Recent Advances of Optical Sensors for Copper Ion Detection
Abstract
1. Introduction
2. Optical Sensors
2.1. Colorimetric Sensors
2.2. Fluorescence Sensors
2.3. Luminescence, Chemiluminescence, and Photoluminescence Sensors
2.4. Surface Plasmon Resonance
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karakuş, E. A rhodamine based fluorescent chemodosimeter for the selective and sensitive detection of copper (II) ions in aqueous media and living cells. J. Mol. Struct. 2021, 1224, 129037. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Zhao, M.; Ding, Y.; Li, Z.; Ma, Y.; Li, H.; Cui, H. Fabrication of the Ni-based composite wires for electrochemical detection of copper (II) ions. Anal. Chim. Acta 2021, 1143, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jou, M.J.; Lee, H.; Kou, S.; Lim, J.; Nam, S.W.; Park, S.; Kim, K.M.; Yoon, J. New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sens. Actuators B Chem. 2009, 137, 597–602. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, J.; Bora, H.K.; Misra, U.K. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol. Appl. Pharmacol. 2016, 293, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zu, M.; Yang, S.; Zhang, S.; Zhou, W.; Mai, Z.; Ge, C.; Xu, Y.; Fang, Y.; Zhang, S. Visible-light-driven photoelectrochemical determination of Cu2+ based on CdS sensitized hydrogenated TiO2 nanorod arrays. Sens. Actuators B Chem. 2018, 270, 270–276. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Khajeh, M.; Hashemi, S.H. Magnetic molecularly imprinted polymer nanoparticles for selective extraction of copper from aqueous solutions prior to its flame atomic absorption determination. J. Anal. Chem. 2015, 70, 1325–1329. [Google Scholar] [CrossRef]
- Duan, J.X.; Li, X.; Zhang, C.C. The synthesis and adsorption performance of polyamine Cu2+ imprinted polymer for selective removal of Cu2+. Polym. Bull. 2017, 74, 3487–3504. [Google Scholar] [CrossRef]
- Sakunkaewkasem, S.; Petdum, A.; Panchan, W.; Sirirak, J.; Charoenpanich, A.; Sooksimuang, T.; Wanichacheva, N. Dual-analyte fluorescent sensor based on [5]helicene derivative with super large stokes shift for the selective determinations of Cu2+ or Zn2+ in buffer solutions and its application in a living cell. ACS Sens. 2018, 3, 1016–1023. [Google Scholar] [CrossRef]
- Abu-Dalo, M.A.; Salam, A.A.; Nassory, N.S. Ion imprinted polymer based electrochemical sensor for environmental monitoring of copper (II). Int. J. Electrochem. Sci. 2015, 10, 6780–6793. [Google Scholar]
- Tarnowska, M.; Krawczyk, T. Click chemistry as a tool in biosensing systems for sensitive copper detection. Biosens. Bioelectron. 2020, 169, 112614. [Google Scholar] [CrossRef] [PubMed]
- Nadimetla, D.N.; Bhosale, S.V. Tetraphenylethylene AIEgen bearing thiophenylbipyridine receptor for selective detection of copper (II) ion. N. J. Chem. 2021, 45, 7614–7621. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, C.; Wang, S.; Li, M.; Guo, W. MOF-derived porous ZnO-Co3O4 nanocages as peroxidase mimics for colorimetric detection of copper(II) ions in serum. Analyst 2021, 146, 605–611. [Google Scholar] [CrossRef]
- Kuras, M.J.; Więckowska, E. Synthesis and characterization of a new copper (II) ion-imprinted polymer. Polym. Bull. 2015, 72, 3227–3240. [Google Scholar] [CrossRef]
- Shen, Y.J.; Zhang, K. A bifunctional optical probe based on ESIPT-triggered disalicylaldehyde with ratiometric detection of iron and copper ions. Polyhedron 2021, 193, 114883. [Google Scholar] [CrossRef]
- Bagheri, N.; Mazzaracchio, V.; Cinti, S.; Colozza, N.; Di Natale, C.; Netti, P.A.; Saraji, M.; Roggero, S.; Moscone, D.; Arduini, F. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. Anal. Chem. 2021, 93, 5225–5233. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yu, G.; Wei, X.; Zhan, C.; Jeon, J.W.; Wang, X.; Jeffryes, C.; Guo, Z.; Wei, S.; Wujcik, E.K. Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv. Compos. Mater. 2019, 2, 711–719. [Google Scholar] [CrossRef]
- Odetola, L.; Sills, S.; Morrison, S. A pilot study on the feasibility of testing residential tap water in North Carolina: Implications for environmental justice and health. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 972–978. [Google Scholar] [CrossRef]
- Jung, H.S.; Know, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; et al. Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 2009, 131, 2008–2012. [Google Scholar] [CrossRef]
- Frag, E.Y.Z.; Mohamed, M.E.; Ali, A.E.; Mohamed, G.G. Potentiometric sensors selective for Cu (II) determination in real water samples and biological fluids based on graphene and multi-walled carbon nanotubes modified graphite electrodes. NISCAIR-CSIR 2020, 59A, 162–173. [Google Scholar]
- Kirk, K.A.; Andreescu, S. Easy-to-use sensors for field monitoring of copper contamination in water and pesticide-sprayed plants. Anal. Chem. 2019, 91, 13892–13899. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency Office of Pesticide Programs; Copper Facts; EPA.gov: New York, NY, USA, 2008.
