A Dual-Band Eight-Element MIMO Antenna Array for Future Ultrathin Mobile Terminals
Abstract
:1. Introduction
2. Antenna Structure
3. Working Mechanism and Application Scenario
3.1. Design Procedure
3.2. Study of the Role of the DBs
3.3. Current Distribution and Parametric Analysis
3.4. Application Scenario
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Luo, H.; Zhang, M.; Wen, H.; Wang, B.; Wang, J. An Extremely Low-Profile Wideband MIMO Antenna for 5G Smartphones. IEEE Trans. Antennas Propag. 2019, 67, 5772–5780. [Google Scholar] [CrossRef]
- Huang, J.; Dong, G.; Cai, Q.; Chen, Z.; Li, L.; Liu, G. Dual-Band MIMO Antenna for 5G/WLAN Mobile Terminals. Micromachines 2021, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Dong, G.; Cai, J.; Li, H.; Liu, G. A Quad-Port Dual-Band MIMO Antenna Array for 5G Smartphone Applications. Electronics 2021, 10, 542. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, A. Dual-Band MIMO Antenna with Compact Self-Decoupled Antenna Pairs for 5G Mobile Applications. IEEE Access 2019, 7, 82288–82296. [Google Scholar] [CrossRef]
- Moses, A.; Moses, N. Compact Self Decoupled MIMO Antenna Pairs Covering 3.4–3.6 GHz Band for 5G Handheld Device Applications. AEU Int. J. Electron. Commun. 2021, 141, 153971. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Zhang, Z. Wideband Decoupling of Integrated Slot Antenna Pairs for 5G Smartphones. IEEE Trans. Antennas Propag. 2021, 69, 2386–2391. [Google Scholar] [CrossRef]
- Wong, K.; Tsai, C.; Lu, J. Two Asymmetrically Mirrored Gap-Coupled Loop Antennas as a Compact Building Block for Eight-Antenna MIMO Array in the Future Smartphone. IEEE Trans. Antennas Propag. 2017, 65, 1765–1778. [Google Scholar] [CrossRef]
- Huang, J.; He, T.; Xi, S.; Yang, Q.; Shi, X.; Liu, G. Eight-port high-isolation antenna array for 3.3–6 GHz handset applications. AEU Int. J. Electron. Commun. 2022, 154, 154333. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.; Luo, Y.; Yang, G. High-Isolation 3.5 GHz Eight-Antenna MIMO Array Using Balanced Open-Slot Antenna Element for 5G Smartphones. IEEE Trans. Antennas Propag. 2019, 67, 3820–3830. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Cui, Y.; Hu, W. High-Isolation Eight-Element MIMO Array for 5G Smartphone Applications. IEEE Access 2019, 7, 34104–34112. [Google Scholar] [CrossRef]
- Dong, J.; Wang, S.; Mo, J. Design of a Twelve-Port MIMO Antenna System for Multi-Mode 4G/5G Smartphone Applications Based on Characteristic Mode Analysis. IEEE Access 2020, 8, 90751–90759. [Google Scholar] [CrossRef]
- Yuan, X.; He, W.; Hong, K.; Han, C.; Chen, Z.; Yuan, T. Ultra-Wideband MIMO Antenna System with High Element-Isolation for 5G Smartphone Application. IEEE Access 2020, 8, 56281–56289. [Google Scholar] [CrossRef]
- Dong, G.; Huang, J.; Chen, Z.; Liu, G. A Compact Planar Dual Band Two-Port MIMO Antenna with High Isolation and Efficiency. Int. J. RF Microw. Comput. Aided Eng. 2022, 32, e23245. [Google Scholar] [CrossRef]
- Hu, W. Dual-Band Eight-Element MIMO Array Using Multi-Slot Decoupling Technique for 5G Terminals. IEEE Access 2019, 7, 153910–153920. [Google Scholar] [CrossRef]
- Guo, J.; Cui, L.; Li, C.; Sun, B. Side-Edge Frame Printed Eight-Port Dual-Band Antenna Array for 5G Smartphone Applications. IEEE Trans. Antennas Propag. 2018, 66, 7412–7417. [Google Scholar] [CrossRef]
- Sun, L.; Feng, H.; Li, Y.; Zhang, Z. Compact 5G MIMO Mobile Phone Antennas with Tightly Arranged Orthogonal-Mode Pairs. IEEE Trans. Antennas Propag. 2019, 66, 6364–6369. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, A.; Wu, S. MIMO Antenna with Compact Decoupled Antenna Pairs for 5G Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1367–1371. [Google Scholar] [CrossRef]
