Functional Surface Generation by EDM—A Review
Abstract
:1. Introduction
1.1. Brief Overview of the EDM Process
1.2. How the Surface Modification Happens Naturally in the EDM Process
2. Purpose of Surface Generation/Modification/Coating
2.1. To Enhance Surface Properties
2.2. To Enhance Biocompatibility and Corrosion Resistance of the Surface
3. Electro-Discharge-Based Surface Modification and Coating Techniques
3.1. Traditional EDM Processes: Die-Sinking and Wire-EDM
3.2. Powder-Mixed EDM
3.3. Micro-EDM
3.4. EDM with Composite Electrodes
4. Characterization Techniques Used to Investigate Surface and Sub-Surface Modification by EDM
4.1. Tribo-Testing of EDMed Surface for Tribological Chracterization
4.2. Surface Characterization and Composition Analysis by SEM and EDS
4.3. Phase Characterization Using the XRD Technique
5. Application of Electro-Discharge Surface Modification and Coating
5.1. Surface Modification for Protective Coating
5.2. Surface Modification for Enhancing Biocompatibility of Implants
5.3. Surface Modification for Improved Tribological Performance
6. EDM-Based Novel Techniques of Surface Modification and Applications
7. Future Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ho, K.H.; Newmann, S.T. State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300. [Google Scholar] [CrossRef]
- Ramasawmy, H.; Blunt, L. Effect of EDM process parameters on 3D surface topography. J. Mater. Process. Technol. 2004, 148, 155–164. [Google Scholar] [CrossRef]
- Gentili, E.; Tabaglio, L.; Aggogeri, F. Review on micromachining techniques. Courses Lect. Int. Cent. Mech. Sci. 2005, 486, 387–396. [Google Scholar]
- McGeough, J.A.; Rasmussen, H. A macroscopic model of electro-discharge machining. Int. J. Mach. Tool Des. Res. 1982, 22, 333–339. [Google Scholar] [CrossRef]
- Schumacher, B.M. After 60 years of EDM the discharge process remains still disputed. J. Mater. Process. Technol. 2004, 149, 376–381. [Google Scholar] [CrossRef]
- Jahan, M.P. Micro-electrical discharge machining. Nontradit. Mach. Process. 2013, 1, 111–151. [Google Scholar]
- Jameson, E.C. Description and Development of Electrical Discharge Machining; Society of Manufacturing Engineers: Dearbern, MI, USA, 2001. [Google Scholar]
- Han, F.; Wachi, S.; Kunieda, M. Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis. Eng. 2004, 28, 378–385. [Google Scholar] [CrossRef]
- Maher, I.; Ling, L.H.; Sarhan, A.A.; Hamdi, M. Improve wire EDM performance at different machining parameters-ANFIS modeling. IFAC-PapersOnLine 2015, 48, 105–110. [Google Scholar] [CrossRef]
- Salonitis, K.; Stournaras, A.; Stavropoulos, P.; Chryssolouris, G. Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int. J. Adv. Manuf. Technol. 2009, 40, 316–323. [Google Scholar] [CrossRef]
- Manna, A.; Bhattacharyya, B. Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. Int. J. Adv. Manuf. Technol. 2006, 28, 67–75. [Google Scholar] [CrossRef]
- Rajesha, S.; Sharma, A.K.; Kumar, P. Some aspects of surface integrity study of electro discharge machined Inconel 718. In Proceedings of the 36th International MATADOR Conference, Belin, Germany, 14 July 2010; pp. 439–444. [Google Scholar]
- Kumar, S.; Singh, R.; Singh, T.P.; Sethi, B.L. Surface modification by electrical discharge machining: A review. J. Mater. Process. Technol. 2009, 209, 3675–3687. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K. Effect of wire electric discharge machining (EDM) parameters on fatigue life of Ti-6Al-4V alloy. Int. J. Fatigue 2019, 128, 105186. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D.; Chmielewski, T. Multi-response optimization of electrical discharge machining using the desirability function. Micromachines 2019, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Khosrozadeh, B.; Shabgard, M. Effects of hybrid electrical discharge machining processes on surface integrity and residual stresses of Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 2017, 93, 1999–2011. [Google Scholar] [CrossRef]
- Oskuie, A.A.; Shahrabi, T.; Lajevardi, A. Failure of pipeline expander segments due to undesirable EDM. Eng. Fail. Anal. 2013, 28, 34–46. [Google Scholar] [CrossRef]
- Chen, Z.; Moverare, J.; Peng, R.L.; Johansson, S. Surface integrity and fatigue performance of Inconel 718 in wire electrical discharge machining. Procedia CIRP 2016, 45, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Okada, A. Formation of Hard Layer by EDM with Carbon Powder Mixed Fluid. In Proceedings of the 5th International Conference on Progress of Machining Technology, Beijing, China, 19–21 June 2000; Volume 464, pp. 464–469. [Google Scholar]
