Enzyme Nanosheet-Based Electrochemical Aspartate Biosensor for Fish Point-of-Care Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Instruments and Measurements
2.3. Fabrication of Aspartate Biosensors
3. Results and Discussion
3.1. Significant Metabolites in S. parauberis-Infected Fish
3.2. Physical Characterization
3.3. Electrochemical Characterization of the Differently Modified Biosensors
3.4. Enzyme Loading Amount
3.5. Optimization of α-Ketoglutarate
3.6. Optimization of Buffer pH
3.7. Asp Calibration Plot
3.8. Selectivity Study
3.9. Reproducibility and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarei, M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. Trends Anal. Chem. 2017, 91, 26–41. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Lim, Y.J.; Kim, D.-H.; Austin, B. Development of real-time PCR for detection and quantitation of Streptococcus parauberis. J. Fish Dis. 2016, 39, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Bektaş, Z.H.; Uçar, F.B.; Savaşer, S. Isolation and Identification of Streptococcus parauberis From Freshwater Fish in Turkey. J. Limnol. Fish. Res. 2017, 3, 175–182. [Google Scholar] [CrossRef]
- Nho, S.-W.; Shin, G.-W.; Park, S.-B.; Jang, H.-B.; Cha, I.-S.; Ha, M.-A.; Kim, Y.-R.; Park, Y.-K.; Dalvi, R.S.; Kang, B.-J.; et al. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiol. Lett. 2009, 293, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.; Bento, L.F.N.; Fonseca, T.A.H.; Von Rekowski, C.P.; da Cunha, B.R.; Calado, C.R.C. Infection biomarkers based on metabolomics. Metabolites 2022, 12, 92. [Google Scholar] [CrossRef]
- Tounta, V.; Liu, Y.; Cheyne, A.; Larrouy-Maumus, G. Metabolomics in infectious diseases and drug discovery. Mol. Omics 2021, 17, 376–393. [Google Scholar] [CrossRef]
- Guidi, L.R.; Santos, F.A.; Ribeiro, A.C.; Fernandes, C.; Silva, L.H.; Gloria, M.B.A. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish. Talanta 2017, 163, 85–93. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Chen, T.; Yang, D.; Ma, D.; Huang, S. Highly efficient detection of homologues and isomers by the dynamic swelling reflection spectrum. ACS Appl. Mater. Interfaces 2020, 12, 45174–45183. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, D.; Ma, D.; Huang, S. Extremely sensitive mechanochromic photonic crystals with broad tuning range of photonic bandgap and fast responsive speed for high-resolution multicolor display applications. Chem. Eng. J. 2021, 429, 132342. [Google Scholar] [CrossRef]
- Hsueh, C.-J.; Wang, J.H.; Dai, L.; Liu, C.-C. Development of an electrochemical-based aspartate aminotransferase nanoparticle ir-C biosensor for screening of liver diseases. Biosensors 2012, 2, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Du, X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease. Front. Chem. 2020, 8, 651. [Google Scholar] [CrossRef]
- Rohlen, D.L.; Pilas, J.; Schoning, M.J.; Selmer, T. Development of an amperometric biosensor platform for the combined determination of l-malic, fumaric, and l-aspartic acid. Appl. Biochem. Biotechnol. 2017, 183, 566–581. [Google Scholar] [CrossRef]
- Campanella, L.; Aturki, Z.; Sammartino, M.P.; Tomassetti, M. Aspartate analysis in formulations using a new enzyme sensor. J. Pharm. Biomed. Anal. 1995, 13, 439–447. [Google Scholar] [CrossRef]
- Bielecki, Z.; Stacewicz, T.; Smulko, J.; Wojtas, J. Ammonia gas sensors: Comparison of solid-state and optical methods. Appl. Sci. 2020, 10, 5111. [Google Scholar] [CrossRef]
- Raicopol, M.; Pruna, A.; Damian, C.; Pilan, L. Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Res. Lett. 2013, 8, 316. [Google Scholar] [CrossRef]
- Manna, B.; Retna Raj, C. Covalent functionalization and electrochemical tuning of reduced graphene oxide for the bioelectrocatalytic sensing of serum lactate. J. Mater. Chem. B 2016, 4, 4585–4593. [Google Scholar] [CrossRef]
