Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band
Abstract
:1. Introduction
2. Design, Analysis, and Fabrication
2.1. Design and Analysis
2.2. Fabrication
- (a)
- The transmission lines and the electrode pads are fabricated by evaporating an Au layer and an adhesive AuGeNi/Au layer. Then Ti/Au/Ti seed layer is evaporated and patterned. After that, the top Ti layer is removed.
- (b)
- The two arms of the thermopiles are made of N+ GaAs and Au, respectively. Specifically, N+ GaAs is fabricated using the ion implantation method, and Au is sputtered with a lift-off process.
- (c)
- Resistors are made by the TaN layer through depositing. The square resistance of the material is 25 Ω/square.
- (d)
- In order to manufacture the cantilever MEMS beam, a sacrificial layer of polyimide is firstly patterned. Then Au is etched to form the beam. The sacrificial layer is removed after that.
- (e)
- Finally, in order to reduce the power dissipated inside the substrate, the substrate underneath the load resistors and the thermopiles is back-etched through dry etching technology.
3. Experiments and Discussions
3.1. Microwave Performance
3.2. Phase Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Golestan, S.; Guerrero, J.M.; Vasquez, J.C. Three-phase PLLs: A review of recent advances. IEEE Trans. Power Electron. 2016, 32, 1894–1907. [Google Scholar] [CrossRef] [Green Version]
- Lehto, A.; Tuovinen, J.; Boric, O.; Raisanen, A. Accurate millimeter wave antenna phase pattern measurements using the differential phase method with three power meters. IEEE Trans. Antennas Propag. 1992, 40, 851–853. [Google Scholar] [CrossRef]
- Gheidi, H.; Banai, A. Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator. IEEE Trans. Microw. Theory Tech. 2010, 58, 468–477. [Google Scholar] [CrossRef]
- Stec, B.; Recko, C. Broadband microwave phase detector with diode ring. In Proceedings of the 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON–2000. Conference Proceedings (IEEE Cat. No. 00 EX428), Wroclaw, Poland, 22–24 May 2000; Volume 1, pp. 65–68. [Google Scholar]
- Yang, X.; Liu, G.; Rostami, M.; Balandin, A.; Mohanram, K. Graphene ambipolar multiplier phase detector. IEEE Electron Device Lett. 2011, 32, 1328–1330. [Google Scholar] [CrossRef] [Green Version]
- Pérez, B.; Pulido, V.A.; Perez-Mato, J.; Cabrera-Almeida, F. 360° phase detector cell for measurement systems based on switched dual multipliers. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 503–550. [Google Scholar] [CrossRef]
- Pérez-Díaz, B.; Araña-Pulido, V.; Cabrera-Almeida, F.; Dorta-Naranjo, B.P. Phase Shift and Amplitude Array Measurement System Based on 360° Switched Dual Multiplier Phase Detector. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Fan, X.; Kim, S.; Kou, X.; Kolodzey, J.; Zhang, H.; Xiao, J.Q. Microwave phase detection with a magnetic tunnel junction. Appl. Phys. Lett. 2010, 97, 212501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cai, J.; Fang, B.; Zhang, B.; Bian, L.; Carpentieri, M.; Finocchio, G.; Zeng, Z. Dual-band microwave detector based on magnetic tunnel junctions. Appl. Phys. Lett. 2020, 117, 072409. [Google Scholar] [CrossRef]
- Rebeiz, G.M. RF MEMS: Theory, Design and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Yan, H.; Liao, X.P.; Hua, D. A four-port microwave phase detector at X-band based on MEMS power sensors. IEEE Sens. J. 2017, 17, 2029–2035. [Google Scholar] [CrossRef]
- Chu, C.; Liao, X.; Li, C.; Chen, C. A Micro-machined phase discriminator with improved power capacity on C-band and X-band. IEEE Sens. J. 2019, 19, 2133–2139. [Google Scholar] [CrossRef]
- Wang, D.-B.; Liao, X.-P. A novel MEMS double-channel microwave power sensor based on GaAs MMIC technology. Sens. Actuat. A Phys. 2012, 188, 95–102. [Google Scholar] [CrossRef]