- Wang, Z.L.; Fang, Y.; Wu, P.N.; Zhao, W.S.; Cheng, K. Surface modification process by electrical discharge machining with a Ti powder green compact electrode. J. Mater. Process. Technol. 2002, 129, 139–142. [Google Scholar] [CrossRef]
- Samuel, M.P.; Philip, P.K. Powder metallurgy tool electrodes for electrical discharge machining. Int. J. Mach. Tools Manuf. 1997, 37, 1625–1633. [Google Scholar] [CrossRef]
- Li, L.; Wong, Y.S.; Fuh, J.Y.H.; Lu, L. EDM performance of TiC/copper-based sintered electrodes. Mater. Des. 2001, 22, 669–678. [Google Scholar] [CrossRef]
- Yan, B.H.; Tsai, H.C.; Huang, F.Y. The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int. J. Mach. Tools Manuf. 2005, 45, 194–200. [Google Scholar] [CrossRef]
- Furutania, K.; Saneto, A.; Takezawa, H.; Mohri, N.; Miyake, H. Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis. Eng. 2001, 25, 138–144. [Google Scholar] [CrossRef]
- Allen, T.; Busby, J.; Meyer, M.; Petti, D. Materials challenges for nuclear systems. Mater. Today 2010, 13, 14–23. [Google Scholar] [CrossRef]
- Li, L.; Zhao, L.; Li, Z.Y.; Feng, L.; Bai, X. Surface characteristics of Ti-6Al-4V by SiC abrasive-mixed EDM with magnetic stirring. Mater. Manuf. Process. 2017, 32, 83–86. [Google Scholar] [CrossRef]
- Rebelo, J.C.; Dias, A.M.; Kremer, D.; Lebrun, J.L. Influence of EDM pulse energy on the surface integrity of martensitic steels. J. Mater. Process. Technol. 1998, 84, 90–96. [Google Scholar] [CrossRef]
- Lee, L.C.; Lim, L.C.; Narayanan, V.; Venkatesh, V.C. Quantification of surface damage of tool steels after EDM. Int. J. Mach. Tools Manuf. 1988, 28, 359–372. [Google Scholar] [CrossRef]
- Ahmed, A. Deposition and analysis of composite coating on aluminum using Ti–B4C powder metallurgy tools in EDM. Mater. Manuf. Process. 2016, 31, 467–474. [Google Scholar] [CrossRef]
- Jahan, M.P.; Kakavand, P.; Alavi, F. A comparative study on micro-electro-discharge-machined surface characteristics of Ni-Ti and Ti-6Al-4V with respect to biocompatibility. Procedia Manuf. 2017, 10, 232–242. [Google Scholar] [CrossRef]
- Kashaev, N.; Horstmann, M.; Ventzke, V.; Riekehr, S.; Huber, N. Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V. J. Mater. Res. Technol. 2013, 2, 43–47. [Google Scholar] [CrossRef]
- Klocke, F.; Welling, D.; Dieckmann, J. Comparison of Grinding and Wire EDM Concerning Fatigue Strength and Surface Integrity of Machined Ti6Al4V Components. Procedia Eng. 2011, 19, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of corrosion in biocompatible metals for implants: A review. J. Alloys Compd. 2017, 701, 698–715. [Google Scholar] [CrossRef] [Green Version]
- Sumner, D.R.; Galante, J.O. Determinants of stress shielding. Clin. Orthop. Relat. Res. 1992, 274, 203–212. [Google Scholar] [CrossRef]
- Prakash, C.; Kansal, H.K.; Pabla, B.S.; Puri, S. Powder mixed electric discharge machining: An innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopedics application. J. Comput. Inf. Sci. Eng. 2016, 16, 041006. [Google Scholar] [CrossRef]
- Li, D.; Chen, F.; Xie, Z.H.; Shan, S.; Zhong, C.J. Enhancing structure integrity and corrosion resistance of Mg alloy by a two-step deposition to avoid F ions etching to nano-SiO2 reinforcement. J. Alloys Compd. 2017, 705, 70–78. [Google Scholar] [CrossRef]
- Dou, J.; Chen, Y.; Chi, Y.; Li, H.; Gu, G.; Chen, C. Preparation and characterization of a calcium–phosphate–silicon coating on a Mg–Zn–Ca alloy via two-step micro-arc oxidation. Phys. Chem. Chem. Phys. 2017, 19, 15110–15119. [Google Scholar] [CrossRef]
- Fang, H.; Wang, C.; Zhou, S.; Zheng, Z.; Lu, T.; Li, G.; Tian, Y.; Suga, T. Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg-Zn-Ca alloy via a two-step plasma activation. Corros. Sci. 2020, 168, 108466. [Google Scholar] [CrossRef]
- Bui, V.D.; Mwangi, J.W.; Meinshausen, A.K.; Mueller, A.J.; Bertrand, J.; Schubert, A. Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining. Surf. Coat. Technol. 2020, 383, 125254. [Google Scholar] [CrossRef]