- Chereddy, N.R.; Janakipriya, S.; Korrapati, P.S.; Thennarasu, S.; Mandal, A.B. Solvent-assisted selective detection of sub-micromolar levels of Cu2+ ions in aqueous samples and live-cells. Analyst 2013, 138, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Normaya, E.; Baharu, N.A.; Ahmad, M.N. Synthesis of thiosemicarbazone-based colorimetric chemosensor for Cu2+ ions recognition in aqueous medium: Experimental and theoretical studies. J. Mol. Struct. 2020, 1212, 128094. [Google Scholar] [CrossRef]
- Yuan, Z.; Cai, N.; Du, Y.; He, Y.; Yeung, E.S. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem 2014, 86, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Liu, J.; Liu, X.; Liu, J.; Xiang, J.; Wu, Y. A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem. 2016, 213, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.A.N.; Reddy, K.J.; Duk, L.K.; Reddy, A.V. Evaluation of 2,6-diacetylpyridinebis-4-phenyl-3-thiosemicarbazone as complexing reagent for zinc in food and environmental samples. J. Saudi Chem. Soc. 2016, 20, S271–S279. [Google Scholar] [CrossRef]
- Wannapob, R.; Kanatharana, P.; Limbut, W.; Numnuam, A.; Asawatreratanakul, P.; Thammakhet, C.; Thavarungkul, P. Affinity sensor using 3-aminophenylboronic acid for bacteria detection. Biosens. Bioelectron. 2010, 26, 357–364. [Google Scholar] [CrossRef]
- Kong, T.; Liu, G.W.; Li, X.B.; Wang, Z.; Zhang, Z.G.; Xie, G.H.; Zhang, Y.; Sun, J.; Xu, C. Synthesis and identification of artificial antigens for cadmium and copper. Food Chem. 2010, 123, 1204–1209. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Rahman, M.M.; Asiri, A.M. Novel composite material for selective copper(II) detection and removal from aqueous media. J. Mol. Liq. 2019, 283, 772–780. [Google Scholar] [CrossRef]
- Losev, V.N.; Buyko, O.V.; Trofimchuk, A.K.; Zuy, O.N. Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP–OES determination of metals in natural waters. Microchem. J. 2015, 123, 84–89. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Zhang, H.; Ma, L.; Wang, Z. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions. Biosens. Bioelectron. 2017, 91, 306–312. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Q.; Du, W.; Zhu, R.; Ge, X.; Wang, C.; Li, Q.; Su, L.; Yang, H.; Song, J. Quantitative assessment of copper (II) in Wilson’s disease based on photoacoustic imaging and ratiometric surface-enhanced raman scattering. ACS Nano 2021, 15, 3402–3414. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Deng, P.; Li, J.; Tang, S. Fluorescent ion-imprinted sensor for selective and sensitive detection of copper (II) ions. Sens. Actuators B Chem. 2018, 255, 2095–2104. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Wen, T.; Qu, F.; Li, N.B.; Luo, H.Q. A facile, sensitive, and rapid spectrophotometric method for copper (II) ion detection in aqueous media using polyethyleneimine. Arab. J. Chem. 2017, 10, S1680–S1685. [Google Scholar] [CrossRef]
- Derin, E.; Inci, F. Advances in biosensor technologies for acute kidney injury. ACS Sens. 2022, 7, 358–385. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Liu, X.; Li, P.; Wu, W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int. J. Biol. Macromol. 2022, 218, 473–487. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Bereli, N.; Yavuz, H.; Denizli, A. Scaling up of biosensors for clinical applications and commercialization. In Advanced Biosensors for Virus Detection; Academic Press: Cambridge, MA, USA, 2022; pp. 407–421. [Google Scholar]
- Erdem, O.; Es, I.; Saylan, Y.; Inci, F. Unifying the efforts of medicine, chemistry, and engineering in biosensing technologies to tackle the challenges of the COVID-19 pandemic. Anal. Chem. 2021, 94, 3–25. [Google Scholar] [CrossRef]
- Rodríguez-Sevilla, E.; Rodríguez-Sevilla, E.; Ramírez-Silva, M.T.; Romero-Romo, M.; Ibarra Escutia, P.; Palomar-Pardavé, M. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors. Sensors 2014, 14, 14423–14439. [Google Scholar] [CrossRef]
- Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors 2014, 14, 13863–13912. [Google Scholar] [CrossRef]
- Altıntaş, Z.; Tothill, I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sens. Actuators B Chem. 2013, 188, 988–998. [Google Scholar] [CrossRef]
- Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelectron. 2016, 76, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Baryeh, K.; Takalkar, S.; Lund, M.; Liu, G. Introduction to medical biosensors for point of care applications. In Medical Biosensors for Point of Care (POC) Applications; Narayan, R.J., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 3–25. [Google Scholar]
