Nanoparticle Printing for Microfluidic Applications: Bipolar Electrochemistry and Localized Raman Sensing Spots
Abstract
:1. Introduction
- Pt NPs were used to generate potential and pH gradients via bipolar electrochemistry.
- Ag NPs were used as the surface-enhanced Raman surfaces for the in situ detection of organic molecules, showing the potential and versatility of this new fabrication method.
2. Results and Discussion
2.1. Nanoparticle Film Characterization
2.2. Application I: Bipolar Electrodes in a Multiplexed Microfluidic Chip
2.3. Application II: SERS Structures in a Microfluidic Device for Organic Molecule Detection
3. Conclusions and Outlook
4. Materials and methods
4.1. Nanoparticle Generation and Printing
4.2. Characterization of the Nanoparticle Films
4.3. Chip Fabrication
4.4. Bipolar Experiments
4.5. SERS Measurements
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu-Khalaf, J.M.; Al-Ghussain, L.; Al-Halhouli, A. Fabrication of stretchable circuits on polydimethylsiloxane (PDMS) pre-stretched substrates by inkjet printing silver nanoparticles. Materials 2018, 11, 2377. [Google Scholar] [CrossRef] [Green Version]
- Ryspayeva, A.; Jones, T.D.A.; Esfahani, M.N.; Shuttleworth, M.P.; Harris, R.A.; Kay, R.W.; Desmulliez, M.P.Y.; Marques-Hueso, J. A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applications. Microelectron. Eng. 2019, 209, 35–40. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Boegli, M.; Bruzas, I.; Lum, W.; Sagle, L. Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays. Anal. Chem. 2015, 87, 11407–11414. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ren, K.; Zhao, Y.; Dai, W.; Wu, H. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules. Anal. Bioanal. Chem. 2012, 402, 1601–1609. [Google Scholar] [CrossRef]
- Jeong, J.; Chou, N.; Kim, S. Fabrication of flexible electrode array based on PDMS for long-term in-vivo use. In Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 911–914. [Google Scholar]
- Siegel, A.C.; Bruzewicz, D.A.; Weibel, D.B.; Whitesides, G.M. Microsolidics: Fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane). Adv. Mater. 2007, 19, 727–733. [Google Scholar] [CrossRef]
- Kim, Y.; Ren, X.; Noh, H.M. Direct printing of silver nano-particles based ink on polydimethylsiloxane (PDMS) for mems devices. In Proceedings of the Hilton Head Workshop 2014: A Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, USA, 8–12 June 2014; pp. 191–194. [Google Scholar]
- Byun, I.; Coleman, A.W.; Kim, B. Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive. J. Micromech. Microeng. 2013, 23, 085016. [Google Scholar] [CrossRef]
- Loo, Y.L.; Willett, R.L.; Baldwin, K.W.; Rogers, J.A. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Appl. Phys. Lett. 2002, 81, 562–564. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Song, J.; Choi, W.M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang Jrogers, Y.Y.; Hwang, K.-C.; Zhang, Y.-w.; Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, A. Surface Micro-/Nanostructuring Using Self- Assembly of Fine Particles. Micro/Nano Fabr. Technol. 2018, 2, 015001. [Google Scholar]
- Matricardi, C.; Hanske, C.; Garcia-Pomar, J.L.; Langer, J.; Mihi, A.; Liz-Marzán, L.M. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano 2018, 12, 8531–8539. [Google Scholar] [CrossRef] [Green Version]
- Kinnear, C.; Cadusch, J.; Zhang, H.; Lu, J.; James, T.D.; Roberts, A.; Mulvaney, P. Directed Chemical Assembly of Single and Clustered Nanoparticles with Silanized Templates. Langmuir 2018, 34, 7355–7363. [Google Scholar] [CrossRef] [PubMed]