- Fallahnezhad, K.; Farhoudi, H.; Oskouei, R.H.; Taylor, M. A finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: Part 2. J. Mech. Behav. Biomed. Mater. 2018, 77, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.Y.; Jiang, H.B.; Cha, J.Y.; Kim, K.M.; Hwang, C.J. The effect of fluoride-containing oral rinses on the corrosion resistance of titanium alloy (Ti-6Al-4V). Korean J. Orthod. 2017, 47, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Hussenbocus, S.; Kosuge, D.; Solomon, L.B.; Howie, D.W.; Oskouei, R.H. Head-neck taper corrosion in hip arthroplasty. BioMed Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, M.R.; Kovach, L.; Wolfe, A.; Lalvani, S.; James, P.F.; Jahan, M.P. Enhancing cell adhesion and corrosion performance of titanium alloy by surface and sub-surface engineering using WEDM. Surf. Coat. Technol. 2022, 429, 127929. [Google Scholar] [CrossRef]
- Chang-bin, T.; Dao-Xin, L.; Zhan, W.; Yang, G. Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Appl. Surf. Sci. 2011, 257, 6364–6371. [Google Scholar] [CrossRef]
- Sharma, D.; Mohanty, S.; Das, A.K. Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining. Surf. Coat. Technol. 2020, 381, 125157. [Google Scholar] [CrossRef]
- Toshimitsu, R.; Okada, A.; Kitada, R.; Okamoto, Y. Improvement in surface characteristics by EDM with chromium powder mixed fluid. Procedia Cirp 2016, 42, 231–235. [Google Scholar] [CrossRef]
- Sumi, N.; Goto, A.; Teramoto, H.; Yasunaga, Y.; Nakano, Y. Study of Si-containing amorphous layer by electrical discharge coating. Int. J. Electr. Mach. 2011, 16, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arooj, S.; Shah, M.; Sadiq, S.; Jaffery, S.H.I.; Khushnood, S. Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arab. J. Sci. Eng. 2014, 39, 4187–4199. [Google Scholar] [CrossRef]
- Mehmood, S.; Pasha, R.A.; Sultan, A. Effect of electric discharge machining on material removal rate and white layer composition. Mehran Univ. Res. J. Eng. Technol. 2017, 36, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Hasçalık, A.; Çaydaş, U. Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl. Surf. Sci. 2007, 253, 9007–9016. [Google Scholar] [CrossRef]
- Ablyaz, T.R.; Shlykov, E.S.; Muratov, K.R.; Mahajan, A.; Singh, G.; Devgan, S.; Sidhu, S.S. Surface characterization and tribological performance analysis of electric discharge machined duplex stainless steel. Micromachines 2020, 11, 926. [Google Scholar] [CrossRef]
- Sidhom, H.; Ghanem, F.; Amadou, T.; Gonzalez, G.; Braham, C. Effect of electro discharge machining (EDM) on the AISI316L SS white layer microstructure and corrosion resistance. Int. J. Adv. Manuf. Technol. 2013, 65, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.Q.; Cao, F.Y.; Song, B.Y.; Hou, P.J.; Zhang, Y.; Chen, K.; Wei, J.Q. Surface properties of SiCp/Al composite by powder-mixed EDM. Procedia CIRP 2013, 6, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Pecas, P.; Henriques, E. Influence of silicon powder-mixed dielectric on conventional electrical discharge machining. Int. J. Mach. Tools Manuf. 2003, 43, 1465–1471. [Google Scholar] [CrossRef]
- Yih-Fong, T.; Fu-Chen, C. Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil. J. Mater. Process. Technol. 2005, 170, 385–391. [Google Scholar] [CrossRef]
- Al-Amin, M.; Abdul-Rani, A.M.; Rao, T.V.V.L.N.; Danish, M.; Rubaiee, S.; bin Mahfouz, A.; Parameswari, R.P.; Wani, M.F. Investigation of machining and modified surface features of 316L steel through novel hybrid of HA/CNT added-EDM process. Mater. Chem. Phys. 2022, 276, 125320. [Google Scholar] [CrossRef]
- Rajesh, J.V.; Abimannan, G. Assessment on surface integrity of AISI 304 steel during powder mixed electrical discharge machining. Mater. Today Proc. 2021, 46, 1122–1126. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, S.; Singh, V.P. Effect of the addition of conductive powder in dielectric on the surface properties of superalloy Super Co 605 by EDM process. Int. J. Adv. Manuf. Technol. 2015, 77, 99–106. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, K.; Satsangi, P.S.; Sharma, N. Surface modification of biodegradable Mg-4Zn alloy using PMEDM: An experimental investigation. Optim. Corros. Anal. IRBM 2021, 43, 456–469. [Google Scholar]
- Hosni, N.A.J.; Lajis, M.A. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012095. [Google Scholar] [CrossRef]
- Jahan, M.P.; Wong, Y.S.; Rahman, M. A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J. Mater. Process. Technol. 2009, 209, 3956–3967. [Google Scholar] [CrossRef]
- Jahan, M.P.; Rahman, M.; Wong, Y.S. Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co. Int. J. Adv. Manuf. Technol. 2011, 53, 167–180. [Google Scholar] [CrossRef]
