Novel Reproducible Manufacturing and Reversible Sealing Method for Microfluidic Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Pressure Set-Up
2.2. Design and Fabrication of Microfluidic Device
2.3. Deformation and Flow-Rate Measurement
2.4. Droplet Generation
2.5. Device Reuse
2.6. Droplet Images
3. Results and Discussion
3.1. Reproducible and Secure Microdevice Fabrication
3.2. Chip Deformation Measurements
3.3. Droplet Production Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mu, X.; Zheng, W.; Sun, J.; Zhang, W.; Jiang, X. Microfluidics for manipulating cells. Small 2013, 9, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef] [PubMed]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Eddings, M.A.; Johnson, M.A.; Gale, B.K. Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 2008, 18, 067001. [Google Scholar] [CrossRef]
- Park, J.W.; Vahidi, B.; Taylor, A.M.; Rhee, S.W.; Jeon, N.L. Microfluidic culture platform for neuroscience research. Nat. Protoc. 2006, 1, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
- Crozatier, C.; Tapsoba, I.; Xu, L.P.; Han, D.; Sensebé, L.; Chen, Y. Microfluidic modulus for convenient cell culture and screening experiments. Microelectron. Eng. 2007, 84, 1694–1697. [Google Scholar] [CrossRef]
- Schaff, U.Y.; Xing, M.M.Q.; Lin, K.K.; Pan, N.; Jeon, N.L.; Simon, S.I. Vascular mimetics based on microfluidics for imaging the leukocyte-endothelial inflammatory response. Lab Chip 2007, 7, 448–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khademhosseini, A.; Yeh, J.; Eng, G.; Karp, J.; Kaji, H.; Borenstein, J.; Farokhzad, O.C.; Langer, R. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 2005, 5, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Sip, C.G.; Bhattacharjee, N.; Folch, A. A modular cell culture device for generating arrays of gradients using stacked microfluidic flows. Biomicrofluidics 2011, 5, 022210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkachenko, E.; Gutierrez, E.; Ginsberg, M.H.; Groisman, A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip 2009, 9, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Lee, Y.P. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding. Sci. Technol. Adv. Mater. 2016, 17, 2–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasponi, M.; Piraino, F.; Sadr, N.; Laganà, M.; Redaelli, A.; Moretti, M. Reliable magnetic reversible assembly of complex microfluidic devices: Fabrication, characterization, and biological validation. Microfluid. Nanofluid. 2011, 10, 1097–1107. [Google Scholar] [CrossRef]
- Thompson, C.S.; Abate, A.R. Adhesive-based bonding technique for PDMS microfluidic devices. Lab Chip 2013, 13, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Garstecki, P.; Fuerstman, M.J.; Stone, H.A.; Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up. Lab Chip 2006, 6, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Federici, F.; Dupuy, L.; Laplaze, L.; Heisler, M.; Haseloff, J. Integrated genetic and computation methods for in planta cytometry. Nat. Methods 2012, 9, 483–485. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Sosa, C.; Peñaherrera-Pazmiño, A.B.; Rosero, G.; Bourguignon, N.; Aravelli, A.; Bhansali, S.; Pérez, M.S.; Lerner, B. Novel Reproducible Manufacturing and Reversible Sealing Method for Microfluidic Devices. Micromachines 2022, 13, 650. https://doi.org/10.3390/mi13050650
Pérez-Sosa C, Peñaherrera-Pazmiño AB, Rosero G, Bourguignon N, Aravelli A, Bhansali S, Pérez MS, Lerner B. Novel Reproducible Manufacturing and Reversible Sealing Method for Microfluidic Devices. Micromachines. 2022; 13(5):650. https://doi.org/10.3390/mi13050650
Chicago/Turabian StylePérez-Sosa, Camilo, Ana Belén Peñaherrera-Pazmiño, Gustavo Rosero, Natalia Bourguignon, Aparna Aravelli, Shekhar Bhansali, Maximiliano Sebastian Pérez, and Betiana Lerner. 2022. "Novel Reproducible Manufacturing and Reversible Sealing Method for Microfluidic Devices" Micromachines 13, no. 5: 650. https://doi.org/10.3390/mi13050650
APA StylePérez-Sosa, C., Peñaherrera-Pazmiño, A. B., Rosero, G., Bourguignon, N., Aravelli, A., Bhansali, S., Pérez, M. S., & Lerner, B. (2022). Novel Reproducible Manufacturing and Reversible Sealing Method for Microfluidic Devices. Micromachines, 13(5), 650. https://doi.org/10.3390/mi13050650