- Han, J.; Chen, R. RF MEMS in-line type phase detector with large dynamic range. IEEE Electron Device Lett. 2019, 40, 792–795. [Google Scholar] [CrossRef]
- Scardelletti, M.C.; Ponchak, G.E.; Weller, T.M. Miniaturized Wilkinson power dividers utilizing capacitive loading. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gu, X.; Zhao, J.; Jin, L.; Ji, X. An in-line microwave power detection system based on double MEMS cantilever beams. IEEE Sens. J. 2020, 20, 10476–10484. [Google Scholar] [CrossRef]
- Ulm, M.; Walter, T.; Mueller-Fiedler, R.; Voigtlaender, K.; Kasper, E. K-Band capacitive MEMS-switches. In Proceedings of the Topical Meeting on Silicon Monolithic Integrated Circuits in RF-Systems, Garmisch, Germany, 28 April 2000; pp. 119–122. [Google Scholar]
- Rottenberg, X.; Brebels, S.; De Raedt, W.; Nauwelaers, B.; Tilmans, H.A.C. RF-power: Driver for electrostatic RF-MEMS devices. J. Micromechanics Microengineering 2004, 14, S43–S48. [Google Scholar] [CrossRef]
- Lineykin, S.; Ben-Yaakov, S. Modeling and analysis of thermoelectric modules. IEEE Trans. Ind. Appl. 2007, 43, 505–512. [Google Scholar] [CrossRef]
- Carneiro, J.F.; de Almeida, F.G. Model and simulation of the energy retrieved by thermoelectric generators in an underwater glider. Energy Convers. Manag. 2018, 163, 38–49. [Google Scholar] [CrossRef]
- Li, J.-H.; Liao, X. High-power electro-mechanical behavior of a capacitive microwave power sensor with warped cantilever beam. Solid-State Electron. 2020, 172, 107877. [Google Scholar] [CrossRef]
- Dec, A.; Suyama, K. Microwave MEMS-based voltage-controlled oscillators. IEEE Trans. Microw. Theory Tech. 2000, 48, 1943–1949. [Google Scholar]
- Molinero, D.; Aghaei, S.; Morris, A.S.; Cunningham, S. Linearity and RF power handling on capacitive RF MEMS switches. IEEE Trans. Microw. Theory Tech. 2019, 67, 4905–4913. [Google Scholar] [CrossRef]
- Segovia-Fernandez, J.; Piazza, G. Thermal Nonlinearities in Contour Mode AlN Resonators. J. Microelectromechanical Syst. 2013, 22, 976–985. [Google Scholar] [CrossRef]
Element Name and Character | Value and Unit |
---|---|
Dimensions of the CPW (G/W/G) | 58 μm/100 μm/58 μm |
Dimensions of the ACPS (G1/W1/S) | 70 μm/40 μm/90 μm |
Width of the beam (wb) | 100 μm |
Initial height of the beam (g0) | 1.6 μm |
Capacitance of C1, C2 and C3 | 0.16 pF, 0.16 pF and 0.32 pF |
Resistance of R, R1 and R2 | 100 Ω, 100 Ω and 100 Ω |
Length of thermopiles | 150 μm |
Number of the thermocouples | 10 pairs |
Total area of the structure | 2556 μm × 960 μm |
Ref. | Freq. (GHz) | Phase Range (deg) | Max. Power | Linearity Range | Sensitivity | DC Supply (V) | Size (mm2) | Response Time (μs) |
---|---|---|---|---|---|---|---|---|
[5] | 10−4 | −90–90 | N/A | N/A | 0.12 mV/deg | 1.8 | N/A | N/A |
[7] | 2.6–6 | −180–180 | −3 dBm | N/A | 0.14 mV/deg (−5 dBm) | 4 | N/A | N/A |
[11] | 8–12 | −180–180 | 36 dBm | 21–26 dBm | 36 μV/deg (27 dBm) | 0 | 26.2 | 404 |
[12] | 6–12 | 0–180 | 30 dBm | N/A | 83.7 μV/deg (27 dBm) | 0 | >3.7 | 460 |
This work | 8–12 | 0–180 | 32 dBm | 23–32 dBm | 21.7 μV/deg (27 dBm) | 0 | 2.45 | 433 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Ding, D. Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band. Micromachines 2022, 13, 786. https://doi.org/10.3390/mi13050786
Han J, Ding D. Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band. Micromachines. 2022; 13(5):786. https://doi.org/10.3390/mi13050786
Chicago/Turabian StyleHan, Juzheng, and Dazhi Ding. 2022. "Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band" Micromachines 13, no. 5: 786. https://doi.org/10.3390/mi13050786
APA StyleHan, J., & Ding, D. (2022). Design and Analysis of a Hybrid-Type RF MEMS Phase Detector in X-Band. Micromachines, 13(5), 786. https://doi.org/10.3390/mi13050786