- Cerf, A.; Vieu, C. Transfer printing of sub-100 nm nanoparticles by soft lithography with solvent mediation. Colloids Surfaces A Physicochem. Eng. Asp. 2009, 342, 136–140. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Xu, Q.; Van Der Pers, N.M.; Schmidt-Ott, A. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanopart. Res. 2010, 12, 247–259. [Google Scholar] [CrossRef]
- Sun, J. Open Aircraft Performance Modeling Based on an Analysis of Aircraft Surveillance Data; TU Delft University: Delft, The Netherlands, 2019. [Google Scholar]
- Guo, X.; Wagner, M.; Gutsche, A.; Meyer, J.; Seipenbusch, M.; Nirschl, H. Laboratory SWAXS combined with a low-pressure impactor for quasi-online analysis of nanoparticles generated by spark discharge. J. Aerosol Sci. 2015, 85, 17–29. [Google Scholar] [CrossRef]
- Meuller, B.O.; Messing, M.; Engberg, D.L.J.; Jansson, A.M.; Johansson, L.I.M.; Norlén, S.M.; Tureson, N.; Deppert, K. Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 2012, 46, 1256–1270. [Google Scholar] [CrossRef]
- Aghajani, S.; Accardo, A.; Tichem, M. Process and nozzle design for high-resolution dry aerosol direct writing (dADW) of sub-100 nm nanoparticles. Addit. Manuf. 2022, 54, 102729. [Google Scholar] [CrossRef]
- Dong, J.; Gerlach, D.; Koutsogiannis, P.; Rudolf, P.; Portale, G. Boosting the Thermoelectric Properties of PEDOT:PSS via Low-Impact Deposition of Tin Oxide Nanoparticles. Adv. Electron. Mater. 2021, 7, 202001284. [Google Scholar] [CrossRef]
- Sapountzi, F.M.; Lavorenti, M.; Vrijburg, W.; Dimitriadou, S.; Tyburska-Pueschel, B.; Thüne, P.; Niemantsverdriet, H.; Pfeiffer, T.V.; Tsampas, M.N. Spark Ablation for the Fabrication of PEM Water Electrolysis Catalyst-Coated Membranes. Catalysts 2022, 12, 1343. [Google Scholar] [CrossRef]
- Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. S Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanoparticle Res. 2009, 11, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.Y.; Kwon, G.H.; Kim, J.Y.; Cho, J.H.; Lee, S.H.; Sun, K.; Lee, S.H. Stable Deposition and Patterning of Metal Layers on the PDMS Substrate and Characterization for the Development of the Flexible and Implantable Micro Electrode. Solid State Phenom. 2007, 124–126, 165–168. [Google Scholar] [CrossRef]
- Xu, W.; Foster, E.; Ma, C.; Bohn, P.W. On-demand in situ generation of oxygen in a nanofluidic embedded planar microband electrochemical reactor. Microfluid. Nanofluidics 2015, 19, 1181–1189. [Google Scholar] [CrossRef]
- Plummer, S.T.; Wang, Q.; Bohn, P.W.; Stockton, R.; Schwartz, M.A. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold. Langmuir 2003, 19, 7528–7536. [Google Scholar] [CrossRef]
- Wan, A.M.D.; Schur, R.M.; Ober, C.K.; Fischbach, C.; Gourdon, D.; Malliaras, G.G. Electrical control of protein conformation. Adv. Mater. 2012, 24, 2501–2505. [Google Scholar] [CrossRef]
- Termebaf, H.; Shayan, M.; Kiani, A. Two-Step Bipolar Electrochemistry: Generation of Composition Gradient and Visual Screening of Electrocatalytic Activity. Langmuir 2015, 31, 13238–13246. [Google Scholar] [CrossRef]
- Mensack, M.M.; Wydallis, J.B.; Lynn, N.S.; Dandy, D.S.; Henry, C.S. Spatially resolved electrochemical sensing of chemical gradients. Lab Chip 2013, 13, 208–211. [Google Scholar] [CrossRef]
- Fosdick, S.E.; Knust, K.N.; Scida, K.; Crooks, R.M. Bipolar electrochemistry. Angew. Chemie Int. Ed. 2013, 52, 10438–10456. [Google Scholar] [CrossRef] [PubMed]
- Mavré, F.; Anand, R.K.; Laws, D.R.; Chow, K.-F.; Chang, B.-Y.; Crooks, J.A.; Crooks, R.M. Bipolar electrodes: A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal. Chem. 2010, 82, 8766–8774. [Google Scholar] [CrossRef] [Green Version]