- Marazuela, M.; Moreno-Bondi, M. Fiber-optic biosensors–an overview. Anal. Bioanal. Chem. 2002, 372, 664–682. [Google Scholar] [CrossRef] [PubMed]
- Healy, D.A.; Healy, D.A.; Hayes, C.J.; Leonard, P.; McKenna, L.; O’Kennedy, R. Biosensor developments: Application to prostate-specific antigen detection. Trends Biotechnol. 2007, 25, 125–131. [Google Scholar] [CrossRef]
- Motaharian, A.; Naseri, K.; Mehrpour, O.; Shoeibi, S. Electrochemical determination of atypical antipsychotic drug quetiapine using nano-molecularly imprinted polymer modified carbon paste electrode. Anal. Chim. Acta 2020, 1097, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens. Int. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Grazon, C.; Baer, R.C.; Kuzmanović, U.; Nguyen, T.; Chen, M.; Zamani, M.; Chern, M.; Aquino, P.; Zhang, X.; Lecommandoux, S.; et al. A progesterone biosensor derived from microbial screening. Nat. Commun. 2020, 11, 1276. [Google Scholar] [CrossRef] [PubMed]
- Muguruma, H. Biosensors: Enzyme immobilization chemistry. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; pp. 64–71. [Google Scholar]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Denizli, A. Plasmonic sensors for monitoring biological and chemical threat agents. Biosensors 2020, 10, 142. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Recent progress in optical sensors for biomedical diagnostics. Micromachines 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Y.; Lv, C.; Zhang, Z.; Peng, X. Copper-based metal–organic xerogels on paper for chemiluminescence detection of dopamine. Anal. Methods 2020, 12, 4191–4198. [Google Scholar] [CrossRef]
- Emir Diltemiz, S.; Yağmuroğlu, O. Development of reflectometric interference spectroscopy based sensor for paraokson determination. Eskiseh. Tech. Univ. J. Sci. Technol. C-Life Sci. Biotechnol. 2019, 8, 12–22. [Google Scholar]
- Zhang, H.; Dong, X.; Wang, J.; Guan, R.; Cao, D.; Chen, Q. Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions. ACS Appl. Mater. Interfaces 2019, 11, 32489–32499. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Mergu, N.; Kumawat, L.K. A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sens. Actuators B Chem. 2016, 223, 101–113. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, T.; Gil, Y.G.; Kim, G.H.; Park, C.; Jang, H.; Min, J. Fabrication of bioprobe self-assembled on Au–Te nanoworm structure for SERS biosensor. Materials 2020, 13, 3234. [Google Scholar] [CrossRef] [PubMed]
- Dibekkaya, H.; Saylan, Y.; Yılmaz, F.; Derazshamshir, A.; Denizli, A. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J. Macromol. Sci. A 2016, 53, 585–594. [Google Scholar] [CrossRef]
- Safran, V.; Göktürk, I.; Bakhshpur, M.; Yılmaz, F.; Denizli, A. Development of molecularly imprinted polymer-based optical sensor for the sensitive penicillin G detection in milk. ChemistrySelect 2021, 6, 11865–11875. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Arshad, F.; Nabi, F.; İkbal, S.; Khan, R.H. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf. B Biointerfaces 2022, 212, 112356. [Google Scholar] [CrossRef] [PubMed]
- Çimen, D.; Bereli, N.; Günaydın, S.; Denizli, A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020, 219, 121259. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.J.; Pollard, T.D.; Goyanes, A.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Optical biosensors—Illuminating the path to personalized drug dosing. Biosens. Bioelectron. 2021, 188, 113331. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Ultrathin transition-metal dichalcogenide nanosheet-based colorimetric sensor for sensitive and label-free detection of DNA. Sens. Actuators B Chem. 2019, 290, 565–572. [Google Scholar] [CrossRef]
- Tonyushkina, K.; Nichols, J.H. Glucose meters: A review of technical challenges to obtaining accurate results. J. Diabetes Sci. Technol. 2009, 3, 971–980. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Denizli, A. Molecularly imprinted polymer-based microfluidic systems for point-of-care applications. Micromachines 2019, 10, 766. [Google Scholar] [CrossRef]
- Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Lüdi, H.; Widmer, H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. J. Chromatog. A 1992, 593, 253–258. [Google Scholar] [CrossRef]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip. 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Shende, P.; Prabhakar, B.; Patil, A. Color changing sensors: A multimodal system for integrated screening. TrAC Trends Anal. Chem. 2019, 121, 115687. [Google Scholar] [CrossRef]
- VS, A.P.; Joseph, P.; Daniel, K.; Susithra, L.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes- review. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar]
- Liu, Y.; Han, X.; He, L.; Yin, Y. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem. Int. Ed. 2012, 51, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, Y.; Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 2014, 14, 2466–2470. [Google Scholar] [CrossRef]
- Liu, D.; Fang, L.; Zhou, F.; Li, H.; Zhang, T.; Li, C.; Cai, W.; Deng, Z.; Li, L.; Li, Y. Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 2018, 28, 1707392. [Google Scholar] [CrossRef]
- Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors-A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. [Google Scholar] [CrossRef]
- Milindanuth, P.; Pisitsak, P. A novel colorimetric sensor based on rhodamine-B derivative and bacterial cellulose for the detection of Cu(II) ions in water. Mater. Chem. Phys. 2018, 216, 325–331. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, B.; Wei, G. Two-dimensional material-based colorimetric biosensors: A review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Gangapuram, R.B.; Bandi, R.; Dadigala, R.; Kotu, G.M.; Guttena, V. Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. J. Clust. Sci. 2017, 28, 2873–2890. [Google Scholar] [CrossRef]
- Park, G.J.; Hwang, I.H.; Song, E.J.; Kim, H.; Kim, C. A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 2014, 70, 2822–2828. [Google Scholar] [CrossRef]
- Deng, H.H.; Li, G.W.; Liu, A.L.; Chen, W.; Lin, X.H.; Xia, X.H. Thermally treated bare gold nanoparticles for colorimetric sensing of copper ions. Microchim. Acta 2014, 181, 911–916. [Google Scholar] [CrossRef]
- Abdulazeez, I.; Basheer, C.; Al-Saadi, A.A. A selective detection approach for copper(II) ions using a hydrazone-based colorimetric sensor: Spectroscopic and DFT study. RSC Adv. 2018, 8, 39983–39991. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron. 2011, 26, 4064–4069. [Google Scholar] [CrossRef] [PubMed]
- Lou, T.; Chen, L.; Wang, Y.; Chen, L.; Li, J. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 4215–4220. [Google Scholar] [CrossRef]
- Xie, G.L.; Yu, H.; Deng, M.H.; Zhao, X.L.; Yu, P. A colorimetric microfluidic sensor made by a simple instrumental-free prototyping process for sensitive quantitation of copper. Chem. Pap. 2019, 73, 1509–1517. [Google Scholar] [CrossRef]
- Maddali, H.; Mmiles, C.E.; Kohn, J.; O’Carroll, D.M. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem 2021, 22, 1176–1189. [Google Scholar] [CrossRef]
- Velasco-Garcia, M.N. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin. Cell Dev. Biol. 2009, 20, 27–33. [Google Scholar] [CrossRef]
- Girigoswami, K.; Akhtar, N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nano Dimens. 2019, 10, 1–17. [Google Scholar]
- Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T.A.; Bhand, S.; Hayat, A.; Marty, J.L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Wu, F.; Hao, G.; Chen, Y.; Tan, C.; Tan, Y.; Jiang, Y. A dual-response quinoline-based fluorescent sensor for the detection of copper (II) and iron(III) ions in aqueous medium. Sens. Actuators B Chem. 2017, 243, 765–774. [Google Scholar] [CrossRef]
- Verwilst, P.; Sunwoo, K.; Kim, J.S. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem. Commun. 2015, 51, 5556–5571. [Google Scholar] [CrossRef]
- Cotruvo, J.J.A.; Aron, A.T.; Ramos-Torres, K.M.; Chang, C.J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 2015, 44, 4400–4414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.C.; Qi, J.W.; Hu, C.; Zhang, L.; Song, W.; Liang, R.P.; Qiu, J.D. Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal. Chim. Acta 2015, 895, 95–103. [Google Scholar] [CrossRef]
