The Design of a Novel 2-42 GHz MEMS True-Time Delay Network for Wideband Phased Array Systems
Abstract
:1. Introduction
2. Theory and Design
2.1. Design of the RF MEMS Switch
2.2. TTDL Unit Structure and Design
2.3. Design of TTDL Network
3. Comparison and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Li, S.; Wang, Q.; Li, X. True Time Delay Technique Application in Phased Array Antenna. J. Microw. 2021, 37, 9–15. [Google Scholar]
- Zhang, J.; Li, J.; Sun, H. A study on layered schemereal—Time delayers for the wideband phased array. Mod. Radar 2010, 32, 75–78. [Google Scholar]
- Shi, R.; Ruan, J.; Lv, J. Dual-Frequency Interrogation and Hierarchical Evaluation Scheme for SAW Reflective Delay-Line Sensors. IEEE Trans. Ultrason. Eng. 2020, 67, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Kéfélian, F.; Jiang, H.; Lemonde, P.; Santarelli, G. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line. Opt. Lett. 2009, 34, 914–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, S.; Rebeiz, G.M. Distributed MEMS true-time delay phase shifters and wide-band switches. IEEE Trans. Microw. Theory Tech. 1998, 46, 1881–1890. [Google Scholar] [CrossRef] [Green Version]
- Barker, N.S.; Rebeiz, G.M. Optimization of Distributed MEMS Transmission-Line Phase Shifters-U-Band and W-Band Designs. IEEE Trans. Microw. Theory Tech. 2000, 48, 1957–1966. [Google Scholar]
- Xu, Z.; Wu, T.; Yu, S. Beam Steering Technique for Distributed Wideband Phased Array Radar. Mod. Radar 2021, 43, 70–74. [Google Scholar]
- Hacker, J.B.; Mihailovich, R.E.; Kim, M.; DeNatale, J.F. A Ka band 3-bit RF MEMS true-time-delay network. IEEE Trans. Microw. Theory Tech. 2003, 51, 305–308. [Google Scholar] [CrossRef]
- Koul, S.K.; Dey, S.; Poddar, A.K.; Rohde, U.L. Ka-band reliable and compact 3-bit true-time-delay phase shifter using MEMS single-pole-eight-throw switching networks. J. Micromech. Microeng. 2016, 26, 10. [Google Scholar] [CrossRef]
- Li, M.; Liu, Q.; Wu, Q. Broadband radio frequency MEMS series contact switch with low insertion loss. Microsyst. Technol. 2019, 25, 1619–1625. [Google Scholar] [CrossRef]
- Rebeiz, G.M. RF MEMS: Theory, Design, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003; p. 92. [Google Scholar]
- Hou, Z. Study on a DC-Contact Series RF MEMS Switch for High Power and Wide Band Applications. Ph.D. Dissertation, Tsinghua University, Beijing, China, 2008. [Google Scholar]
- Weller, T.M.; Henderson, R.M.; Robertson, S.V.; Katehi, L.P.B. Optimization of MM-wave distribution networks using silicon-based CPW. In IEEE MTT-S International Microwave Symposium Digest; IEEE Press: New York, NY, USA, 1998; Volume 2, pp. 537–540. [Google Scholar]
- Li, X.; Fang, S.; Pei, H.; Wang, Z. Novel CPW-ACPW phase compensated structure in CPW bend. In Proceedings of the 9th International Symposium on Antennas, Propagation, and Electromagnetic Theory, Guangzhou, China, 29 November 2010. [Google Scholar]
- Wang, J.; Feng, Z. Time-domain nature of group delay. Chin. Phys. B 2015, 24, 100301. [Google Scholar] [CrossRef]
- Wang, L.J.; Kuzmich, A.; Dogariu, A. Gain-assisted superluminal light propagation. Nature 2019, 406, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Stenner, M.D.; Gauthier, D.J.; Neifeld, M.A. The speed of information in a ‘fast-light’ optical medium. Nature 2003, 425, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Büttiker, M.; Washburn, S. Ado about nothing much? Nature 2003, 244, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Min, B.W. A Compact 3-30-GHz 68.5-ps CMOS True-Time Delay for Wideband Phased Array Systems. IEEE Trans. Microw. Theory Tech. 2020, 68, 5371–5380. [Google Scholar] [CrossRef]
- Park, S.; Jeon, S. A 15-40 GHz CMOS true-time delay circuit for UWB multi-antenna systems. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 149–151. [Google Scholar] [CrossRef]