- Moses, A.; Moses, N.; Janapala, D. An Electrically Small 4-Port Self-Decoupled MIMO Antenna Pairs Operating in n78 5G NR Band for Smartphone Applications. AEU Int. J. Electron. Commun. 2022, 145, 154082. [Google Scholar]
- Huang, J.; Chen, Z.; Cai, Q.; Loh, T.H.; Liu, G. Minimized Triple-Band Eight-Element Antenna Array for 5G Metal-frame Smartphone Applications. Micromachines 2022, 13, 136. [Google Scholar] [CrossRef]
- Chandel, R.; Gautam, A.K.; Rambabu, K. Design and Packaging of an Eye-Shaped Multiple-Input–Multiple-Output Antenna with High Isolation for Wireless UWB Applications. IEEE Trans. Comp. Pack. Man. Technol. 2018, 8, 635–642. [Google Scholar] [CrossRef]
- Nandiwardhana, S.; Chung, J. Trade-Off Analysis of Mutual Coupling Effect on MIMO Antenna Multiplexing Efficiency in Three-Dimensional Space. IEEE Access 2018, 6, 47092–47101. [Google Scholar] [CrossRef]
- Zhao, A.; Ren, Z. Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 152–156. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wang, W.; Shen, W. Ultra-Wideband 8-Port MIMO Antenna Array for 5G Metal-Frame Smartphones. IEEE Access 2019, 7, 72273–72282. [Google Scholar] [CrossRef]
- Cheng, B.; Du, Z. A Wideband Low-Profile Microstrip MIMO Antenna for 5G Mobile Phones. IEEE Trans. Antennas Propag. 2022, 70, 1476–1481. [Google Scholar] [CrossRef]
- Li, R.; Mo, Z.; Sun, H.; Sun, X.; Du, G. A Low-Profile and High-isolated MIMO Antenna for 5G Mobile Terminal. Micromachines 2020, 11, 360. [Google Scholar] [CrossRef]
Design Evolution | 3.5 GHz | 4.9 GHz |
---|---|---|
1st structure | 0.094 + 0.518i | 0.2946 + 0.9528i |
2nd structure | 0.5085 + 0.0955i | 0.3626 + 0.2061i |
3rd structure | 0.6245 + 0.0824i | 0.3102 + 0.2382i |
Final structure | 1.08–0.3846i (3.35 GHz) 0.7507–0.3014i (3.5 GHz) | 1.3667 + 0.0222i |
Design | Working Band (GHz) | Total Size (mm3) | Dimension of A Single Element (mm3) | Decoupling Method | Isolation (dB) | ECC |
---|---|---|---|---|---|---|
[14] | 3.4–3.6 4.8–5 (−6 dB) | 150 × 75 × 7 | 14.8 × 7 × 0.8 | Decoupling structure | 15.5 19 | 0.07 0.06 |
[15] | 3.4–3.6 4.8–5 (−6 dB) | 150 × 75 × 7 | 15 × 7 × 0.8 | Neutralization line | 11.5 | 0.08 |
[16] | 3.4–3.6 (−10 dB) | 150 × 73 × 6 | 12 × 4.2 × 0.8 | Orthogonal Mode | 17 | 0.06 |
[22] | 3.4–3.6 4.8–5 (−10 dB) | 150 × 75 × 6 | 17.4 × 6 × 0.8 | Self-isolated | 19.1 | 0.0125 |
[23] | 3.3–3.6 4.8–5 (−10 dB) | 150 × 73 × 7 | 15.5 × 7 × 0.8 | Self-isolated | 11 | 0.15 |
[24] | 4.4–5 (−6 dB) | 150 × 80 × 0.787 | 50 × 30 × 0.787 | Shorting pins | 18 | 0.24 |
[25] | 3.4–3.6 (−10 dB) | 150 × 75 × 5.3 | 16.1 × 4.5 | Self-isolated | 20 | 0.4 |
This work | 3.4–3.6 4.8–5 (−10 dB) | 145 × 70 × 5 | 9 × 4.2 × 0.8 | DBs | 14.5 15 | 0.004 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Chen, Z.; Shi, X.; Yang, Q.; Dong, G.; Wei, X.; Liu, G. A Dual-Band Eight-Element MIMO Antenna Array for Future Ultrathin Mobile Terminals. Micromachines 2022, 13, 1267. https://doi.org/10.3390/mi13081267
Zhang C, Chen Z, Shi X, Yang Q, Dong G, Wei X, Liu G. A Dual-Band Eight-Element MIMO Antenna Array for Future Ultrathin Mobile Terminals. Micromachines. 2022; 13(8):1267. https://doi.org/10.3390/mi13081267
Chicago/Turabian StyleZhang, Chuanba, Zhuoni Chen, Xiaojing Shi, Qichao Yang, Guiting Dong, Xuanhe Wei, and Gui Liu. 2022. "A Dual-Band Eight-Element MIMO Antenna Array for Future Ultrathin Mobile Terminals" Micromachines 13, no. 8: 1267. https://doi.org/10.3390/mi13081267
APA StyleZhang, C., Chen, Z., Shi, X., Yang, Q., Dong, G., Wei, X., & Liu, G. (2022). A Dual-Band Eight-Element MIMO Antenna Array for Future Ultrathin Mobile Terminals. Micromachines, 13(8), 1267. https://doi.org/10.3390/mi13081267