InGaN Laser Diodes with Etched Facets for Photonic Integrated Circuit Applications
Abstract
:1. Introduction
2. Laser Diode Preparation
3. Results and Discussion
3.1. Reactive Ion Etching
3.2. TMAH Etching
3.3. Electro-Optical Testing of Etched Devices
4. Conclusions
- Demonstrated the optimal parameters of wet etching smoothing the dry-etched facet (40 min in a 25% wt. aqueous solution of TMAH at 80 °C).
- Showed the influence of the elements of a fully processed laser structure (in a classical way) on the morphology of the etched facet.
- Concluded that the order of the processing steps of the lasers needs to be adjusted when using wet etching to limit the negative influence on the bottom contact (N-side) and wet-etched facet shape.
- Demonstrated the comparison of optoelectrical parameters of the laser diodes after consecutive etching steps.
- Compared the results with the cleaved counterparts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coldren, L.A.; Iga, K.; Miller, B.I.; Rentschler, J.A. GaInAsP/InP Stripe-geometry Laser with a Reactive-ion-etched Facet. Appl. Phys. Lett. 1980, 37, 681–683. [Google Scholar] [CrossRef]
- Iga, K.; Pollack, M.; Miller, B.; Martin, R. GaInAsP/InP DH Lasers with a Chemically Etched Facet. IEEE J. Quantum Electron. 1980, 16, 1044–1047. [Google Scholar] [CrossRef]
- Miller, B.I.; Iga, K. GaInAsP/InP Stripe Lasers with Etched Mirrors Fabricated by a Wet Chemical Etch. Appl. Phys. Lett. 1980, 37, 339–341. [Google Scholar] [CrossRef]
- Merz, J.L.; Logan, R.A. GaAs Double Heterostructure Lasers Fabricated by Wet Chemical Etching. J. Appl. Phys. 1976, 47, 3503–3509. [Google Scholar] [CrossRef]
- Kneissl, M.; Hofstetter, D.; Bour, D.P.; Donaldson, R.; Walker, J.; Johnson, N.M. Dry-Etching and Characterization of Mirrors on III-Nitride Laser Diodes from Chemically Assisted Ion Beam Etching. J. Cryst. Growth 1998, 189–190, 846–849. [Google Scholar] [CrossRef]
- Stocker, D.A.; Schubert, E.F.; Grieshaber, W.; Boutros, K.S.; Redwing, J.M. Facet Roughness Analysis for InGaN/GaN Lasers with Cleaved Facets. Appl. Phys. Lett. 1998, 73, 1925–1927. [Google Scholar] [CrossRef]
- Puretz, J.; DeFreez, R.K.; Elliott, R.A.; Orloff, J. Focused-Ion-Beam Micromachined AlGaAs Semiconductor Laser Mirrors. Electron. Lett. 1986, 22, 700–702. [Google Scholar] [CrossRef]
- Tanaka, T.; Ono, Y.; Kajimura, T. Highly Reliable AlGaAs Semiconductor Lasers with Both Facets Dry-Etched. Electron. Lett. 1989, 25, 69–71. [Google Scholar] [CrossRef]
- Tihanyi, P.; Wagner, D.K.; Vollmer, H.J.; Roza, A.J.; Harding, C.M.; Davis, R.J.; Wolf, E.D. High-Power Etched-Facet Lasers. Electron. Lett. 1987, 23, 772–773. [Google Scholar] [CrossRef]
- Bouadma, N.; Riou, J.; Kampfer, A. Low Threshold GaAs/GaAlAs BH Lasers with Ion-Beam-Etched Mirrors. Electron. Lett. 1985, 21, 566–568. [Google Scholar] [CrossRef]
- Uchida, M.; Ishikawa, S.; Takado, N.; Asakawa, K. An AlGaAs Laser with High-Quality Dry Etched Mirrors Fabricated Using an Ultrahigh Vacuum in Situ Dry Etching and Deposition Processing System. IEEE J. Quantum Electron. 1988, 24, 2170–2177. [Google Scholar] [CrossRef]
