Hole Injection Effect and Dynamic Characteristic Analysis of Normally Off p-GaN HEMT with AlGaN Cap Layer on Low-Resistivity SiC Substrate
Abstract
:1. Introduction
2. Device Structure
3. Experimental Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lanford, W.B.; Tanaka, T.; Otoki, Y.; Adesida, I. Recessed-gate enhancement-mode GaN HEMT with high threshold voltage. Electron. Lett. 2005, 41, 449–450. [Google Scholar] [CrossRef]
- Oka, T.; Nozawa, T. AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett. 2008, 29, 668–670. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, L.; Zhang, A.; Chen, B.; Jin, Y.; Shi, Y.; Wang, Z.; Chen, W.; Zhang, B. 7.6 V threshold voltage high-performance normally-off Al2O3/GaN MOSFET achieved by interface charge engineering. IEEE Electron Device Lett. 2016, 37, 165–168. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett. 2005, 26, 435–437. [Google Scholar] [CrossRef]
- Uemoto, Y.; Hikita, M.; Ueno, H.; Matsuo, H.; Ishida, H.; Yanagihara, M.; Ueda, T.; Tanaka, T.; Ueda, D. Gate Injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 2007, 54, 3393–3399. [Google Scholar] [CrossRef]
- Kaneko, S.; Kuroda, M.; Yanagihara, M.; Ikoshi, A.; Okita, H.; Morita, T.; Tanaka, K.; Hikita, M.; Uemoto, Y.; Takahashi, S.; et al. Current-collapse-free operations up to 850 V by GaNGIT utilizing hole injection from drain. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 41–44. [Google Scholar] [CrossRef]
- Marcon, D.; Saripalli, Y.N.; Decoutere, S. 200 mm GaN-on-Si epitaxy and e-mode device technology. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 16.2.1–16.2.4. [Google Scholar] [CrossRef]
- Wu, Y.; Jacob-Mitos, M.; Moore, M.L.; Heikman, S. A 97.8% Efficient GaN HEMT Boost Converter with 300-W Output Power at 1 MHz. IEEE Electron Device Lett. 2008, 29, 824–826. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Z.; Yang, S.; Song, W.; He, J.; Chen, K.J. p-GaN Gate HEMT with Surface Reinforcement for Enhanced Gate Reliability. IEEE Electron Device Lett. 2021, 42, 22–25. [Google Scholar] [CrossRef]
- Tallarico, A.N.; Stoffels, S.; Posthuma, N.; Decoutere, S.; Sangiorgi, E.; Fiegna, C. Threshold Voltage Instability in GaN HEMTs with p-Type Gate: Mg Doping Compensation. IEEE Electron Device Lett. 2019, 40, 4. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chiu, H.-C.; Wang, H.-C.; Kao, H.-L.; Huang, C.-R. Improved Gate Reliability Normally-Off p-GaN/AlN/AlGaN/GaN HEMT with AlGaN Cap-Layer. IEEE Electron Device Lett. 2021, 42, 10. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Chiu, H.-C.; Kao, H.-L.; Wang, H.-C.; Liu, C.-H.; Huang, C.-R.; Chen, S.-W. High Thermal Dissipation of Normally off p-GaN Gate AlGaN/GaN HEMTs on 6-Inch N-Doped Low-Resistivity SiC Substrate. Micromachines 2021, 12, 509. [Google Scholar] [CrossRef]
- Buttari, D.; Chini, A.; Chakraborty, A.; Mccarthy, L.; Xing, H.; Palacios, T.; Shen, L.; Keller, S.; Mishra, U.K. Selective dry etching of GaN over AlGaN in BCl3/SF6 mixtures. High Perform. Devices 2004, 14, 756–761. [Google Scholar] [CrossRef]
- Chiu, H.C.; Chang, Y.S.; Li, B.H.; Wang, H.C.; Kao, H.L.; Chien, F.T.; Hu, C.W.; Xuan, R. High Uniformity Normally-OFF p-GaN Gate HEMT Using Self-Terminated Digital Etching Technique. IEEE Trans. Electron Devices 2018, 65, 4820–4825. [Google Scholar] [CrossRef]