- Davis, R.; Singh, A.; Debnath, K.; Sabino, R.M.; Popat, K.; da Silva, L.R.R.; Soares, P.; Machado, Á.R. Surface modification of medical-grade Ni55. 6Ti44. 4 alloy via enhanced machining characteristics of Zn powder mixed-μ-EDM. Surf. Coat. Technol. 2021, 425, 127725. [Google Scholar] [CrossRef]
- Tsai, H.C.; Yan, B.H.; Huang, F.Y. EDM performance of Cr/Cu-based composite electrodes. Int. J. Mach. Tools Manuf. 2003, 43, 245–252. [Google Scholar] [CrossRef]
- Senthilkumar, V.; Reddy, M.C. Performance analysis of Cu-B4C metal matrix composite as an EDM electrode. Int. J. Mach. Mach. Mater. 2012, 11, 36–50. [Google Scholar]
- Patowari, P.K.; Saha, P.; Mishra, P.K. An experimental investigation of surface modification of C-40 steel using W–Cu powder metallurgy sintered compact tools in EDM. Int. J. Adv. Manuf. Technol. 2015, 80, 343–360. [Google Scholar] [CrossRef]
- Patowari, P.K.; Mishra, U.K.; Saha, P.; Mishra, P.K. Surface integrity of C-40 steel processed with WC-Cu powder metallurgy green compact tools in EDM. Mater. Manuf. Process. 2011, 26, 668–676. [Google Scholar] [CrossRef]
- Li, L.; Feng, L.; Bai, X.; Li, Z.Y. Surface characteristics of Ti–6Al–4V alloy by EDM with Cu–SiC composite electrode. Appl. Surf. Sci. 2016, 388, 546–550. [Google Scholar] [CrossRef]
- Sarmah, A.; Kar, S.; Patowari, P.K. Surface modification of aluminum with green compact powder metallurgy Inconel-aluminum tool in EDM. Mater. Manuf. Process. 2020, 35, 1104–1112. [Google Scholar] [CrossRef]
- Mohri, N.; Saito, N.; Tsunekawa, Y.; Kinoshita, N. Metal surface modification by electrical discharge machining with composite electrode. CIRP Ann. 1993, 42, 219–222. [Google Scholar] [CrossRef]
- Shunmugam, M.S.; Philip, P.K.; Gangadhar, A. Improvement of wear resistance by EDM with tungsten carbide P/M electrode. Wear 1994, 171, 1–5. [Google Scholar] [CrossRef]
- Simao, J.; Lee, H.G.; Aspinwall, D.K.; Dewes, R.C.; Aspinwall, E.M. Workpiece surface modification using electrical discharge machining. Int. J. Mach. Tools Manuf. 2003, 43, 121–128. [Google Scholar] [CrossRef]
- Hwang, Y.L.; Kuo, C.L.; Hwang, S.F. The coating of TiC layer on the surface of nickel by electric discharge coating (EDC) with a multi-layer electrode. J. Mater. Process. Technol. 2010, 210, 642–652. [Google Scholar] [CrossRef]
- Beri, N.; Maheshwari, S.; Sharma, C.; Kumar, A. Surface quality modification using powder metallurgy processed CuW electrode during electric discharge machining of Inconel 718. Procedia Mater. Sci. 2014, 5, 2629–2634. [Google Scholar] [CrossRef] [Green Version]
- Klocke, F.; Hensgen, L.; Klink, A.; Ehle, L.; Schwedt, A. Structure and composition of the white layer in the wire-EDM process. Procedia CIRP 2016, 42, 673–678. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Kumar, J. Investigation of microstructure and element migration for rough cut surface of pure titanium after WEDM. Int. J. Microstruct. Mater. Prop. 2013, 8, 343–356. [Google Scholar] [CrossRef]
- Shinonaga, T.; Iida, Y.; Toshimitsu, R.; Okada, A. Fundamental Study on Addition of Osteoconductivity to Titanium Alloy Surface by EDM. Int. J. Autom. Technol. 2017, 11, 869–877. [Google Scholar] [CrossRef]
- Rahman, S.S.; Ashraf, M.; Ibne, Z.; Bashar, M.S.; Kamruzzaman, M.; Amin, A.K.M.N.; Hossain, M.M. Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti-6Al-4V ELI by wire-EDM to enhance biocompatibility. Int. J. Adv. Manuf. Technol. 2017, 93, 3285–3296. [Google Scholar] [CrossRef]
- Bonny, K.; Delgado, Y.P.; De Baets, P.; Sukumaran, J.; Vleugels, J.; Malek, O.; Lauwers, B. Impact of wire-EDM on tribological characteristics of ZrO2-based composites in dry sliding contact with WC–Co-cemented carbide. Tribol. Lett. 2011, 43, 1–15. [Google Scholar] [CrossRef]
- Molinetti, A.; Amorim, F.L.; Soares, P.C.; Czelusniak, T. Surface modification of AISI H13 tool steel with silicon or manganese powders mixed to the dielectric in electrical discharge machining process. Int. J. Adv. Manuf. Technol. 2016, 83, 1057–1068. [Google Scholar] [CrossRef]
- Khan, A.A.; Ndaliman, M.B.; Zain, Z.M.; Jamaludin, M.F.; Patthi, U. Surface modification using electric discharge machining (EDM) with powder addition. Appl. Mech. Mater. 2012, 110, 725–733. [Google Scholar] [CrossRef]
- Ekmekci, B.; Ersöz, Y. How suspended particles affect surface morphology in powder mixed electrical discharge machining (PMEDM). Metall. Mater. Trans. B 2012, 43, 1138–1148. [Google Scholar] [CrossRef]