- Vawter, G.A.; Coldren, L.A.; Merz, J.L.; Hu, E.L. Nonselective Etching of GaAs/AlGaAs Double Heterostructure Laser Facets by Cl2 Reactive Ion Etching in a Load-locked System. Appl. Phys. Lett. 1987, 51, 719–721. [Google Scholar] [CrossRef]
- Ou, S.S.; Yang, J.J.; Jansen, M. 5 W GaAs/GaAlAs Laser Diodes with a Reactive Ion Etched Facet. Appl. Phys. Lett. 1990, 57, 1861–1863. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. Continuous-Wave Operation of InGaN/GaN/AlGaN-Based Laser Diodes Grown on GaN Substrates. Appl. Phys. Lett. 1998, 72, 2014–2016. [Google Scholar] [CrossRef]
- Abare, A.C.; Mack, M.P.; Hansen, M.; Sink, R.K.; Kozodoy, P.; Keller, S.; Speck, J.S.; Bowers, J.E.; Mishra, U.K.; Coldren, L.A.; et al. Cleaved and Etched Facet Nitride Laser Diodes. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 505–509. [Google Scholar] [CrossRef]
- Zhang, H.; Shih, C.-W.; Martin, D.; Caut, A.; Carlin, J.-F.; Butté, R.; Grandjean, N. Short Cavity InGaN-Based Laser Diodes with Cavity Length below 300 Μm. Semicond. Sci. Technol. 2019, 34, 085005. [Google Scholar] [CrossRef]
- He, J.; Feng, M.; Zhong, Y.; Wang, J.; Zhou, R.; Gao, H.; Zhou, Y.; Sun, Q.; Liu, J.; Huang, Y.; et al. On-Wafer Fabrication of Cavity Mirrors for InGaN-Based Laser Diode Grown on Si. Sci. Rep. 2018, 8, 7922. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Lee, C.; Stegenburgs, E.; Lerma, J.H.; Ng, T.K.; Nakamura, S.; DenBaars, S.P.; Alyamani, A.Y.; El-Desouki, M.M.; Ooi, B.S. Semipolar III–Nitride Quantum Well Waveguide Photodetector Integrated with Laser Diode for on-Chip Photonic System. Appl. Phys. Express 2017, 10, 042201. [Google Scholar] [CrossRef]
- Shen, C.; Lee, C.; Ng, T.K.; Speck, J.S.; Nakamura, S.; DenBaars, S.P.; Ooi, B.S. Integrated Photonic Platform Based on Semipolar InGaN/GaN Multiple Section Laser Diodes. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017; pp. 1–2. [Google Scholar]
- Stańczyk, S.; Czyszanowski, T.; Kafar, A.; Goss, J.; Grzanka, S.; Grzanka, E.; Czernecki, R.; Bojarska, A.; Targowski, G.; Leszczyński, M.; et al. Graded-Index Separate Confinement Heterostructure InGaN Laser Diodes. Appl. Phys. Lett. 2013, 103, 261107. [Google Scholar] [CrossRef]
- Hwang, I.-H.; Cha, H.-Y.; Seo, K.-S. Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma. Coatings 2021, 11, 268. [Google Scholar] [CrossRef]
- Miller, M.A.; Crawford, M.H.; Allerman, A.A.; Cross, K.C.; Banas, M.A.; Shul, R.J.; Stevens, J.; Bogart, K.H.A. Smooth and Vertical Facet Formation for AlGaN-Based Deep-UV Laser Diodes. J. Electron. Mater. 2009, 38, 533–537. [Google Scholar] [CrossRef]
- M, S.P.R.; Park, H.; Kim, S.-M.; Jang, S.-H.; Jang, J.-S. High-Performance Light-Emitting Diodes Using Hierarchical m-Plane GaN Nano-Prism Light Extractors. J. Mater. Chem. C 2015, 3, 8873–8880. [Google Scholar] [CrossRef]