- Xie, Y.F.; Jiang, Y.J.; Zou, H.Y.; Wang, J.; Huang, C.Z. Discrimination of copper and silver ions based on the label-free quantum dots. Talanta 2020, 220, 121430. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Ding, T.; Liu, J.; Zhang, G.; Tong, L.; Cheng, X.; Yang, Y.; Chen, Z.; Tang, B. Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer’s disease. Talanta 2021, 223, 121745. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Wu, S.P. A pyrene-based highly selective turn-on fluorescent sensor for copper (II) ions and its application in living cell imaging. Sens. Actuators B Chem. 2013, 181, 743–748. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, C.; Zhu, A.; Deng, Z.; Tian, Y.; Jin, M. Two-photon ratiometric fluorescent sensor based on specific biomolecular recognition for selective and sensitive detection of copper ions in live cells. Anal. Chem. 2013, 85, 11936–11943. [Google Scholar] [CrossRef]
- Peng, J.; Ling, J.; Zhang, X.Q.; Bai, H.P.; Zheng, L.; Cao, Q.E.; Ding, Z.T. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim. Acta A Mol. Biomol. 2015, 137, 1250–1257. [Google Scholar] [CrossRef]
- Du, T.; Wang, J.; Zhang, T.; Zhang, L.; Yang, C.; Yue, T.; Sun, J.; Li, T.; Zhou, M.; Wang, J. An integrating platform of ratiometric fluorescent adsorbent for unconventional real-time removing and monitoring of copper ions. ACS Appl. Mater. Interfaces 2020, 12, 13189–13199. [Google Scholar] [CrossRef]
- Xie, T.; Zhong, X.; Liu, Z.; Xie, C. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper (II). Microchim. Acta 2020, 187, 323. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, R.; Zhang, G.; Liu, X.; Qu, F.; Lu, L. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu2+. Anal. Bioanal. Chem. 2020, 412, 1317–1324. [Google Scholar] [CrossRef]
- Chatterjee, S.; Gohil, H.; Raval, I.; Chatterjee, S.; Paital, A.R. An anthracene excimer fluorescence probe on mesoporous silica for dual functions of detection and adsorption of mercury (II) and copper (II) with biological in vivo applications. Small 2019, 15, 1804749. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, R.; Wang, J.; Zhang, Y.; Wen, C.; Tan, Y.; Yang, M. An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection. Analyst 2020, 145, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Patir, K.; Gogoi, S.K. Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper(II) and mercury(II) ions in solutions as well as in filter paper-based microfluidic device. Nanoscale Adv. 2019, 1, 592. [Google Scholar] [CrossRef]
- Blum, L.J.; Coulet, P.R. Luminescent biosensors. In Biosensors and Their Applications; Yang, V.C., Ngo, T.T., Eds.; Springer: New York, NY, USA, 2012; pp. 213–223. [Google Scholar]
- Shi, Y.; Liu, Q.; Yuan, W.; Xue, M.; Feng, W.; Li, F. Dye-assembled upconversion nanocomposite for luminescence ratiometric in vivo bioimaging of copper ions. ACS Appl. Mater. Interfaces 2018, 11, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Xia, H.; Mu, Y.; Liu, X. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Comm. 2016, 52, 6613–6616. [Google Scholar] [CrossRef]
- Rawal, R.; Kharangarh, P.R.; Dawra, S.; Tomar, M.; Gupta, V.; Pundir, C.S. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem. 2020, 89, 165–174. [Google Scholar] [CrossRef]
- Gunn, J.A.; Gunn, J.A.; Shelley, C.; Lewis, S.W.; Toop, T.; Archer, M. The determination of morphine in the larvae of Calliphora stygia using flow injection analysis and HPLC with chemiluminescence detection. J. Anal. Toxicol. 2006, 30, 519–523. [Google Scholar] [CrossRef][Green Version]
- Hindson, B.J.; Barnett, N.W. Analytical applications of acidic potassium permanganate as a chemiluminescence reagent. Anal. Chim. Acta 2001, 445, 1–19. [Google Scholar] [CrossRef]
- Zhang, X.R.; Baeyens, W.R.G.; Van der Weken, G.; Calokerinos, A.C.; Nakashima, K. Chemiluminescence determination of captopril based on a Rhodamine B sensitized cerium (IV) method. Anal. Chim. Acta 1995, 303, 121–125. [Google Scholar] [CrossRef]
- Ouyang, H.; Shu, Q.; Wang, W.; Wang, Z.; Yang, S.; Wang, L.; Fu, Z. An ultra-facile and label-free immunoassay strategy for detection of copper (II) utilizing chemiluminescence self-enhancement of Cu (II)-ethylenediaminetetraacetate chelate. Biosens. Bioelectron. 2016, 85, 157–163. [Google Scholar] [CrossRef]
- Sun, H.; Gao, N.; Wu, L.; Ren, J.; Wei, W.; Qu, X. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem. Eur. J. 2013, 19, 13362–13368. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Abolghasemi-Fakhri, Z. Gold nanostar-enhanced chemiluminescence probe for highly sensitive detection of Cu(II) ions. Sens. Actuators B Chem. 2018, 257, 629–634. [Google Scholar] [CrossRef]
- Chan, Y.H.; Chen, J.; Liu, Q.; Wark, S.E.; Son, D.H.; Batteas, J.D. Ultrasensitive copper (II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal. Chem. 2010, 82, 3671–3678. [Google Scholar] [CrossRef]