- Devgan, S.; Sidhu, S.S. Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy. Appl. Phys. A 2020, 126, 1–16. [Google Scholar] [CrossRef]
- Chen, S.L.; Lin, M.H.; Huang, G.X.; Wang, C.C. Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl. Surf. Sci. 2014, 311, 47–53. [Google Scholar] [CrossRef]
- Tijo, D.; Masanta, M. Mechanical performance of in-situ TiC-TiB2 composite coating deposited on Ti-6Al-4V alloy by powder suspension electro-discharge coating process. Surf. Coat. Technol. 2017, 328, 192–203. [Google Scholar] [CrossRef]
- Bains, P.S.; Bahraminasab, M.; Sidhu, S.S.; Singh, G. On the machinability and properties of Ti–6Al–4V biomaterial with n-HAp powder–mixed ED machining. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Janmanee, P.; Muttamara, A. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Appl. Surf. Sci. 2012, 258, 7255–7265. [Google Scholar] [CrossRef]
- Axinte, E.; Fua-Nizan, R. Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application. Malays. J. Fundl. Appl. Sci 2017, 13, 523–528. [Google Scholar]
- Mohanty, S.; Das, A.K.; Dixit, A.R. Surface integrity of tribo-adaptive layer prepared on Ti6Al4V through μEDC process. Surf. Coat. Technol. 2022, 429, 127922. [Google Scholar] [CrossRef]
- da Silva, S.P.; Abrão, A.M.; da Silva, E.R.; Câmara, M.A. Surface modification of AISI H13 steel by die-sinking electrical discharge machining and TiAlN coating: A promising hybrid technique to improve wear resistance. Wear 2020, 462, 203509. [Google Scholar] [CrossRef]
- Delgado, Y.P.; Bonny, K.; De Baets, P.; Neis, P.D.; Malek, O.; Vleugels, J.; Lauwers, B. Impact of wire-EDM on dry sliding friction and wear of WC-based and ZrO2-based composites. Wear 2011, 271, 1951–1961. [Google Scholar] [CrossRef]
- Philip, J.T.; Kumar, D.; Mathew, J.; Kuriachen, B. Experimental investigations on the tribological performance of electric discharge alloyed Ti–6Al–4V at 200–600 °C. J. Tribol. 2020, 142, 061702. [Google Scholar] [CrossRef]
- Zhou, W.; Apkarian, R.; Wang, Z.L.; Joy, D. Fundamentals of scanning electron microscopy (SEM). In Scanning Microscopy for Nanotechnology; Springer: New York, NY, USA, 2006; pp. 1–40. [Google Scholar]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In Handbook of Materials Characterization; Springer: Cham, Switzerland, 2018; pp. 113–145. [Google Scholar]
- Singh, B.; Kumar, J.; Kumar, S. Experimental investigation on surface characteristics in powder-mixed electrodischarge machining of AA6061/10% SiC composite. Mater. Manuf. Process. 2014, 29, 287–297. [Google Scholar] [CrossRef]
- Bhaumik, M.; Maity, K. Effect of electrode materials on different EDM aspects of titanium alloy. Silicon 2019, 11, 187–196. [Google Scholar] [CrossRef]
- Dewangan, S.; Biswas, C.K.; Gangopadhyay, S. Influence of different tool electrode materials on EDMed surface integrity of AISI P20 tool steel. Mater. Manuf. Process. 2014, 29, 1387–1394. [Google Scholar] [CrossRef]
- Hodoroaba, V.-D. Energy-dispersive X-ray spectroscopy (EDS; E). In Characterization of Nanoparticles; Elsevier: New York, NY, USA, 2020; pp. 397–417. [Google Scholar]
- Ermrich, M.; Opper, D. XRD for the analyst. In Getting Acquainted with the Principles; PANalytical: New York, NY, USA, 2013. [Google Scholar]
- Batish, A.; Bhattacharya, A.; Singla, V.K.; Singh, G. Study of material transfer mechanism in die steels using powder mixed electric discharge machining. Mater. Manuf. Process. 2012, 27, 449–456. [Google Scholar] [CrossRef]
- Xi, W.; Qiao, Z.; Zhu, C.; Jia, A.; Li, M. The preparation of lotus-like super-hydrophobic copper surfaces by electroplating. Appl. Surf. Sci. 2009, 255, 4836–4839. [Google Scholar] [CrossRef]
- Tsubota, T.; Tanii, S.; Ishida, T.; Nagata, M.; Matsumoto, Y. Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent. Diam. Relat. Mater. 2005, 14, 608–612. [Google Scholar] [CrossRef]
- Xu, G.; Hao, M.; Qiao, Y.; Zhang, Y.; Wang, G.; Zhao, M. Characterization of elastic-plastic properties of surface-modified layers introduced by carburizing. Mech. Mater. 2020, 144, 103364. [Google Scholar] [CrossRef]
- Li, L.H.; Kong, Y.M.; Kim, H.W.; Kim, Y.W.; Kim, H.E.; Heo, S.J.; Koak, J.Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004, 25, 2867–2875. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Suo, J.; Luo, T. Surface modification of porous poly (tetrafluoraethylene) film by a simple chemical oxidation treatment. Appl. Surf. Sci. 2010, 256, 2293–2298. [Google Scholar] [CrossRef]
