Research on the SAW Gyroscopic Effect in a Double-Layer Substrate Structure Incorporating Non-Piezoelectric Materials
Abstract
:1. Introduction
2. Theoretical Analysis
3. Modeling
- (1)
- Mechanical boundary conditions: The upper surface of the piezoelectric substrate is free, and the bottom layer of the PML is fixed;
- (2)
- Electrical boundary conditions: The upper surface of the piezoelectric substrate has zero charge, and the bottom surface of the PML has zero charge or is grounded;
- (3)
- The front and back sides and the left and right sides have periodic boundary conditions;
- (4)
- The piezoelectric/non-piezoelectric interface has continuous mechanical boundary conditions. Figure 4 provides a three-dimensional depiction of this model.
4. Analysis of the Simulation Results
4.1. SAW Characteristics of the Double-Layer Piezoelectric Substrate
4.2. The Influence of the Reflection Coefficient on the SAW Gyroscopic Effect
4.3. The Influence of Piezoelectric Layer Thickness on the SAW Gyroscopic Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, H.; Lee, K.J.; Lee, K.; Yang, S.S. Gyroscopes based on surface acoustic waves. Micro Nano Syst. Lett. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Lee, S.W.; Rhim, J.W.; Park, S.W.; Yang, S.S. A micro rate gyroscope based on the SAW gyroscopic effect. J. Micromech. Microeng. 2007, 17, 2272–2279. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Zhang, Y.; Pan, Y.; Liang, Y.; Li, J. Enhanced Sensitivity of a Hydrogen Sulfide Sensor Based on Surface Acoustic Waves at Room Temperature. Sensors 2018, 18, 3796. [Google Scholar] [CrossRef] [PubMed]
- Xuan, W.; He, M.; Meng, N.; He, X.; Wang, W.; Chen, J.; Shi, T.; Hasan, T.; Xu, Z.; Xu, Y.; et al. Fast Response and HighSensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer. Sci. Rep. 2014, 4, 7206. [Google Scholar] [CrossRef]
- Apostolyuk, V. Coriolis Vibratory Gyroscopes; Springer: Berlin, Germany, 2016; pp. 1–10. [Google Scholar]
- Campbell, C. Surface Acoustic Wave Devices and Their Signal Processing Applications. J. Acoust. Soc. Am. 1999, 89, 1479. [Google Scholar] [CrossRef]
- Ryspek, U. Inertial forces acting on a gyroscope. J. Mech. Sci. Technol. 2018, 32, 101–108. [Google Scholar]
- Teguh, F.; Gunawan, W.; Tjipto, R.E.; Jun, K. Multifunctional and Sensitivity Enhancement of Hybrid Acoustoplasmonic Sensors Fabricated on 36XY-LiTaO3 with Gold Nanoparticles for the Detection of Permittivity, Conductivity, and the Refractive Index. ACS Appl. Mater. Interfaces 2021, 13, 13822–13837. [Google Scholar]
- Xu, H.; Fu, S.; Su, R.; Shen, J.; Zeng, F.; Song, C.; Pan, F. Enhanced Coupling Coefficient in Dual-Mode ZnO/SiC Surface Acoustic Wave Devices with Partially Etched Piezoelectric Layer. Appl. Sci. 2021, 11, 6383. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Wang, B.; Zhang, C. A Three-Dimensional Finite Element Analysis Model of SAW Torque Sensor with Multilayer Structure. Sensors 2022, 22, 2600. [Google Scholar] [CrossRef]
- Shen, J.; Fu, S.; Su, R.; Xu, H.; Lu, Z.; Zhang, Q.; Zeng, F.; Song, C.; Wang, W.; Pan, F. Ultra-Wideband Surface Acoustic Wave Filters Based on the Cu/LiNbO3/SiO2/SiC Structure. In Proceedings of the 2021 IEEE International Ultrasonics Symposium, Xi’an, China, 11–16 September 2021; pp. 1–4. [Google Scholar]
- Pan, S.; Memon, M.M.; Wan, J.; Wang, T.; Zhang, W. The influence of temperature on the pressure sensitivity of surface acoustic wave pressure sensor. Sens. Actuators A Phys. 2021, 332, 2. [Google Scholar] [CrossRef]
- Shen, J.; Fu, S.; Su, R.; Xu, H.; Lu, Z.; Zeng, F.; Song, C.; Wang, W.; Pan, F. A Multilayered Structure for Packageless Acoustic- Wave Devices with Ultra-Small Sizes. J. Microelectromech. Syst. 2021, 30, 589–596. [Google Scholar] [CrossRef]
- Hsu, T.H.; Tseng, K.J.; Li, M.H. Large Coupling Acoustic Wave Resonators Based on LiNbO₃/SiO₂/Si Functional Substrate. IEEE Electron Device Lett. 2020, 41, 1825–1828. [Google Scholar] [CrossRef]