- Zhong, Y. Self-terminated etching of GaN with a high selectivity over AlGaN under inductively coupled Cl2/N2/O2 plasma with a low-energy ion bombardment. Appl. Surf. Sci. 2018, 420, 817–824. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chiu, H.-C.; Huang, C.-R.; Chang, K.-J.; Chen, C.-T.; Hsueh, K.-P. Low Gate Lag Normally-Off p-GaN/AlGaN/GaN High Electron Mobility Transistor with Zirconium Gate Metal. Crystals 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Chiu, H.-C.; Liu, C.-H.; Huang, C.-R.; Chiu, C.-C.; Wang, H.-C.; Kao, H.-L.; Lin, S.-Y.; Chien, F.-T. Normally-Off p-GaN Gated AlGaN/GaN MIS-HEMTs with ALD-Grown Al2O3/AlN Composite Gate Insulator. Membranes 2021, 11, 727. [Google Scholar] [CrossRef]
- Meneghini, M. Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate. Energies 2017, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.L.; Marcon, D.; You, S.; Posthuma, N.; Bakeroot, B.; Stoffels, S.; Van Hove, M.; Groeseneken, G.; Decoutere, S. Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistors. IEEE Electron Device Lett. 2015, 36, 1001–1003. [Google Scholar] [CrossRef]
- Tapajna, M.; Hilt, O.; Bahat-Treidel, E.; Würfl, J.; Kuzmík, J. Gate reliability investigation in normally-off p-type-GaN Cap/AlGaN/GaN HEMTs under forward bias stress. IEEE Electron Device Lett. 2016, 37, 385–388. [Google Scholar] [CrossRef]
- Tang, X.; Li, B.; Moghadam, H.A.; Tanner, P.; Han, J.; Dimitrijev, S. Mechanism of threshold voltage shift in p-GaN gate AlGaN/GaN transistors. IEEE Electron Device Lett. 2018, 39, 1145–1148. [Google Scholar]
- Shi, Y.; Zhou, Q.; Cheng, Q.; Wei, P.; Zhu, L.; Wei, D.; Zhang, A.; Chen, W.; Zhang, B. Carrier Transport Mechanisms Underlying the Bidirectional VTH Shift in p-GaN Gate HEMTs under forward Gate Stress. IEEE Trans. Electron Devices 2019, 66, 2. [Google Scholar] [CrossRef]
- Stoffels, S. Perimeter driven transport in the p-GaN gate as a limiting factor for gate reliability. In Proceedings of the 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 31 March–4 April 2019. [Google Scholar]
- He, J.; Chen, K. Frequency and temperature-dependent gate reliability of Schottky-type p-GaN gate HEMTs. IEEE Trans. Electron Devices 2019, 66, 3453–3458. [Google Scholar] [CrossRef]
- Meneghini, M. Gate conduction mechanisms and lifetime modeling of p-Gate AlGaN/GaN high-electron-mobility transistors. IEEE Trans. Electron Devices 2018, 65, 5365–5372. [Google Scholar]
- Wang, C.; Hua, M.; Chen, J.; Yang, S.; Zheng, Z.; Wei, J.; Zhang, L.; Chen, K.J. E-mode p-n junction/AlGaN/GaN (PNJ) HEMTs. IEEE Electron Device Lett. 2020, 41, 545–548. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-C.; Liu, C.-H.; Huang, C.-R.; Chiu, H.-C.; Kao, H.-L.; Liu, X. Hole Injection Effect and Dynamic Characteristic Analysis of Normally Off p-GaN HEMT with AlGaN Cap Layer on Low-Resistivity SiC Substrate. Micromachines 2022, 13, 807. https://doi.org/10.3390/mi13050807
Wang H-C, Liu C-H, Huang C-R, Chiu H-C, Kao H-L, Liu X. Hole Injection Effect and Dynamic Characteristic Analysis of Normally Off p-GaN HEMT with AlGaN Cap Layer on Low-Resistivity SiC Substrate. Micromachines. 2022; 13(5):807. https://doi.org/10.3390/mi13050807
Chicago/Turabian StyleWang, Hsiang-Chun, Chia-Hao Liu, Chong-Rong Huang, Hsien-Chin Chiu, Hsuan-Ling Kao, and Xinke Liu. 2022. "Hole Injection Effect and Dynamic Characteristic Analysis of Normally Off p-GaN HEMT with AlGaN Cap Layer on Low-Resistivity SiC Substrate" Micromachines 13, no. 5: 807. https://doi.org/10.3390/mi13050807
APA StyleWang, H. -C., Liu, C. -H., Huang, C. -R., Chiu, H. -C., Kao, H. -L., & Liu, X. (2022). Hole Injection Effect and Dynamic Characteristic Analysis of Normally Off p-GaN HEMT with AlGaN Cap Layer on Low-Resistivity SiC Substrate. Micromachines, 13(5), 807. https://doi.org/10.3390/mi13050807