- Rautray, T.R.; Narayanan, R.; Kwon, T.Y.; Kim, K.H. Surface modification of titanium and titanium alloys by ion implantation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 581–591. [Google Scholar] [CrossRef]
- Chen, H.Y.; Elkasabi, Y.; Lahann, J. Surface modification of confined microgeometries via vapor-deposited polymer coatings. J. Am. Chem. Soc. 2006, 128, 374–380. [Google Scholar] [CrossRef]
- Scendo, M.; Trela, J.; Radek, N. Influence of laser power on the corrosive resistance of WC-Cu coating. Surf. Coat. Technol. 2014, 259, 401–407. [Google Scholar] [CrossRef]
- Chikarakara, E.; Naher, S.; Brabazon, D. High speed laser surface modification of Ti–6Al–4V. Surf. Coat. Technol. 2012, 206, 3223–3229. [Google Scholar] [CrossRef]
- Zhang, K.M.; Zou, J.X.; Jun, L.; Yu, Z.S.; Wang, H.P. Surface modification of TC4 Ti alloy by laser cladding with TiC + Ti powders. Trans. Nonferrous Met. Soc. China 2010, 20, 2192–2197. [Google Scholar] [CrossRef]
- Elshazli, A.M.; Elshaer, R.N.; Hussein, A.H.A.; Al-Sayed, S.R. Laser Surface Modification of TC21 (α/β) Titanium Alloy Using a Direct Energy Deposition (DED) Process. Micromachines 2021, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Fujita, N.; Kimura, Y.; Nakata, N. Evaluation of coating and wear characteristics of roll surface coated with TiC by electrical discharge coating. J. Mater. Process. Technol. 2016, 236, 9–15. [Google Scholar] [CrossRef]
- Chen, H.J.; Wu, K.L.; Yan, B.H. Dry electrical discharge coating process on aluminum by using titanium powder compact electrode. Mater. Manuf. Process. 2013, 28, 1286–1293. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for o rthopaedic implants–a review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Burgess, D.J.; Wright, J.C. An introduction to long acting injections and implants. In Long Acting Injections and Implants; Springer: Boston, MA, USA, 2012; pp. 1–9. [Google Scholar]
- Albrektsson, T.; Wennerberg, A. The impact of oral implants-past and future, 1966-2042. J. Can. Dent. Assoc. 2005, 71, 327. [Google Scholar]
- Hsieh, S.F.; Lin, M.H.; Chen, S.L.; Ou, S.F.; Huang, T.S.; Zhou, X.Q. Surface modification and machining of TiNi/TiNb-based alloys by electrical discharge machining. Int. J. Adv. Manuf. Technol. 2016, 86, 1475–1485. [Google Scholar] [CrossRef]
- Jahan, M.P.; Alavi, F.; Kirwin, R.; Mahbub, R. Micro-EDM induced surface modification of titanium alloy for biocompatibility. Int. J. Mach. Mach. Mater. 2018, 20, 274–298. [Google Scholar]
- Harcuba, P.; Bačáková, L.; Stráský, J.; Bačáková, M.; Novotna, K.; Janeček, M. Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J. Mech. Behav. Biomed. Mater. 2012, 7, 96–105. [Google Scholar] [CrossRef]
- Sridhar, S.; Abidi, Z.; Wilson, T.G., Jr.; Valderrama, P.; Wadhwani, C.; Palmer, K.; Rodrigues, D.C. In vitro evaluation of the effects of multiple oral factors on dental implants surfaces. J. Oral Implantol. 2016, 42, 248–257. [Google Scholar] [CrossRef]
- Novaes, A.B., Jr.; Souza, S.L.S.D.; Barros, R.R.M.D.; Pereira, K.K.Y.; Iezzi, G.; Piattelli, A. Influence of implant surfaces on osseointegration. Braz. Dent. J. 2010, 21, 471–481. [Google Scholar] [CrossRef]
- Chen, S.L.; Lin, M.H.; Chen, C.C.; Ou, K.L. Effect of electro-discharging on formation of biocompatible layer on implant surface. J. Alloys Compd. 2008, 456, 413–418. [Google Scholar] [CrossRef]
- Lee, W.F.; Yang, T.S.; Wu, Y.C.; Peng, P.W. Nanoporous biocompatible layer on Ti–6Al–4V alloys enhanced osteoblast-like cell response. J. Exp. Clin. Med. 2013, 5, 92–96. [Google Scholar] [CrossRef]
- Perveen, A.; Jahan, M.P. Comparative micro-EDM studies on Ni based X-alloy using coated and uncoated tools. Mater. Sci. Forum 2018, 911, 13–19. [Google Scholar] [CrossRef]
- Stráský, J.; Havlíková, J.; Bačáková, L.; Harcuba, P.; Mhaede, M.; Janeček, M. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl. Surf. Sci. 2013, 281, 73–78. [Google Scholar] [CrossRef]
- Chakmakchi, M.; Ntasi, A.; Mueller, W.D.; Zinelis, S. Effect of Cu and Ti electrodes on surface and electrochemical properties of Electro Discharge Machined (EDMed) structures made of Co-Cr and Ti dental alloys. Dent. Mater. 2021, 37, 588–596. [Google Scholar] [CrossRef]