- Chae, M.-S.; Kim, J.; Jeong, D.; Kim, Y.; Roh, J.H.; Lee, S.M.; Heo, Y.; Kang, J.Y.; Lee, J.H.; Yoon, D.S.; et al. Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer’s disease diagnosis. Biosens. Bioelectron. 2017, 92, 610–617. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, H.; Mohanty, A.K.; Yang, J.; Piao, L.; Joo, S.W.; Han, J.T.; Han, J.H.; Paik, H.-j. Molecular-level contact of graphene/silver nanowires through simultaneous dispersion for a highly stable wearable electrothermal heater. Adv. Mater. Technol. 2021, 6, 2100177. [Google Scholar] [CrossRef]
- Rajarathinam, T.; Kim, S.; Thirumalai, D.; Lee, S.; Kwon, M.; Paik, H.-j.; Kim, S.; Chang, S.-C. Robust nanozyme-enzyme nanosheets-based lactate biosensor for diagnosing bacterial infection in olive flounder (Paralichthys olivaceus). Biosensors 2021, 11, 439. [Google Scholar] [CrossRef]
- Tasca, F.; Harreither, W.; Ludwig, R.; Gooding, J.J.; Gorton, L. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: Enhanced direct electron transfer through a positively charged surface. Anal. Chem. 2011, 83, 3042–3049. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, Q.; Liu, H.; Liu, C.; Cai, X. The study of a disposable reagentless biosensor for fast test of aspartate aminotransferase. Electroanalysis 2008, 20, 1135–1141. [Google Scholar] [CrossRef]
- Villarta, R.L.; Palleschi, G.; Lubrano, G.J.; Suleiman, A.A.; Guilbault, G.G. Amperometric aspartate electrode. Anal. Chim. Acta 1991, 245, 63–69. [Google Scholar] [CrossRef]
- Palleschi, G.; Lavagnini, M.G.; Compagnone, D.; Bertocchi, P.; Moscone, D. Flow monitoring of glutamate and aspartate in foods and pharmaceutical products with immobilized bienzyme electrochemical cells. Electroanalysis 1992, 4, 851–857. [Google Scholar] [CrossRef]
Metabolite | Concentration (mM, Mean ± SD) | p-Value Adjusted by FDR | ROC Analysis | |||
Control | S. parauberis | AUC (95% CI) | Sensitivity | Specificity | ||
Aspartate | 0.019 ± 0.011 | 0.032 ± 0.008 | 0.036 | 0.844 (0.611–1) | 100% | 66.7% |
Electrode | Enzyme Utilized | Applied Potential (vs. Ag/AgCl) | Electrochemical Technique | Target | Linear Range (mM) | LOD (µM) | Sensitivity (µA mM−1 cm−2) | Reference |
---|---|---|---|---|---|---|---|---|
AST-GluOx membrane/Pt | AST-GluOx | +650 mV | Amperometry | H2O2 | 0.001–0.2 | - | - | [22] |
AST-GluOx membrane/Pt | AST-GluOx | - | Amperometry | H2O2 | 0.005–0.2 | - | - | [23] |
Aspartase/Pt * | Aspartase | +0.3 V | Amperometry | H2O2 | 1–10 | 68 | 0.09 | [12] |
Aspartase/PAP * | Aspartase | - | Potentiometry | NH3 | 1.9–24 | 490 | - | [13] |
GluOx–ASTENs/PB/SPCE | AST-GluOx | −0.1 V | Amperometry | H2O2 | 1.0–2.0 | 500 | 0.8 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajarathinam, T.; Thirumalai, D.; Jayaraman, S.; Kim, S.; Kwon, M.; Paik, H.-j.; Kim, S.; Kang, M.; Chang, S.-C. Enzyme Nanosheet-Based Electrochemical Aspartate Biosensor for Fish Point-of-Care Applications. Micromachines 2022, 13, 1428. https://doi.org/10.3390/mi13091428
Rajarathinam T, Thirumalai D, Jayaraman S, Kim S, Kwon M, Paik H-j, Kim S, Kang M, Chang S-C. Enzyme Nanosheet-Based Electrochemical Aspartate Biosensor for Fish Point-of-Care Applications. Micromachines. 2022; 13(9):1428. https://doi.org/10.3390/mi13091428
Chicago/Turabian StyleRajarathinam, Thenmozhi, Dinakaran Thirumalai, Sivaguru Jayaraman, Seonghye Kim, Minho Kwon, Hyun-jong Paik, Suhkmann Kim, Mijeong Kang, and Seung-Cheol Chang. 2022. "Enzyme Nanosheet-Based Electrochemical Aspartate Biosensor for Fish Point-of-Care Applications" Micromachines 13, no. 9: 1428. https://doi.org/10.3390/mi13091428
APA StyleRajarathinam, T., Thirumalai, D., Jayaraman, S., Kim, S., Kwon, M., Paik, H. -j., Kim, S., Kang, M., & Chang, S. -C. (2022). Enzyme Nanosheet-Based Electrochemical Aspartate Biosensor for Fish Point-of-Care Applications. Micromachines, 13(9), 1428. https://doi.org/10.3390/mi13091428