Design and Thermal Analysis of Flexible Microheaters
Abstract
:1. Introduction
2. Models and Methods
2.1. Heat Transfer Models
2.2. Materials
3. Results and Discussion
3.1. Structure Design and Analysis
3.2. Proportional-Integral-Derivative (PID) Control for Flexible Microheater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeroish, Z.E.; Bhuvaneshwari, K.S.; Samsuri, F.; Narayanamurthy, V. Microheater: Material, design, fabrication, temperature control, and applications-a role in COVID-19. Biomed. Microdevices 2022, 24, 3. [Google Scholar] [CrossRef]
- Paun, C.; Tomescu, R.; Cristea, D.; Ionescu, O.; Parvulescu, C. Design, fabrication and caracterization of a micro-heater for metasurface-based gas sensors. In Proceedings of the 2020 International Semiconductor Conference, Sinaia, Romania, 7–9 October 2020; pp. 31–34. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.S. Reliability and stability analysis and crack estimation of semiconductor gas sensors heater. In Proceedings of the 2021 International Conference on Electronics, Information and Communication (Iceic), Jeju, Korea, 31 January–3 February 2021. [Google Scholar] [CrossRef]
- Colle, R.; Zimmerman, B.E. A dual-compensated cryogenic microcalorimeter for radioactivity standardizations. Appl. Radiat. Isot. 2002, 56, 223–230. [Google Scholar] [CrossRef]
- Wang, W.C.; Wu, Y.H.; Chang, Z.H.; Chen, F.Q.; Wang, H.Y.; Gu, G.Q.; Zheng, H.W.; Cheng, G.; Wang, Z.L. Self-powered intelligent water meter for electrostatic scale preventing, rust protection, and flow sensor in a solar heater system. Acs Appl. Mater. Inter. 2019, 11, 6396–6403. [Google Scholar] [CrossRef]
- Tseng, S.F.; Tsai, Y.S. Laser-induced graphene via the far-infrared irradiation of polyimide films for flexible electric heater applications. Int. J. Adv. Manuf. Tech. 2022, 120, 5351–5362. [Google Scholar] [CrossRef]
- Romer, M.; Bergers, J.; Gabriel, F.; Droder, K. Temperature control for automated tape laying with infrared heaters based on reinforcement learning. Machines 2022, 10, 164. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Li, Z.; Liu, N.C.; Lee, P.S.; Li, K.; Li, S.; Ding, M.; Ho, J.S.; Li, Y.E.; et al. Cation-induced assembly of conductive MXene fibers for wearable heater, wireless communication, and stem cell differentiation. ACS Biomater. Sci. Eng. 2021. [CrossRef]
- Zhou, Q.; Sussman, A.; Chang, J.Y.; Dong, J.; Zettl, A.; Mickelson, W. Fast response integrated MEMS microheaters for ultra low power gas detection. Sens. Actuat. A-Phys. 2015, 223, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Solzbacher, F.; Imawan, C.; Steffes, H.; Obermeier, E.; Eickhoff, M. A new SiC/HfB2 based low power gas sensor. Sensor Actuat. B-Chem. 2001, 77, 111–115. [Google Scholar] [CrossRef]
- Krishna, R.M.; Eftekhar, A.; Lee, S.; Fan, T.; Wu, X.; Hosseinnia, A.; Wang, H.; Swaminathan, M.; Adibi, A. Polysilicon micro-heaters for resonance tuning in CMOS photonics. Opt. Lett. 2022, 47, 1097–1100. [Google Scholar] [CrossRef]
- Cho, J.; Shin, G. Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. Polymers 2022, 14, 1557. [Google Scholar] [CrossRef]
- Bhattacharyya, P. Technological journey towards reliable microheater development for MEMS gas sensors: A review. IEEE Trans. Device Mater. Reliab. 2014, 14, 589–599. [Google Scholar] [CrossRef]
- Jain, A.; Goodson, K.E. Thermal microdevices for biological and biomedical applications. J. Therm. Biol. 2011, 36, 209–218. [Google Scholar] [CrossRef]
- Waghmare, S.; Hasan, M.A.; Manikandan, S.; Datta, S. Computational design and analysis of patterned micro-heaters with various thickness and trace width. J. Phys. Conf. Ser. 2021, 2054, 012083. [Google Scholar] [CrossRef]
- Hasan, M.N.; Acharjee, D.; Kumar, D.; Kumar, A.; Maity, S. Simulation of low power heater for gas sensing application. Procedia Comput. Sci. 2016, 92, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Prajesh, R.; Goyal, V.; Saini, V.; Bhargava, J.; Sharma, A.; Agarwal, A. Development and reliability analysis of micro gas sensor platform on glass substrate. Microsyst. Technol. 2019, 25, 3589–3597. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Bhat, S.; Mahato, K.K. Design and fabrication of screen printed microheater. Microsyst. Technol. 2018, 24, 3273–3281. [Google Scholar] [CrossRef]