- Al-Amin, M.; Abdul-Rani, A.M.; Rana, M.; Hastuty, S.; Danish, M.; Rubaiee, S.; bin Mahfouz, A. Evaluation of modified 316L surface properties through HAp suspended EDM process for biomedical application. Surf. Interfaces 2022, 28, 101600. [Google Scholar] [CrossRef]
- Majumdar, J.D.; Kumar, A.; Pityana, S.; Manna, I. Laser surface melting of AISI 316L stainless steel for bio-implant application. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2018, 88, 387–403. [Google Scholar] [CrossRef]
- Davis, R.; Singh, A.; Debnath, K.; Jackson, M.J.; Soares, P.; Amorim, F.L.; Dutta, H. Effect of powder particle concentration and tool electrode material amid zinc powder-mixed µEDM of biocompatible Mg alloy AZ91D. J. Mater. Eng. Perform. 2021, 30, 5704–5718. [Google Scholar] [CrossRef]
- Algodi, S.J.; Murray, J.W.; Brown, P.D.; Clare, A.T. Wear performance of TiC/Fe cermet electrical discharge coatings. Wear 2018, 402, 109–123. [Google Scholar] [CrossRef]
- Arun, I.; Duraiselvam, M.; Senthilkumar, V.; Narayanasamy, R.; Anandakrishnan, V. Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies. Mater. Des. 2014, 63, 257–262. [Google Scholar] [CrossRef]
- Murray, J.W.; Clare, A.T. Morphology and wear behavior of single and multi-layer electrical discharge coatings. Procedia CIRP 2016, 42, 236–239. [Google Scholar] [CrossRef]
- Wandra, R.; Prakash, C.; Singh, S. Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications. Mater. Today Proc. 2022, 48, 975–980. [Google Scholar] [CrossRef]
- Tyagi, R.; Das, A.K.; Mandal, A. Formation of superhydrophobic surface with enhanced hardness and wear resistance by electrical discharge coating process. Tribol. Int. 2021, 157, 106897. [Google Scholar] [CrossRef]
- Maideen, A.H.; Duraiselvam, M.; Varatharajulu, M. Surface modification of aluminium 7075 by electrical discharge alloying and influence of surface roughness using RSM. Mater. Today Proc. 2021, 39, 1440–1449. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Guo, H.; Yi, S.; Kong, L.; Ding, S. Alternating energy electrical discharge machining of titanium alloy using a WC-PCD electrode. J. Manuf. Process. 2020, 60, 37–47. [Google Scholar] [CrossRef]
- Rashid, A.; Perveen, A.; Jahan, M.P. Understanding novel assisted electrode from a theoretical and experimental perspectives for EDM of aluminum nitride ceramics. Int. J. Adv. Manuf. Technol. 2021, 116, 2959–2973. [Google Scholar] [CrossRef]
Authors | EDM Type | Workpiece | Tool Electrode | Dielectric | Powder | Elements/Compounds in Newly Formed Layer |
---|---|---|---|---|---|---|
Mohri et al. [70] | DSEDM | C steel | Al green compact electrode | Hydrocarbon oil | - | Fe3C, AlFe3C0.5, α-Fe |
Shunmugam et al. [71] | DSEDM | HSS | WC-Fe P/M electrode | Kerosene | - | WC, W2C, FeC, (Fe3C)H |
Wang et al. [20] | DSEDM | C steel | Ti powder green compact electrode | Hydrocarbon oil | - | TiC, Fe |
Ablyaz et al. [51] | DSEDM | Duplex SS | Graphite, Cu-W, W | EDM oil | - | O, oxide, tungsten carbides |
Tsai et al. [64] | DSEDM | AISI 1045 medium C steel | Cu-Cr, Cu | Kerosene | - | Cu, Cr |
Simao et al. [72] | DSEDM | AISI H13 steel | WC/Co partially sintered electrode | Hydrocarbon oil | - | WC |
Patowari et al. [66] | DSEDM | C-40 grade steel | W-Cu | EDM oil grade 30 | - | W, W2C, Cu, Fe |
Senthilkumar et al. [65] | DSEDM | Mild steel | Cu-40% B4C | Hydrocarbon oil | - | B4C, BFe2, CuB28, FeCu4 |
Sidhom et al. [52] | DSEDM | 316L SS | Graphite | Paraffin oil | - | Cr7C3 |
Patowari et al. [67] | DSEDM | C-40 grade steel | WC-Cu | EDM oil | - | WC, W2C, Cu, Fe |
Afzaal Ahmed [29] | DSEDM | Al | Ti + B4C + Al P/M electrode | Hydrocarbon oil | - | AlB2, TiC, AlTi3, TiB2, Al4C3 |
Mehmood et al. [49] | DSEDM | Al 2024 T6 | Cu | Kerosene | - | C |
Arooj et al. [48] | DSEDM | Al 6061 T6 | Cu | Kerosene | - | Cu, O, C |
Samrah et al. [69] | DSEDM | Al 7075 alloy | Inconel 718 + Al green compact electrode | Hydrocarbon oil | - | Al, Al3Ni, NbNi3, Fe5C2 |
Hwang et al. [73] | DSEDM | Ni | Ti + Gr multilayer electrode | SE fluid 180 | - | TIC, C |
Li et al. [68] | DSEDM | Ti-6Al-4V | Cu-SiC | EDM oil | - | Cu, Si, C, TiC, TiSi2 |
Beri et al. [74] | DSEDM | Inconel 718 | Cu-W P/M electrode | EDM oil | - | Fe6W6C, Cr2F14C, N2Mo4C |
Klocke et al. [75] | WEDM | Steel Vanadis 4 Extra | Brass wire | Hydrocarbon oil | - | Fe, Cu, Cr, Zn, Mo, V |
Kumar et al. [76] | WEDM | Pure Ti | Brass wire | DI water | - | TiO2, TiO0.325, Ti2O3, Cu3TiO4, Ti3ZnC, Zn2Ti4C, TiC |
Mahbub et al. [43] | WEDM | Ti-6Al-4V | Brass wire | DI water | - | Cu, Zn, TiO2 |