- Wang, H.; Pei, Y.; Qian, X.; An, X. Eu-metal organic framework@ TEMPO-oxidized cellulose nanofibrils photoluminescence film for detecting copper ions. Carbohydr. Polym. 2020, 236, 116030. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, Q.; Hu, S. Carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe3+ and Cu2+ ions. Sens. Actuators B Chem. 2017, 253, 928–933. [Google Scholar] [CrossRef]
- Ganiga, M.; Cyriac, J. Understanding the photoluminescence mechanism of nitrogen-doped carbon dots by selective interaction with copper ions. ChemPhysChem 2016, 17, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Kim, J. Highly sensitive and selective photoluminescence detection of copper ions via in situ formation of fluorescent polydopamine. J. Nanosci. Nanotechnol. 2017, 17, 5776–5779. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens. Actuators B Chem. 2014, 196, 647–652. [Google Scholar] [CrossRef]
- Liu, X.; Gao, W.; Zhou, X.; Ma, Y. Pristine graphene quantum dots for detection of copper ions. J. Mater. Res. 2014, 29, 1401–1407. [Google Scholar] [CrossRef]
- Šípová, H.; Homola, J. Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Bakhshpour, M.; Göktürk, I.; Bereli, N.; Yılmaz, F.; Denizli, A. selective detection of penicillin G antibiotic in milk by molecularly imprinted polymer-based plasmonic SPR sensor. Biomimetics 2021, 6, 72. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Cihangir, N.; Denizli, A. Detecting fingerprints of waterborne bacteria on a sensor. Chemosensors 2019, 7, 33. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.P.; Dorofeenko, A.V.; Pukhov, A.A.; Lisyansky, A.A. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam. Phys. Rev. B 2018, 97, 235407. [Google Scholar] [CrossRef]
- Zhou, X.L.; Yang, Y.; Wang, S.; Liu, X.W. Surface plasmon resonance microscopy: From single-molecule sensing to single-cell imaging. Angew. Chem. Int. Ed. 2020, 59, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zeng, X.; Liang, J. Surface plasmon resonance: An introduction to a surface spectroscopy technique. J. Chem. Educ. 2010, 87, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E.; Raether, H. Notizen: Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Das, C.M.; Ouyang, Q.; Dinh, X.Q.; Coquet, P.; Yong, K.T. A theoretical insight into the use of anti-reflective coatings for the upliftment of sensitivity of surface plasmon resonance sensors. Opt. Commun. 2020, 458, 124748. [Google Scholar] [CrossRef]
- Cyago, A.; Advincula, R. Surface plasmon resonance spectroscopy and molecularly imprinted polymer (MIP) sensors. In Handbook of Spectroscopy; Gauglitz, G., Moore, S.D., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2014; pp. 1229–1258. [Google Scholar]
- Mohammadzadeh-Asl, S.; Aghanejad, A.; de la Guardia, M.; Ezzati Nazhad Dolatabadi, J.; Keshtkar, A. Surface plasmon resonance signal enhancement based on erlotinib loaded magnetic nanoparticles for evaluation of its interaction with human lung cancer cells. Opt. Laser Technol. 2021, 133, 106521. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.; Huang, L.; Ouyang, Z.; Wang, Z.; Kong, X.; Li, T.; Yin, Y.; Wu, Y.; He, Q. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Wu, Y.; Chang, S.J.; Chen, C.J.; Liu, J.T. Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance. Talanta 2021, 222, 121466. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Çimen, D.; Derazshamshir, A.; Bereli, N.; Yılmaz, F.; Denizli, A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sens. Actuators B Chem. 2017, 241, 446–454. [Google Scholar] [CrossRef]
- Peng, D.; Kavanagh, O.; Gao, H.; Zhang, X.; Deng, S.; Chen, D.; Liu, Z.; Xie, C.; Situ, C.; Yuan, Z. Surface plasmon resonance biosensor for the determination of 3-methyl-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in swine tissues. Food Chem. 2020, 302, 124623. [Google Scholar] [CrossRef]
- Shibayama, J.; Mitsutake, K.; Yamauchi, J.; Nakano, H. Kretschmann- and Otto-type surface plasmon resonance waveguide sensors in the terahertz regime. Microw. Opt. Technol. Lett. 2021, 63, 103–106. [Google Scholar] [CrossRef]
- Dong, J.; Gao, N.; Peng, Y.; Guo, C.; Lv, Z.; Wang, Y.; Zhou, C.; Ning, B.; Liu, M.; Gao, Z. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Control 2012, 25, 543–549. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef]