- Asseko Ondo, J.C.; Blampain, E.J.J.; N’Tchayi Mbourou, G.; Mc Murtry, S.; Hage-Ali, S.; Elmazria, O. FEM Modeling of the Temperature Influence on the Performance of SAW Sensors Operating at GigaHertz Frequency Range and at High Temperature Up to 500 °C. Sensors 2020, 20, 4166. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liu, W.; Sun, X.; Zhou, S.; Lin, D. FEM Simulation of a High-Performance 128°Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes. Micromachines 2022, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, S.Y.; Mikhailenko, D.A. Topological Optimization of Circular SAW Resonators: Overcoming the Discreteness Effects. Sensors 2022, 22, 1172. [Google Scholar] [CrossRef]
- Aleksandrova, M.; Badarov, D. Recent Progress in the Topologies of the Surface Acoustic Wave Sensors and the Corresponding Electronic Processing Circuits. Sensors 2022, 22, 4917. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Filho, J.; Melicio, R.; Rodrigues, E.; Ghanbari, M.; Gordo, P. Three-Dimensional Performance Evaluation of Hemispherical Coriolis Vibratory Gyroscopes. Micromachines 2023, 14, 254. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Xie, X.; Liu, M.; He, S. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate. Sensors 2011, 11, 10894–10906. [Google Scholar] [CrossRef]
- Wang, W.; Shao, X.; Liu, X.; Liu, J.; He, S. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays. Sensors 2014, 14, 3908–3920. [Google Scholar] [CrossRef]
- Hu, F.; Cheng, L.; Fan, S.; He, X.; Xue, X.; Liang, Y.; Lu, M.; Wang, W. Enhanced Sensitivity of Wireless and Passive SAW-Based Strain Sensor with a Differential Structure. IEEE Sens. J. 2021, 21, 23911–23916. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W.; Shao, X.; Zhou, S.; Wang, W.; Lin, D. Surface Acoustic Wave Gyroscopic Effect in an Interdigital Transducer. Sensors 2019, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Fu, C.; Yang, S.S.; Wang, W.; Lee, K. A novel shock and heat tolerant gyrosensor utilizing a one-port surface acoustic wave reflective delay line. J. Micromech. Microeng. 2012, 22, 045007. [Google Scholar] [CrossRef]
- Singh, B.; Sindhu, R. Rotational Effects on Propagation of Rayleigh Wave in a Micropolar Piezoelectric Medium. J. Theor. Appl. Mech. 2018, 48, 93–105. [Google Scholar] [CrossRef]
- Chen, H.; Lu, M.; Meng, L.; Wang, W.; Shao, X. Finite Element Analysis of the Distribution Parameters of a Metal Dot Array in a SAW Gyroscope. Appl. Sci. 2022, 12, 8062. [Google Scholar] [CrossRef]
- Fang, X.; Lou, J.; Chen, Y.M.; Wang, J.; Xu, M.; Chuang, K.-C. Broadband Rayleigh wave attenuation utilizing an inertant seismic metamaterial. Int. J. Mech. Sci. 2023, 247, 108182. [Google Scholar] [CrossRef]
- Salim, Z.T.; Hashim, U.; Arshad, M.K.M. FEM modeling and simulation of a layered SAW device based on ZnO/128° YX LiNbO3. In Proceedings of the 2016 IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, 17–19 August 2016; pp. 5–8. [Google Scholar]
- Schwarz, R.B.; Harms, U.; Jain, H. Elastic stiffness of interfaces studied by Rayleigh waves. Mater. Sci. Eng. A 2004, 375–377, 194–200. [Google Scholar] [CrossRef]
- Maouhoub, S.; Aoura, Y.; Mir, A. FEM simulation of AlN thin layers on diamond substrates for high frequency SAW devices. Diam. Relat. Mater. 2016, 62, 7–13. [Google Scholar] [CrossRef]
- Kaletta, U.C.; Wenger, C. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO2/Si(100). Ultrasonics 2014, 54, 291–295. [Google Scholar] [CrossRef]
- Van de Vaart, H.; Solie, L.P. A SAW pulse compression filter using the reflective dot array (RDA). Appl. Phys. Lett. 1977, 31, 1–3. [Google Scholar] [CrossRef]
- Plessky, V.; Koskela, J. Coupling-of-modes analysis of saw devices. Int. J. High Speed Electron. Syst. 2000, 10, 867–947. [Google Scholar] [CrossRef]