- Duval, J.F.L.; Huijs, G.K.; Threels, W.F.; Lyklema, J.; Van Leeuwen, H.P. Faradaic depolarization in the electrokinetics of the metal-electrolyte solution interface. J. Colloid Interface Sci. 2003, 260, 95–106. [Google Scholar] [CrossRef]
- Munktell, S.; Tydén, M.; Högström, J.; Nyholm, L.; Björefors, F. Bipolar electrochemistry for high-throughput corrosion screening. Electrochem. Commun. 2013, 34, 274–277. [Google Scholar] [CrossRef]
- Dhopeshwarkar, R.; Hlushkou, D.; Nguyen, M.; Tallarek, U.; Crooks, R.M. Electrokinetics in microfluidic channels containing a floating electrode. J. Am. Chem. Soc. 2008, 130, 10480–10481. [Google Scholar] [CrossRef] [PubMed]
- Laws, D.R.; Hlushkou, D.; Perdue, R.K.; Tallarek, U.; Crooks, R.M. Bipolar electrode focusing: Simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. Anal. Chem. 2009, 81, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Hlushkou, D.; Perdue, R.K.; Dhopeshwarkar, R.; Crooks, R.M.; Tallarek, U. Electric field gradient focusing in microchannels with embedded bipolar electrode. Lab Chip 2009, 9, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.D.; Crooks, R.M. Focusing, sorting, and separating microplastics by serial faradaic ion concentration polarization. Chem. Sci. 2020, 11, 5547–5558. [Google Scholar] [CrossRef]
- Anderson, T.J.; Defnet, P.A.; Zhang, B. Electrochemiluminescence (ECL)-based Electrochemical Imaging using a Massive Array of Bipolar Ultramicroelectrodes. Anal. Chem. 2020, 92, 6748–6755. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.F.; Chang, B.Y.; Zaccheo, B.A.; Mavré, F.; Crooks, R.M. A sensing platform based on electrodissolution of a Ag bipolar electrode. J. Am. Chem. Soc. 2010, 132, 9228–9229. [Google Scholar] [CrossRef]
- Fosdick, S.E.; Crooks, R.M. Bipolar electrodes for rapid screening of electrocatalysts. J. Am. Chem. Soc. 2012, 134, 863–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollertsen, A.R.; de Boer, D.; Dekker, S.; Wesselink, B.A.M.; Haverkate, R.; Rho, H.S.; Boom, R.J.; Skolimowski, M.; Blom, M.; Passier, R.; et al. Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board. Microsyst. Nanoeng. 2020, 6, 107. [Google Scholar] [CrossRef]
- Vollertsen, A.R.; Den, S.A.T.; Schwach, V.; Berg, A.V.D.; Passier, R.; van der Meer, A.D.; Odijk, M. Highly parallelized human embryonic stem cell differentiation to cardiac mesoderm in nanoliter chambers on a microfluidic chip. Biomed. Microdevices 2021, 23, 30. [Google Scholar] [CrossRef]
- Mavré, F.; Chow, K.-F.; Sheridan, E.; Chang, B.-Y.; Crooks, J.A.; Crooks, R.M. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal. Chem. 2009, 81, 6218–6225. [Google Scholar] [CrossRef]
- Pourbaix, M.; Zhang, H.; Pourbaix, A. Presentation of an Atlas of chemical and electrochemical equilibria in the presence of a gaseous phase. Mater. Sci. Forum 1997, 251–254, 143–148. [Google Scholar] [CrossRef]
- Martin, M.M.; Lindqvist, L. The pH dependence of fluorescein fluorescence. J. Lumin. 1975, 10, 381–390. [Google Scholar] [CrossRef]
- Wei, W.; Xue, G.; Yeung, E.S. One-step concentration of analytes based on dynamic change in pH in capillary zone electrophoresis. Anal. Chem. 2002, 74, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.; Zheng, W.E.I.; Huang, Z. Surface-enhanced raman scattering: Principles, nanostructures, fabrications, and biomedical applications. J. Innov. Opt. Health Sci. 2008, 1, 267–284. [Google Scholar] [CrossRef]
- Pu, H.; Xiao, W.; Sun, D.W. SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends Food Sci. Technol. 2017, 70, 114–126. [Google Scholar] [CrossRef]