Shinonaga et al. [77] | WEDM | Ti-6Al-4V | Brass wire | DI water | - | Ti2O3, TiO, Ti |
Rahman et al. [78] | WEDM | Ti-6Al-4V | Mo wire | DI water in oil emulsion | - | Al(OH)3, V2O5, rutile |
Bonny et al. [79] | WEDM | ZrO2-TiCN | Brass wire | DI water | - | ZrTiO4, ZrO2 |
Molinetti et al. [80] | PMEDM | AISI H13 steel | Cu | Hydrocarbon oil | Mn, Si | SiC, FeSi, Mn4C, Mn4C2 |
Khan et al. [81] | PMEDM | Mild steel | Cu-W | Kerosene | Al2O3, TiC | Cu, W, Al, C |
Ekmekci and Ersoz [82] | PMEDM | IF steel | Cu | Tap water, oil | SiC | SiC, α-Fe, ɣ-Fe |
Yan et al. [23] | PMEDM | Pure Ti | Cu | Distilled water | Urea | TiN |
Devgan and Sidhu [83] | PMEDM | β-Ti | Graphite | DI water | MWCNT | TiC2, TiO, Ti2O3, Ti3O5, Nb2O5, TiH, ZrO2, ZrC, Nb2C |
Chen et al. [84] | PMEDM | Grade 4 pure Ti | Grade 4 pure Ti | DI water | Ti | α-Ti, TiO |
Tijo et al. [85] | PMEDM | Ti-6Al-4V | Cu | Kerosene | Ti, B4C | TiB2, TiB, TiC, TiO2, Ti, C |
Bains et al. [86] | PMEDM | Ti-6Al-4V | Cu | EDM oil | n-HA | TiC, TiO2, VSi2, Ca3(PO4)2, P, CaTiO3 |
Janmanee and Muttamara [87] | PMEDM | WC90-Co10 | Cu | Shell EDM Fluid 2A | Ti | TiC |
Hu et al. [53] | PMEDM | SiCp/Al | Cu | Kerosene | Al | C, Al, Si, SiC |
Singh et al. [58] | PMEDM | Super Co 605 | Graphite | EDM oil | Graphite | C |
Sharma et al. [59] | PMEDM | Mg-4Zn | Cu | EDM oil | Zr, Mn | Carbides of powder elements |
Abdu Aliyu et al. [88] | PMEDM | Zr-based BMG | Pure Ti | Hydrocarbon oil | HA | ZrC, TiC, CaTiO3 |
Jahan et al. [30] | µ-EDM | NiTi | WC | Commercial EDM oil | - | NiTiO3, W |
Jahan et al. [62] | Milling µ-EDM | Tungsten carbide | W | EDM oil | Graphite | C |
Davis et al. [63] | PM µ-EDM | Ni55.6Ti44.4 | Cu, Brass | EDM oil | Zn | Metal oxides and carbides |
Jahan et al. [61] | DS µ-EDM | Tungsten carbide | W, CuW, AgW | EDM oil | - | C |
Mohanty et al. [89] | PM µ-EDM | Ti-6Al-4V | Brass | DI water | hBN | Ti, TiAlN, TiN, Al2O3, BN, ZnO, CuO, TiO2 |
EDM Type | Workpiece | Powder | Remarks |
---|---|---|---|
Conventional EDM [122] | Fe-Al-Mn Alloy | - | Resulted in improved biocompatibility and osseointegration, more cell attachment |
Conventional EDM [123] | Ti-6Al-4V | - | Osteoblastic cells completely spread on the EDMed surface. Noticeable MG-63 cells attachment and proliferation confirmed its usability for clinical purposes. |
Conventional EDM [126] | Co-Cr and Ti | - | Ti electrode was better compared with the Cu electrode in manufacturing Co-Cr and Ti dental alloys. |
DSEDM [117] | Ti50Ni50, Ti50Ni49.5Mo0.5 and Ti30Nb1Fe1Hf | - | Defects on the recast layer were insignificant. TiO was found on TNM and TNB. Surface roughness was favorable for oral implants. |
WEDM [43] | Ti-6Al-4V | - | Presence of β and α + β helped with cell attachment. A TiO layer formed, which prevented the implant from being corroded, thus resulting in a better biofunctionality. |
µ-EDM [30] | Ti-6Al-4V and NiTi | - | TiO2 and WO2 layers formed in the case of Ti-6Al-4V alloy and NiTiO3 film formed over NiTi. These layers resulted in an improved biocompatibility. |
PMEDM [59] | Mg/Zn | Zr, Mg | Biocompatibility and corrosion resistance was better when Zr powder was used. |
PMEDM [127] | 316L steel | Hap | A thin coating formed on the specimen. The authors obtained 70% of living cells, which indicated an improved cell proliferation as well as biocompatibility. |
PM-µEDM [129] | Mg alloy AZ91D | Hap | A glossy recast layer was formed, and an increased hydrophobicity was achieved. As a result, the modified surface can be used in medical sectors. |
PM-µEDM [63] | Ni55.6Ti44.4 | Zn | Higher cell viability percentage ensured a tremendous role of the modified alloy in the broken tissue recovery, and this modified alloy is suitable for cardiovascular applications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nafi, M.A.; Jahan, M.P. Functional Surface Generation by EDM—A Review. Micromachines 2023, 14, 115. https://doi.org/10.3390/mi14010115
Nafi MA, Jahan MP. Functional Surface Generation by EDM—A Review. Micromachines. 2023; 14(1):115. https://doi.org/10.3390/mi14010115
Chicago/Turabian StyleNafi, Muhammad Abdun, and Muhammad Pervej Jahan. 2023. "Functional Surface Generation by EDM—A Review" Micromachines 14, no. 1: 115. https://doi.org/10.3390/mi14010115
APA StyleNafi, M. A., & Jahan, M. P. (2023). Functional Surface Generation by EDM—A Review. Micromachines, 14(1), 115. https://doi.org/10.3390/mi14010115