A Strategy for Extracting Full Material Coefficients of AlN Thin Film Based on Resonance Method
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. The Material Coefficients of AlN
2.2. Extraction Method
2.3. Factors Affecting Extraction Accuracy
2.3.1. Self-Suspended Resonators
2.3.2. De-Embedding of the Pad
2.3.3. Mass Loading Effect of Electrodes
2.4. Extraction Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation and Symbol Annotations
LTE mode | length thickness extension mode |
TE mode | thickness extension mode |
RE mode | radial extension mode |
LEF-TS mode | lateral electric field excited thickness shear mode |
LWR | lamb wave resonator |
elastic stiffness coefficient under constant electric field | |
elastic compliance coefficient under constant electric field | |
piezoelectric stress coefficient | |
piezoelectric strain coefficient | |
dielectric constant under constant stress | |
dielectric constant under constant strain | |
resonance frequency | |
anti-resonance frequency | |
electromechanical coupling coefficient |
References
- Signore, M.A.; Rescio, G.; De Pascali, C.; Iacovacci, V.; Dario, P.; Leone, A.; Quaranta, F.; Taurino, A.; Siciliano, P.; Francioso, L. Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an implantable artificial pancreas. Sci. Rep. 2019, 9, 17130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaresan, Y.; Ma, S.; Shakthivel, D.; Dahiya, R. AlN Ultra-Thin Chips Based Flexible Piezoelectric Tactile Sensors. In Proceedings of the FLEPS 2021-IEEE International Conference on Flexible and Printable Sensors and Systems, Manchester, UK, 20–23 June 2021. [Google Scholar]
- Lu, Y.; Heidari, A.; Shelton, S.; Guedes, A.; Horsley, D.A. High frequency piezoelectric micromachined ultrasonic transducer array for intravascular ultrasound imaging. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014. [Google Scholar]
- Sinha, N.; Wabiszewski, G.E.; Mahameed, R.; Felmetsger, V.V.; Tanner, S.M.; Carpick, R.W.; Piazza, G. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl. Phys. Lett. 2009, 95, 053106. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Lin, C.; Tang, G.; Pisano, A.P. High-Q Butterfly-Shaped AlN Lamb Wave Resonators. IEEE Electron. Device. Lett. 2017, 38, 1739–1742. [Google Scholar] [CrossRef]
- Wingqvist, G. AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—A review. Surf. Coat. Technol. 2010, 205, 1279–1286. [Google Scholar] [CrossRef]
- Kaletta, U.C.; Santos, P.V.; Wolansky, D.; Scheit, A.; Fraschke, M.; Wipf, C.; Zaumseil, P.; Wenger, C. Monolithic integrated SAW filter based on AlN for high-frequency applications. Semicond. Sci. Technol. 2013, 28, 065013. [Google Scholar] [CrossRef]
- Yang, C.M.; Uehara, K.; Kim, S.K.; Kameda, S.; Nakase, H.; Tsubouchi, K. Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter. In Proceedings of the IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 5–8 October 2003. [Google Scholar]
- Kong, L.; Zhang, J.; Wang, H.; Ma, S.; Li, F.; Wang, Q.-M.; Qin, L. Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement. AIP Adv. 2016, 6, 125128. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhao, W.; Wu, H.; Zhang, S.; Zhang, K.; He, L.; Liu, N.; Chen, Z.; Shen, B. High-Quality AlN Film Grown on Sputtered AlN/Sapphire via Growth-Mode Modification. Cryst. Growth Des. 2018, 18, 6816–6823. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Nilsson, D.; Janzén, E. High-quality AlN layers grown by hot-wall MOCVD at reduced temperatures. J. Cryst. Growth 2012, 338, 52–56. [Google Scholar] [CrossRef] [Green Version]
- McCartney, L.N.; Wright, L.; Cain, M.G.; Crain, J.; Martyna, G.J.; Newns, D.M. Methods for determining piezoelectric properties of thin epitaxial films: Theoretical foundations. J. Appl. Phys. 2014, 116, 014104. [Google Scholar] [CrossRef]
- Martin, F.; Muralt, P.; Dubois, M.A.; Pezous, A. Thickness dependence of the properties of highlyc-axis textured AlN thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 361–365. [Google Scholar] [CrossRef]
- Tonisch, K.; Cimalla, V.; Foerster, C.; Romanus, H.; Ambacher, O.; Dontsov, D. Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sens. Actuators. A Phys. 2006, 132, 658–663. [Google Scholar] [CrossRef]
- Tsubouchi, K.; Mikoshiba, N. Zero-Temperature-Coefficient SAW Devices on AlN Epitaxial Films. IEEE Trans. Sonics. Ultrason. 1985, 32, 634–644. [Google Scholar] [CrossRef]
- Ohashi, Y.; Arakawa, M.; Kushibiki, J.-I.; Epelbaum, B.M.; Winnacker, A. Ultrasonic Microspectroscopy Characterization of AlN Single Crystals. Appl. Phys. Express. 2008, 1, 0770041–0770043. [Google Scholar] [CrossRef]
- Konno, A.; Kadota, M.; Kushibiki, J.-I.; Ohashi, Y.; Esashi, M.; Yamamoto, Y.; Tanaka, S. Determination of full material constants of ScAlN thin film from bulk and leaky Lamb waves in MEMS-based samples. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014. [Google Scholar]
- ANSI/IEEE Std 176-1987; IEEE Standard on Piezoelectricity; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 1987.