- Inci, F.; Saylan, Y.; Kojouri, A.M.; Ogut, M.G.; Denizli, A.; Demirci, U. A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Appl. Mater. Today 2020, 18, 100478. [Google Scholar] [CrossRef]
- Rahtuvanoğlu, A.; Akgönüllü, S.; Karacan, S.; Denizli, A. Biomimetic nanoparticles based surface plasmon resonance biosensors for histamine detection in foods. ChemistrySelect 2020, 5, 5683–5692. [Google Scholar] [CrossRef]
- Atay, N.Ö.; Osman, B.; Akgöl, S.; Karagözler, A.; Denizli, A. Preparation of molecularly imprinted spr nanosensor for myoglobin detection. Curr. Appl. Polym. Sci. 2018, 2, 102–111. [Google Scholar] [CrossRef]
- Maisonneuve, M.; Valsecchi, C.; Wang, C.; Brolo, A.G.; Meunier, M. Leukemic marker detection using a spectro-polarimetric surface plasmon resonance platform. Biosens. Bioelectron. 2015, 63, 80–85. [Google Scholar] [CrossRef]
- Gerdan, Z.; Saylan, Y.; Uğur, M.; Denizli, A. Ion-imprinted polymer-on-a-sensor for copper detection. Biosensors 2022, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Safran, V.; Göktürk, I.; Derazshamshir, A.; Yılmaz, F.; Sağlam, N.; Denizli, A. Rapid sensing of Cu+2 in water and biological samples by sensitive molecularly imprinted based plasmonic biosensor. Microchem. J. 2019, 148, 141–150. [Google Scholar] [CrossRef]
- Forzani, E.S.; Zhang, H.; Chen, W.; Tao, N. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environ. Sci. Technol. 2005, 39, 1257–1262. [Google Scholar] [CrossRef]
- Daniyal, W.M.E.M.M.; Fen, Y.W.; Abdullah, J.; Sadrolhosseini, A.R.; Saleviter, S.; Omar, N.A.S. Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film. Opt. Express 2018, 26, 34880–34893. [Google Scholar] [CrossRef]
- Chen, H.; Jia, S.; Zhang, J.; Jang, M.; Chen, X.; Koh, K.; Wang, Z. Sensitive detection of copper(II) ions based on the conformational change of peptides by surface plasmon resonance spectroscopy. Anal. Methods 2015, 7, 8942–8946. [Google Scholar] [CrossRef]
- Ding, L.; Gao, Y.; Di, J. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate. Biosens. Bioelectron. 2016, 83, 9–14. [Google Scholar] [CrossRef]
Ref. | Sensor | Polymer Type | Range | LOD | Selectivity | Real Sample |
---|---|---|---|---|---|---|
[82] | Colorimetric | Carboxymethyl gum karaya-capped gold nanoparticles | 10–1000 nM | 10 nM | Cr3+, Zn2+, Fe2+, Co2+, Cd2+, Mn2+, Ni2+, Hg2+, Ca2+, Mg2+, Ag+, K+ | Tap water, human plasma, and urine |
[83] | Colorimetric | Julolidine-containing naphthol-based probe | 3.0 × 10−5 M | 1.4 × 10−5 M | F−, Cl−, Br−, I−, OAc−, CN−, SCN−, SO42−, H2PO4− | Not available (NA) |
[84] | Colorimetric | Thermally treated gold nanoparticles | 0–6 μM | 0.04 μM | Zn2+, K+, Ca2+, Na+, Mg2+, Al3+, Fe2+, Fe3+, Cr3+, Cd2+, Hg2+, Pb2+, Ba2+, Ag+ | Mineral water |
[85] | Colorimetric | Hydrazone | 2 × 10−3 M | 0.34 μg/L | Mg2+, Ca2+, Ni2+, Zn2+,Pd2+ | NA |
[86] | Colorimetric | Papain-coated gold nanoparticles | 20 μM | 200 nM | Pb2+, Ba2+, Ca2+, Cd2+, Co2+, Fe3+, Mg2+, Mn2+, Ni2+, Zn2+ | Lake and tap water |
[87] | Colorimetric | Silver-coated gold nanoparticles | 5–800 nM | 1 nM | K+, Li+, Na+, Mg2+, Ag+, Ca2+, Mn2+, Al3+, Hg2+, Cd2+, Zn2+, Cr3+, Co2+, Pb2+ | Tap and pond water |
[88] | Colorimetric | Patterned-PVC film | 0–30 mg/L | 0.096 mg/L | K+, Zn2+, Ca2+, Pb2+, Ni2+, Mg2+, Na+, Fe2+, Fe3+, Co2+ | Tap water |
[96] | Fluorescence | Silica-coated quantum dots | 22 nM–8.8 mM | 8.9 nM | Cr3+, Fe2+, Ni2+, Co2+, K+,Ti2+, Mn2+, Mg2+, Ca2+, Sn2+, Al3+, Cd2+, Pb2+, Hg2+, Fe3+, Ag+ | River water |
[97] | Fluorescence | Mercaptoacetic acid-coated quantum dots | 40–600 nM | 35 nM | Ni2+, Co2+, K+, Mn2+, Ca2+, Na+, Al3+, Ba2+, Cd2+, Pb2+, Hg2+, Fe3+, Ag+, Mg2+ | Human urine |
[98] | Fluorescence | Bovine serum albumin-stabilized gold nanoclusters | 0.5–30 μM | 0.1465 μM | Ca2+, Mg2+, Na+, K+, Zn2+, Sn2+, Cr3+, Fe3+, Fe2+, Pb2+ | Mice |
[99] | Fluorescence | Pyrene and hydrazone | 50 μM | 2.73 μM | Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, Zn2+ | Live cells |
[100] | Fluorescence | Amino triphenylamine dendron-hybridised quantum dots | 10−3–10−7 M | 10 nM | Na+, K+, Ca2+, Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cu+ | Live cells |
[101] | Fluorescence | Oligonucleotides-stabilized silver nanoclusters | 6–240 nM | 3.4 nM | Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Pb2+, Zn2+ | River water |
[102] | Fluorescence | Metal-organic frameworks | 2.07 × 10−7–8.29 × 10−4 M | 1.91 × 10−7 M | Ca2+, Cd2+, Co2+, K+, Mg2+, Ni2+ | NA |