- Ma, Q.; Leenaerts, D.; Mahmoudi, R. A 10-50GHz True-Time-Delay phase shifter with max 3.9% delay variation. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, USA, 1–3 June 2014. [Google Scholar]
- Garakoui, S.; Klumperink, K.E.A.; Nauta, M.B.; van Vliet, F.E. Compact cascadable g m-C all-pass true time delay cell with reduced delay variation over frequency. IEEE J. Solid-State Circuits 2015, 50, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.C.; Yom, I.B.; Kim, J.D.; Lee, W.Y.; Lee, C.H. A 6-18-GHz GaAs multifunction chip with 8-bit true time delay and 7-bit amplitude control. IEEE Trans. Microw. Theory Tech. 2018, 66, 2220–2230. [Google Scholar] [CrossRef]
- Zolkov, E.; Madjar, A.; Weiss, R.; Cohen, E. Analysis and Design of N-Path True-Time-Delay Circuit. IEEE Trans. Microw. Theory Tech. 2020, 68, 5381–5394. [Google Scholar] [CrossRef]
- Lin, C.C.; Puglisi, C.; Ghaderi, E.; Xu, Q.Y.; Cabric, D. Multi-Mode Spatial Signal Processor with Rainbow-Like Fast Beam Training and Wideband Communications Using True-Time-Delay Arrays. IEEE J. Solid-State Circuits 2022, 57, 3348–3360. [Google Scholar] [CrossRef]
Dimension | Value (μm) | Comments |
---|---|---|
L | 62 | Length of electrode |
W | 25 | Width of electrode |
R | 2 | Radius of circular-etch hole |
S | 4 | Side length of square-etch hole |
S1 | 4 | Side length of slot-etch hole |
S2 | 41 | Width of slot-etch hole |
Dimension | Value (μm) | Comments |
---|---|---|
L1 | 182 | Length of port signal line |
L2 | 3376 | Length of TTDL per unit |
L3 | 62 | Length of RF switch |
L4 | 5000 | Length of substrate |
W1 | 120 | Width of port signal line |
W2 | 515 | Width of TTDL unit |
W3 | 25 | Width of RF switch |
T1 | 300 | Thickness of substrate |
T2 | 3 | Thickness of background |
T3 | 2 | Thickness of structure |
D1 | 4 | Diameter of etch hole |
State | Group Delay (ps) | Insertion Loss (I.L) (dB) | Return Loss (R.L) (dB) | VSWR |
---|---|---|---|---|
State_0 | 30.01 | −1.55 | −41.18 | 1.02 |
State_1 | 48.04 | −2.50 | −26.98 | 1.09 |
State_2 | 65.91 | −3.54 | −19.30 | 1.24 |
State_3 | 83.03 | −4.58 | −17.55 | 1.31 |
State_4 | 102.26 | −5.47 | −20.77 | 1.20 |
State_5 | 120.62 | −6.42 | −21.65 | 1.18 |
State_6 | 139.22 | −7.30 | −26.74 | 1.10 |
State_7 | 157.85 | −8.35 | −24.08 | 1.13 |
State_8 | 175.55 | −9.21 | −22.14 | 1.17 |
State_9 | 193.33 | −10.07 | −22.04 | 1.17 |
Ref. | Frequency (GHz) | Bit (Resolution) | Maximum Delay (ps) | DBW | Technology | Size (mm2) |
---|---|---|---|---|---|---|
2003 [8] | 0−40 | 3 | 61−86 | 3.44 | MEMS | 0.84 × 0.62 |
2013 [20] | 15−40 | 3 | 42 | 1.05 | CMOS | 1.1 × 0.9 |
2014 [21] | 10−50 | Continuous | 32.8 | 1.31 | CMOS | 0.22 |
2015 [22] | 1−2.5 | − | 550 | 0.83 | CMOS | 0.07 |
2018 [23] | 6−18 | 8 | 255 | 3.06 | GaAs HBT | 3.5 × 3.7 |
2020 [24] | 0.1−0.5 | − | 2000 | 0.8 | CMOS | 0.12 |
2022 [25] | 0−0.8 | 4 | 3800 | 3.04 | CMOS | 1.98 |
This work | 2−42 | 9 | 200 | 8 | MEMS | 5 × 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Shi, Z.; Gao, X.; Li, J.; Zhan, Y.; Zhu, G.; Wang, J.; Li, M. The Design of a Novel 2-42 GHz MEMS True-Time Delay Network for Wideband Phased Array Systems. Micromachines 2023, 14, 246. https://doi.org/10.3390/mi14020246
Wu Q, Shi Z, Gao X, Li J, Zhan Y, Zhu G, Wang J, Li M. The Design of a Novel 2-42 GHz MEMS True-Time Delay Network for Wideband Phased Array Systems. Micromachines. 2023; 14(2):246. https://doi.org/10.3390/mi14020246
Chicago/Turabian StyleWu, Qiannan, Zemin Shi, Xudong Gao, Jing Li, Yongxin Zhan, Guangzhou Zhu, Junqiang Wang, and Mengwei Li. 2023. "The Design of a Novel 2-42 GHz MEMS True-Time Delay Network for Wideband Phased Array Systems" Micromachines 14, no. 2: 246. https://doi.org/10.3390/mi14020246
APA StyleWu, Q., Shi, Z., Gao, X., Li, J., Zhan, Y., Zhu, G., Wang, J., & Li, M. (2023). The Design of a Novel 2-42 GHz MEMS True-Time Delay Network for Wideband Phased Array Systems. Micromachines, 14(2), 246. https://doi.org/10.3390/mi14020246