- Najda, S.P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Stanczyk, S.; Schiavon, D.; Slight, T.; Watson, M.A.; et al. GaN Laser Diode Technology for Visible-Light Communications. Electronics 2022, 11, 1430. [Google Scholar] [CrossRef]
- Wu, T.-C.; Chi, Y.-C.; Wang, H.-Y.; Tsai, C.-T.; Lin, G.-R. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps. Sci. Rep. 2017, 7, 40480. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.-C.; Hsieh, D.-H.; Tsai, C.-T.; Chen, H.-Y.; Kuo, H.-C.; Lin, G.-R. 450-Nm GaN Laser Diode Enables High-Speed Visible Light Communication with 9-Gbps QAM-OFDM. Opt. Express 2015, 23, 13051–13059. [Google Scholar] [CrossRef] [PubMed]
- Wunderer, T.; Siddharth, A.; Johnson, N.M.; Chua, C.L.; Teepe, M.; Yang, Z.; Batres, M.; Kippenberg, T.J. Low-Noise Hybrid Photonic Integrated Violet and Blue Lasers for Quantum Applications. In Proceedings of the 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID), Miramar Beach, FL, USA, 12–14 September 2022; pp. 1–2. [Google Scholar]
- Kampasi, K.; English, D.F.; Seymour, J.; Stark, E.; McKenzie, S.; Vöröslakos, M.; Buzsáki, G.; Wise, K.D.; Yoon, E. Dual Color Optogenetic Control of Neural Populations Using Low-Noise, Multishank Optoelectrodes. Microsyst. Nanoeng. 2018, 4, 10. [Google Scholar] [CrossRef]
- Wan, H.; Tang, B.; Li, N.; Zhou, S.; Gui, C.; Liu, S. Revealing the Role of Sidewall Orientation in Wet Chemical Etching of GaN-Based Ultraviolet Light-Emitting Diodes. Nanomaterials 2019, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Al Taradeh, N.; Frayssinet, E.; Rodriguez, C.; Morancho, F.; Sonneville, C.; Phung, L.-V.; Soltani, A.; Tendille, F.; Cordier, Y.; Maher, H. Characterization of M-GaN and a-GaN Crystallographic Planes after Being Chemically Etched in TMAH Solution. Energies 2021, 14, 4241. [Google Scholar] [CrossRef]
Etching Procedure | Threshold Current (mA) | Slope Efficiency (W/A) |
---|---|---|
Cleaved reference | 67 | 0.242 |
RIE | 112 | 0.015 |
RIE + 20min TMAH@80 °C | 106 | 0.048 |
RIE + 40min TMAH@80 °C | 75 | 0.181 |
RIE + 60min TMAH@80 °C | 72 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibasiewicz, K.; Kafar, A.; Schiavon, D.; Saba, K.; Marona, Ł.; Kamińska, E.; Perlin, P. InGaN Laser Diodes with Etched Facets for Photonic Integrated Circuit Applications. Micromachines 2023, 14, 408. https://doi.org/10.3390/mi14020408
Gibasiewicz K, Kafar A, Schiavon D, Saba K, Marona Ł, Kamińska E, Perlin P. InGaN Laser Diodes with Etched Facets for Photonic Integrated Circuit Applications. Micromachines. 2023; 14(2):408. https://doi.org/10.3390/mi14020408
Chicago/Turabian StyleGibasiewicz, Krzysztof, Anna Kafar, Dario Schiavon, Kiran Saba, Łucja Marona, Eliana Kamińska, and Piotr Perlin. 2023. "InGaN Laser Diodes with Etched Facets for Photonic Integrated Circuit Applications" Micromachines 14, no. 2: 408. https://doi.org/10.3390/mi14020408
APA StyleGibasiewicz, K., Kafar, A., Schiavon, D., Saba, K., Marona, Ł., Kamińska, E., & Perlin, P. (2023). InGaN Laser Diodes with Etched Facets for Photonic Integrated Circuit Applications. Micromachines, 14(2), 408. https://doi.org/10.3390/mi14020408