride) | Thermoelectric material, thermoelectric GeTe | SnSe (tin selenide) thermoelectric generator | 2015 |
9 | 14 | 1.000 | Thermal conductivity, HEMT (high electron mobility transistor), BAs (boron arsenide) | Thermal conductivity, BAs | Substrate misorientation, Mg-doped (Magnesium) GaN | 2017 |
10 | 13 | 0.870 | 2D cesium lead halide, extrinsic green photoluminescence, organic spacer substitution | 2D cesium lead halide, extrinsic green photoluminescence, organic spacer substitution | Reconfigurable graphene | 2017 |
Cited Frequency | Burst | Author | Year | Title | Source |
---|---|---|---|---|---|
17 | 7.08 | Novoselov, et al. [25] | 2016 | 2D materials and van der Waals heterostructures | Science |
14 | 3.75 | Tan, et al. [46] | 2017 | Recent advances in ultrathin two-dimensional nanomaterials | Chem Rev |
13 | 3.48 | Wachter, et al. [47] | 2017 | A microprocessor based on a two-dimensional semiconductor | Nat Commun |
Cited Frequency | Burst | Author | Year | Title | Source |
---|---|---|---|---|---|
14 | 5.82 | Zhao, et al. [48] | 2016 | Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe | Science |
13 | 5.40 | Jackson, et al. [49] | 2016 | Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% | Phys Status Solidi-R |
10 | 4.15 | Tan, et al. [50] | 2016 | Rationally designing high-performance bulk thermoelectric materials | Chem Rev |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Q.-Y.; Chou, C.J.; Lee, M.-X.; Lee, Y.-C. Detecting the Knowledge Domains of Compound Semiconductors. Micromachines 2022, 13, 476. https://doi.org/10.3390/mi13030476
Lee Q-Y, Chou CJ, Lee M-X, Lee Y-C. Detecting the Knowledge Domains of Compound Semiconductors. Micromachines. 2022; 13(3):476. https://doi.org/10.3390/mi13030476
Chicago/Turabian StyleLee, Qian-Yo, Chiyang James Chou, Ming-Xuan Lee, and Yen-Chun Lee. 2022. "Detecting the Knowledge Domains of Compound Semiconductors" Micromachines 13, no. 3: 476. https://doi.org/10.3390/mi13030476
APA StyleLee, Q. -Y., Chou, C. J., Lee, M. -X., & Lee, Y. -C. (2022). Detecting the Knowledge Domains of Compound Semiconductors. Micromachines, 13(3), 476. https://doi.org/10.3390/mi13030476