- Qin, L.; Sun, Y.; Wang, Q.M.; Zhong, Y.; Ou, M.; Jiang, Z.; Tian, W. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012, 59, 2803–2812. [Google Scholar] [PubMed]
- Kim, T.; Kim, J.; Dalmau, R.; Schlesser, R.; Preble, E.; Jiang, X. High-Temperature Electromechanical Characterization of AlN Single Crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015, 62, 1880–1887. [Google Scholar] [CrossRef]
- Al Ahmad, M.; Coccetti, F.; Plana, R. The effect of substrate clamping on piezoelectric thin-film parameters. In Proceedings of the Asia-Pacific Microwave Conference Proceedings, APMC, Bangkok, Thailand, 11–14 December 2007. [Google Scholar]
- Miyoshi, T.; Nakajima, M.; Funakubo, H. Effects of Substrate Clamping on Electrical Properties of Polycrystalline Piezoelectric Films. Jpn. J. Appl. Phys. 2009, 48, 09KD09. [Google Scholar] [CrossRef]
- Aktas, A.; Ismail, M. Pad de-embedding in RF CMOS. IEEE Circuits. Devices Mag. 2001, 17, 8–11. [Google Scholar] [CrossRef]
- Qin, L.; Wang, Q. Mass sensitivity of thin film bulk acoustic resonator sensors based on polarc-axis tilted zinc oxide and aluminum nitride thin film. J. Appl. Phys. 2010, 108, 104510. [Google Scholar] [CrossRef]
- Xia, H.; Ouyang, S.; Qin, L. The Influence of Electrode on Elastic Constant Extraction of Scandium-doped Aluminum Nitride Thin Film by Thickness-extensional Mode FBAR. In Proceedings of the 16th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2021, Xiamen, China, 25–29 April 2021. [Google Scholar]
- Meitzler, A.H.; O’Bryan, H.M.; Tiersten, H.F. Definition and Measurement of Radial Mode Coupling Factors in Piezoelectric Ceramic Materials with Large Variations in Poisson’s Ratio. IEEE Trans. Sonics. Ultrason. 1973, 20, 233–239. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Li, D.; Zhang, L.; Wang, X. The c-axis oriented AlN solidly mounted resonator operated in thickness shear mode using lateral electric field excitation. Appl. Phys. A 2010, 100, 239–244. [Google Scholar] [CrossRef]
- Schmidt, R.V.; Voltmer, F.W. Piezoelectric Elastic Surface Waves in Anisotropic Layered Media. IEEE Trans. Microw. Theory Tech. 1969, 17, 920–926. [Google Scholar] [CrossRef]
- Frickey, D.A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech. 1994, 42, 205–211. [Google Scholar] [CrossRef]
- Wenzel, S.W.; White, R.M. Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors. Appl. Phys. Lett. 1989, 54, 1976–1978. [Google Scholar] [CrossRef]
- Sotnikov, A.; Schmidt, H.; Weihnacht, M.; Smirnova, E.; Chemekova, T.; Makarov, Y. Elastic and piezoelectric properties of AlN and LiAlO2 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2010, 57, 808–811. [Google Scholar] [CrossRef]
Mode | Resonator (μm) | Anchor (μm) |
---|---|---|
LTE | ||
TE | ||
RE | ||
LEF-TS | ||
LWR |
Material Coefficients | ||||||||
---|---|---|---|---|---|---|---|---|
Thin film [15] | 345 | 125 | 120 | 395 | 118 | −0.58 | 1.55 | −0.48 |
Sample 1 a | 345.04 | 124.98 | 120.25 | 395.08 | 118.14 | −0.5790 | 1.5502 | −0.4778 |
Sample 1 b | 345.07 | 125.01 | 120.31 | 395.10 | 118.08 | −0.5800 | 1.5242 | −0.4762 |
Sample 2 a | 344.78 | 124.95 | 119.83 | 395.05 | 118.35 | −0.5663 | 1.5484 | −0.4714 |
Sample 2 b | 344.70 | 124.35 | 120.66 | 395.75 | 118.28 | −0.5713 | 1.5325 | −0.4710 |
Sample 3 a | 345 | 124.89 | 120.07 | 394.93 | 118.57 | −0.5774 | 1.5483 | −0.4707 |
Sample 3 b | 344.98 | 124.88 | 120.04 | 394.96 | 118.4 | −0.5772 | 1.5492 | −0.4708 |
Direct extraction * | 312.4 | 147.32 | 0 | 235.26 | 120 | −1.14 | 0.7964 | −0.2352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yang, Y.; Qin, L.; Ma, S.; Jin, Y. A Strategy for Extracting Full Material Coefficients of AlN Thin Film Based on Resonance Method. Micromachines 2022, 13, 513. https://doi.org/10.3390/mi13040513
Wang C, Yang Y, Qin L, Ma S, Jin Y. A Strategy for Extracting Full Material Coefficients of AlN Thin Film Based on Resonance Method. Micromachines. 2022; 13(4):513. https://doi.org/10.3390/mi13040513
Chicago/Turabian StyleWang, Chen, Yang Yang, Lifeng Qin, Shenglin Ma, and Yufeng Jin. 2022. "A Strategy for Extracting Full Material Coefficients of AlN Thin Film Based on Resonance Method" Micromachines 13, no. 4: 513. https://doi.org/10.3390/mi13040513
APA StyleWang, C., Yang, Y., Qin, L., Ma, S., & Jin, Y. (2022). A Strategy for Extracting Full Material Coefficients of AlN Thin Film Based on Resonance Method. Micromachines, 13(4), 513. https://doi.org/10.3390/mi13040513