- Jung, G.; Hong, Y.; Hong, S.; Jang, D.; Jeong, Y.; Shin, W.; Park, J.; Kim, D.; Jeong, C.B.; Kim, D.U.; et al. A low-power embedded poly-Si micro-heater for gas sensor platform based on a FET transducer and its application for NO2 sensing. Sensor Actuat. B-Chem. 2021, 334, 129642. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, L.Y.; Wang, G.; Yang, S.W.; He, Z.Y.; Zhang, G.L.; Feng, X.Q.; Liu, Z.D.; Wei, Z.H.; Zhu, Y.J.; et al. Oxygen-etchant-promoted synthesis of vertically aligned graphene arrays in a Joule heater and defogger. Diam. Relat. Mater. 2021, 120, 108697. [Google Scholar] [CrossRef]
- Barmpakos, D.; Belessi, V.; Xanthopoulos, N.; Krontiras, C.A.; Kaltsas, G. Flexible inkjet-printed heaters utilizing graphene-based inks. Sensors 2022, 22, 1173. [Google Scholar] [CrossRef]
- Naseri, I.; Ziaee, M.; Nilsson, Z.N.; Lustig, D.R.; Yourdkhani, M. Electrothermal performance of heaters based on laser-induced graphene on aramid fabric. ACS Omega 2022, 7, 3746–3757. [Google Scholar] [CrossRef]
- Wang, C.-P.; Hsiao, M.-H.; Lee, G.-H.; Chang, T.-L.; Lee, Y.-W. The investigation of electrothermal response and reliability of flexible graphene micro-heaters. Microelectron. Eng. 2020, 228, 111334. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, L.; Han, Y.; Cui, L. Effect of graphene bending in dynamic compounding process on the thermal conductivity of graphene and its composites. Mater. Des. 2022, 215, 110498. [Google Scholar] [CrossRef]
- Dada, M.; Popoola, P.; Mathe, N.; Adeosun, S.; Aramide, O. 2D numerical model for heat transfer on a laser deposited high entropy alloy baseplate using Comsol Multiphysics. Mater. Today-Proc. 2022, 50, 2541–2546. [Google Scholar] [CrossRef]
- Ramachandran, A.V.; Zorzano, M.P.; Martin-Torres, J. Numerical heat transfer study of a space environmental testing facility using COMSOL Multiphysics. Therm. Sci. Eng. Prog. 2022, 29, 101205. [Google Scholar] [CrossRef]
- Lekshmi, M.S.; Pamula, R.; Kartik, A.; Suja, K.J. Performance analysis of micro hotplate based metal oxide nanowire gas sensor. In Proceedings of the 2018 7th International Symposium on Next Generation Electronics (ISNE), Taipei, Taiwan, 7–9 May 2018; pp. 112–115. [Google Scholar] [CrossRef]
- Utomo, M.S.; Whulanza, Y.; Kiswanto, G. Maskless visible-light photolithography of copper microheater for dynamic microbioreactor. In Proceedings of the 4th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, Health and Medical Devices: Proceedings of the International Symposium of Biomedical Engineering (Isbe) 2019; AIP Conference Proceedings, Padang, Indonesia, 22–24 July 2019; Volume 2193, p. 050013. [Google Scholar] [CrossRef]
- Joy, S.; Antony, J.K. Design and Simulation of a Micro Hotplate using COMSOL Multiphysics for MEMS Based Gas Sensor. In Proceedings of the 2015 Fifth International Conference on Advances in Computing and Communications (Icacc), Kochi, India, 2–4 September 2015; pp. 465–468. [Google Scholar] [CrossRef]
Material | PET | Graphene [24] | Copper |
---|---|---|---|
Young’s modulus (Pa) | 4.00 × 109 | 1.00 × 1012 | 1.278 × 1010 |
Poisson’s ratio | 0.125 | 0.160 | 0.326 |
Thermal expansion coefficient (1/K) | 3.30 × 10−5 | 2.90 × 10−5 | 1.890 × 10−5 |
Thermal Conductivity (W/(m⋅k)) | 0.14 | x: 3000, y: 3000, z: 6.1 | 380 |
Constant pressure heat capacity (J/(kg⋅K)) | 1100 | 1365 | 390 |
Density (kg/m³) | 1370 | 2330 | 8960 |
Abbreviations | Meaning |
---|---|
SMO | semiconductor oxide |
CO | carbon monoxide |
MEMS | micro-electromechanical Systems |
LPCVD | low-pressure chemical vapor deposition |
PET | polyethylene terephthalate |
Pt | platinum |
PID | proportional-integral-derivative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Ruan, Y.; Chen, C.; He, W.; Chi, C.; Lin, Q. Design and Thermal Analysis of Flexible Microheaters. Micromachines 2022, 13, 1037. https://doi.org/10.3390/mi13071037
Li D, Ruan Y, Chen C, He W, Chi C, Lin Q. Design and Thermal Analysis of Flexible Microheaters. Micromachines. 2022; 13(7):1037. https://doi.org/10.3390/mi13071037
Chicago/Turabian StyleLi, Dezhao, Yangtao Ruan, Chuangang Chen, Wenfeng He, Cheng Chi, and Qiang Lin. 2022. "Design and Thermal Analysis of Flexible Microheaters" Micromachines 13, no. 7: 1037. https://doi.org/10.3390/mi13071037
APA StyleLi, D., Ruan, Y., Chen, C., He, W., Chi, C., & Lin, Q. (2022). Design and Thermal Analysis of Flexible Microheaters. Micromachines, 13(7), 1037. https://doi.org/10.3390/mi13071037