- Darinskii, A.N.; Weihnacht, M. Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Prince, M.; Harshad, M.; Cécile, F.; Sami, H.; Sébastien, P.; Daniel, L.; Michel, H.; Tao, H.; Omar, E. Wireless Multifunctional Surface Acoustic Wave Sensor for Magnetic Field and Temperature Monitoring. Adv. Mater. Technol. 2021, 7, 2100860. [Google Scholar] [CrossRef]
- Auld, B.A.; Sun, C. Acoustic Fields and Waves in Solids; Science Press: Beijing, China, 1982. [Google Scholar]
- Malischewsky, P.G.; Thanh, T.T. A special relation between Young’s modulus, Rayleigh-wave velocity, and Poisson’s ratio. J. Acoust. Soc. Am. 2009, 126, 2851–2853. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xing, J.; Fan, Z. Theoretical study of gyroscopic effect in saw. J. Chin. Inert. Technol. 1995, 1, 46–54. [Google Scholar]
- Ana, B.; Francisco, G.; Nieves, F.J. Estimation of dynamic elastic constants from the amplitude and velocity of Rayleigh waves. J. Acoust. Soc. Am. 2005, 117, 3469–3477. [Google Scholar]
- Martinez, M.S.; Vera, E.J.; Molina, B.F.; Chaverra, F.J. Design and Characterization of a SAW Pressure Sensor on ST Quartz Using a Multiphysic Model. In Proceedings of the 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing, Lima, Peru, 5–7 August 2021; pp. 1–4. [Google Scholar]
- Xu, F.; Wang, W.; Shao, X.; Liu, X.; Liang, Y. Optimization of Surface Acoustic Wave-Based Rate Sensors. Sensors 2015, 15, 25761–25773. [Google Scholar] [CrossRef]
- Luo, J.; He, C.; Mao, R. Gas Sensor Based on Surface Acoustic Waves Using Zinc Oxide Piezoelectric Thin Films. In Proceedings of the 2019 3rd International Conference on Circuits, System and Simulation, Nanjing, China, 13–15 June 2019; pp. 50–53. [Google Scholar]
- Tomar, M.; Gupta, V.; Mansingh, A.; Sreenivas, K. Temperature stability of c-axis oriented LiNbO3/SiO2/Si thin film layered structures. J. Phys. D Appl. Phys. 2001, 34, 2267. [Google Scholar] [CrossRef]
- Roshchupkin, D.; Emelin, E.; Plotitcina, O.; Mololkin, A.; Telminov, O. Scanning Electron Microscopy Investigation of Surface Acous-tic Wave Propagation in a 41° YX-Cut of a LiNbO3 Crystal/Si Layered Structure. Crystals 2021, 11, 1082. [Google Scholar] [CrossRef]
Materials | STX Quartz | 128°YX-LiNbO3 | SiO2 | Si | SiC | Diamond |
---|---|---|---|---|---|---|
Density (kg/m3) | 2651 | 4628 | 2200 | 2329 | 3216 | 3515 |
Young’s Modulus (109 Pa) | 72 | 170 | 70 | 170 | 748 | 1050 |
Poisson’s Ratio | 0.17 | 0.25 | 0.17 | 0.28 | 0.45 | 0.1 |
Materials | STX Quartz | 128°YX-LiNbO3 | |
---|---|---|---|
Stiffness constants (1011 N/m2) | 0.87 | 1.98 | |
0.07 | 0.54 | ||
0.12 | 0.65 | ||
−0.18 | 0.07 | ||
1.07 | 2.27 | ||
0.58 | 0.59 | ||
Piezoelectric constants (C/m2) | 0.171 | ||
−0.0436 | |||
3.69 | |||
2.42 | |||
0.3 | |||
1.77 | |||
0.14 | |||
Dielectric constants (10−12 F/m) | |||
8.854 | 8.854 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Meng, L.; Lu, M.; Song, Z.; Wang, W.; Shao, X. Research on the SAW Gyroscopic Effect in a Double-Layer Substrate Structure Incorporating Non-Piezoelectric Materials. Micromachines 2023, 14, 1834. https://doi.org/10.3390/mi14101834
Chen H, Meng L, Lu M, Song Z, Wang W, Shao X. Research on the SAW Gyroscopic Effect in a Double-Layer Substrate Structure Incorporating Non-Piezoelectric Materials. Micromachines. 2023; 14(10):1834. https://doi.org/10.3390/mi14101834
Chicago/Turabian StyleChen, Hengbiao, Lili Meng, Mengjiao Lu, Ziwen Song, Wen Wang, and Xiuting Shao. 2023. "Research on the SAW Gyroscopic Effect in a Double-Layer Substrate Structure Incorporating Non-Piezoelectric Materials" Micromachines 14, no. 10: 1834. https://doi.org/10.3390/mi14101834
APA StyleChen, H., Meng, L., Lu, M., Song, Z., Wang, W., & Shao, X. (2023). Research on the SAW Gyroscopic Effect in a Double-Layer Substrate Structure Incorporating Non-Piezoelectric Materials. Micromachines, 14(10), 1834. https://doi.org/10.3390/mi14101834