[103] | Fluorescence | Silica-anchored nanocrystals | 0.01–2 μM | 6.3 nM | Al3+, Fe3+, Ca2+, Pb2+, Hg2+, Mg2+, Zn2+, Fe2+, Cr2+, Ba2+, Cd2+ | Tea |
[104] | Fluorescence | Carbon dots/gold nanoclusters-embedded metal-organic frameworks | 10−3–103 μM | 0.3324 nM | Na+, Fe3+, Zn2+, Mg2+, Fe2+, Pb2+, Al3+, Ca2+ | Human serum |
[105] | Fluorescence | Silica-based hybrid material | 1–5 µM | 5.44 ppb | Li+, Na+, K+, Ca2+, Mg2, Sr2+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, Hg2+, Cd2+ | Grape and orange juice |
[106] | Fluorescence | Porphyrinic metal-organic frameworks | 1–250 nM | 220 pM | Mg2+, Zn2+, Ca2+, Cd2+, Fe2+, Fe3+, Ni2+, Ag+, Al3+, Hg2+, Co2+, Pb2+ | Live cells |
[107] | Fluorescence | Nitrogen-doped carbon dots | 0–25 μM | 2.3 nM | Ag+, Pb2+, Fe3+, Cr6+, Zn2+, Au3+, Co2+, Hg2+ | Tap water |
[109] | Luminescence | Lanthanide-doped upconversion nanoparticles | 12 μmol/L | 37 nmol/L | Tm3+, Yb3+, K+, Na+, Er3+, Cd2+, Ca2+, Co2+, Ni2+, Al3+, Mg2+, Mn2+, Zn2+, Sn2+, Ba2+, Hg2+, Ag+, Fe3+, Fe3+, H2O2 | Live mice and cell |
[110] | Luminescence | Azine-linked covalent organic frameworks | 0–0.4 μM | 0.31 μM | Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Zn2+, Cd2+, Ni2+, Pb2+, Co2+, Ag+, Fe3+, Al3+ | NA |
[115] | Chemiluminescence | Monoclonal antibody | 1.0–1000 ng/mL | 0.33 ng/mL | Fe3+, Pb2+, Hg2+, Cd2+, Ca2+, Zn2+, Mn2+, Cr3+, Co2+, K+, Na+, Ba2+, Mg2+, Ag+, Fe2+, Al+3, NH4+ | Lake water |
[117] | Chemiluminescence | Gold nanostars | 0.002–9 μM | 0.9 nM | Mn2+, Fe3+ Pb2+, Zn2+, Co2+, Cr3+, Al+3, As5+, Hg2+, Cd2+, Eu+3, Fe2+, Na+, Ag+, Ni2+, Cr6+ | Human plasma, well and river water |
[118] | Photoluminescence | Mercaptohexadecanoic acid-capped quantum dots | 0–100 µM | 5 nM | Ni2+, Mn2+, K+, Ca2+, Co2+, Pb2+, Na+, Ba2+ | Physiological fluids |
[119] | Photoluminescence | Metal-organic frameworks-oxidized cellulose nanofibrils | 0–100 µM | NA | H2O, Mn2+, Ni2+, Cu2+, Na+, K+, Mg2+, Zn2+, Ca2+, Co2+ | NA |
[120] | Photoluminescence | Carbon dots | 0–300 μM | 0.12 μM | Ba2+, Ca2+, Cd2+, K+, Mg2+, Na+, Li+, Zn2+, Ni2+, Al3+, Mn2+, Fe2+, Hg2+, Sr2+ | NA |
[116] | Photoluminescence | Amino-functionalized graphene quantum dots | 0–100 nM | 6.9 nM | Al3+, Ag+, Co2+, Cd2+, Ni2+, Mg2+, Mn2+, Pb2+, Zn2+, Fe2+, Fe3+, Hg2+ | Human lung cells |
[121] | Photoluminescence | Nitrogen-doped carbon dots | 10 μM–0.4 mM | 10 μM | Fe3+, Fe2+, Zn2+, Hg2+, K+, Na+, Ag+, Mn2+, NH4+, Pb2+, Cd2+, Ni2+, Au3+, Mg2+, Ca2+, Co2+ | Pond water |
[122] | Photoluminescence | Polydopamine | 1–1000 nM | 1 nM | Na+, K+, Mg2+, Fe3+ | NA |
[123] | Photoluminescence | Polyethylenimine-capped carbon quantum dots | 0.3–66.6 μM | 115 nM | Co2+, Ca2+, Ni2+, Mn2+, Hg2+, Pb2+, Ba2+, Cd2+, Fe3+ | River water |
[124] | Photoluminescence | Graphene quantum dots | 0–0.2 mM | 0.33 µM | Cr3+, Ba2+, Ca2+, Cd2+, Co2+, K+, Mn2+, Ni2+, Pb2+, Zn2+, Fe3+, Ag+, Hg2+ | Tap water |
[147] | Surface plasmon resonance | Molecularly imprinted nanofilm | 0.04–5 μM | 0.027 µM | Fe2+, Cd2+, Li+, Ni2+, Pb2+ | Artificial plasma and urine |
[148] | Surface plasmon resonance | Molecularly imprinted nanoparticles | 0.1–100 nM | NA | Ni2+, Zn2+ | Artificial urine and serum |
[149] | Surface plasmon resonance | Peptide-modified film | 800 pM–100 μM | 0.1 ppb | NA | Tap water |
[150] | Surface plasmon resonance | Nanocrystalline cellulose-modified composite film | 0.01–60 ppm | 0.01 ppm | NA | NA |
[151] | Surface plasmon resonance | Peptide-immobilized | 1 × 10−12–1 × 10−6 M | 0.44 pM | Mg2+, Ca2+, Zn2+, Pb2+, Mn2+, Ba2+, Ni2+, Co2+ | NA |
[152] | Surface plasmon resonance | Indium tin oxide film-coated gold nanoparticles | 10−11–10−5 M | 5 × 10−12 M | K+, Fe2+, Pb2+, Co2+, Zn2+, Ni2+, Cd2+, Ag+, Hg2+ | Tap and river water, milk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerdan, Z.; Saylan, Y.; Denizli, A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13, 1298. https://doi.org/10.3390/mi13081298
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines. 2022; 13(8):1298. https://doi.org/10.3390/mi13081298
Chicago/Turabian StyleGerdan, Zeynep, Yeşeren Saylan, and Adil Denizli. 2022. "Recent Advances of Optical Sensors for Copper Ion Detection" Micromachines 13, no. 8: 1298. https://doi.org/10.3390/mi13081298
APA StyleGerdan, Z., Saylan, Y., & Denizli, A. (2022). Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines, 13(8), 1298. https://doi.org/10.3390/mi13081298