- Alyami, A.; Quinn, A.J.; Iacopino, D. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Raj, S.; Balint, S.; Fons, C.B.; Campoy, S.; Llagostera, M.; Petrov, D. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl. Phys. Lett. 2010, 96, 213701. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.J.; Wu, H.Y.; George, S.; Weyhenmeyer, J.; Cunningham, B.T. Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites. Lab Chip 2012, 12, 574–581. [Google Scholar] [CrossRef]
- Leem, J.; Kang, H.W.; Ko, S.H.; Sung, H.J. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems. Nanoscale 2014, 6, 2895–2901. [Google Scholar] [CrossRef]
- Wei, S.; Zheng, M.; Xiang, Q.; Hu, H.; Duan, H. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array. Opt. Express 2016, 24, 20613. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Analysis of trace methylene blue in fi sh muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 2016, 65, 99–105. [Google Scholar] [CrossRef]
- Niu, Z.; Fang, Y. Surface-enhanced Raman scattering system of sample molecules in silver-modified silver film. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 712–716. [Google Scholar]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoint, P.G. Surface enhanced raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Pfeiffer, T.V.; Feng, J.; Schmidt-Ott, A. New developments in spark production of nanoparticles. Adv. Powder Technol. 2014, 25, 56–70. [Google Scholar] [CrossRef]
(a) | (b) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pt NPs | Ag NPs | ||||||||||
Nozzle-substrate distance 200 µm | Nozzle-substrate distance 200 µm | ||||||||||
Speed of printing [µm/s] | 10 | 20 | 40 | 60 | 80 | Speed of printing [µm/s] | 10 | 20 | 40 | 60 | 80 |
Height [µm] | 0.53 ± 0.04 | 0.43 ± 0.01 | 0.34 ± 0.01 | 0.280 ± 0.003 | 0.250 ± 0.006 | Height [µm] | 0.79 ± 0.01 | 0.500 ± 0.004 | 0.270 ± 0.005 | 0.170 ± 0.006 | 0.15 ± 0.01 |
Width [µm] | 143.42 ± 0.56 | 134.09 ± 1.08 | 126.22 ± 0.01 | 121.820 ± 0.003 | 118.73 ± 0.45 | Width [µm] | 238.26 ± 0.55 | 198.49 ± 1.12 | 173.36 ± 0.03 | 151.07 ± 2.82 | 135.72 ± 1.05 |
Nozzle-substrate distance 500 µm | Nozzle-substrate distance 500 µm | ||||||||||
Speed of printing [µm/s] | 10 | 20 | 40 | 60 | 80 | Speed of printing [µm/s] | 10 | 20 | 40 | 60 | 80 |
Height [µm] | 0.44 ± 0.02 | 0.32 ± 0.05 | 0.24 ± 0.01 | 0.22 ± 0.02 | 0.20 ± 0.02 | Height [µm] | 0.56 ± 0.01 | 0.41 ± 0.06 | 0.24 ± 0.04 | 0.15 ± 0.02 | 0.11 ± 0.03 |
Width [µm] | 197.59 ± 0.07 | 193.17 ± 0.02 | 184.21 ± 0.45 | 175.58 ± 0.06 | 171.04 ± 0.44 | Width [µm] | 317.82 ± 1.16 | 275.72 ± 3.34 | 222.93 ± 4.81 | 204.73 ± 3.07 | 201 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broccoli, A.; Vollertsen, A.R.; Roels, P.; van Vugt, A.; van den Berg, A.; Odijk, M. Nanoparticle Printing for Microfluidic Applications: Bipolar Electrochemistry and Localized Raman Sensing Spots. Micromachines 2023, 14, 453. https://doi.org/10.3390/mi14020453
Broccoli A, Vollertsen AR, Roels P, van Vugt A, van den Berg A, Odijk M. Nanoparticle Printing for Microfluidic Applications: Bipolar Electrochemistry and Localized Raman Sensing Spots. Micromachines. 2023; 14(2):453. https://doi.org/10.3390/mi14020453
Chicago/Turabian StyleBroccoli, Alessia, Anke R. Vollertsen, Pauline Roels, Aaike van Vugt, Albert van den Berg, and Mathieu Odijk. 2023. "Nanoparticle Printing for Microfluidic Applications: Bipolar Electrochemistry and Localized Raman Sensing Spots" Micromachines 14, no. 2: 453. https://doi.org/10.3390/mi14020453
APA StyleBroccoli, A., Vollertsen, A. R., Roels, P., van Vugt, A., van den Berg, A., & Odijk, M. (2023). Nanoparticle Printing for Microfluidic Applications: Bipolar Electrochemistry and Localized Raman Sensing Spots. Micromachines, 14(2), 453. https://doi.org/10.3390/mi14020453