Application of Polymethylpentene, an Oxygen Permeable Thermoplastic, for Long-Term on-a-Chip Cell Culture and Organ-on-a-Chip Devices
Abstract
:1. Introduction
1.1. Gas and Nutrient Supply to Cells in Culture
1.2. De-coupling of Gas Supply in Microfluidic Cell Culture Devices
1.3. Use of PDMS Material in Cell Culture and Ooc Devices
1.4. PMP Material for Long-Term Cell Culture Studies
2. Materials and Methods
2.1. Cells and Culture Conditions
2.2. Design and Fabrication of the Culture Chamber Devices
2.2.1. Design of Culture Chamber Devices with Integrated Oxygen Sensors
2.2.2. Design of Culture Chamber Devices without Oxygen Sensors
2.2.3. Fabrication
2.2.4. Test of Compatibility with Different Sterilization Methods
2.3. Oxygen Measurements
2.4. Hif1α Staining
2.5. Live Cell Imaging and Calcein-AM Assay
2.6. O2 and CO2 Permeability of Polymers
3. Results and Discussion
3.1. Comparison of Cell Morphology and Proliferation on PMP and Glass
3.2. Suitability for Transmission Light and Fluorescence Confocal Microscopy
3.3. Compatibility with Common Chemicals for Cell Cultivation and Sample Preparation for Microscopy
3.4. Fabrication of Devices
3.5. Adequate Gas Permeability to Sustain Cell Cultivation in Sealed Device without Culture Medium Perfusion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danku, A.E.; Dulf, E.-H.; Braicu, C.; Jurj, A.; Berindan-Neagoe, I. Organ-On-A-Chip: A Survey of Technical Results and Problems. Front. Bioeng. Biotechnol. 2022, 10, 94. [Google Scholar] [CrossRef]
- Leung, C.M.; de Haan, P.; Ronaldson-Bouchard, K.; Kim, G.-A.; Ko, J.; Rho, H.; Chen, Z.; Habibovic, P.; Jeon, N.; Takayama, S.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2022, 2, 33. [Google Scholar] [CrossRef]
- Radisic, M.; Loskill, P. Beyond PDMS and Membranes: New Materials for Organ-on-a-Chip Devices. ACS Biomater. Sci. Eng. 2021, 7, 2861–2863. [Google Scholar] [CrossRef]
- Campbell, S.B.; Wu, Q.; Yazbeck, J.; Liu, C.; Okhovatian, S.; Radisic, M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater. Sci. Eng. 2020, 7, 2880–2899. [Google Scholar] [CrossRef] [PubMed]
- Nahak, B.K.; Mishra, A.; Preetam, S.; Tiwari, A. Advances in Organ-on-a-Chip Materials and Devices. ACS Appl. Bio Mater. 2022, 5, 3576–3607. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, J.F.; López, M.; Rojas, D.; Escarpa, A. Digital manufacturing for accelerating organ-on-a-chip dissemination and electrochemical biosensing integration. Lab A Chip 2022, 22, 4805–4821. [Google Scholar] [CrossRef] [PubMed]
- Mou, L.; Mandal, K.; Mecwan, M.M.; Hernandez, A.L.; Maity, S.; Sharma, S.; Herculano, R.D.; Kawakita, S.; Dokmeci, M.R.; Jucaud, V.; et al. Integrated Biosensors for Monitoring Microphysiological Systems. Lab A Chip 2022, 22, 3801–3816. [Google Scholar] [CrossRef] [PubMed]
- Junaid, A.; Mashaghi, A.; Hankemeier, T.; Vulto, P. An end-user perspective on Organ-on-a-Chip: Assays and usability aspects. Curr. Opin. Biomed. Eng. 2017, 1, 15–22. [Google Scholar] [CrossRef]
- Place, T.L.; Domann, F.E.; Case, A.J. Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic and translational research. Free. Radic. Biol. Med. 2017, 113, 311–322. [Google Scholar] [CrossRef]
- Bunge, F.; van den Driesche, S.; Vellekoop, M.J. Microfluidic platform for the long-term on-chip cultivation of mammalian cells for Lab-on-a-Chip applications. Sensors 2017, 17, 1603. [Google Scholar] [CrossRef]
- Palacio-Castañeda, V.; Velthuijs, N.; Le Gac, S.; Verdurmen, W.P.R. Oxygen control: The often overlooked but essential piece to create better in vitro systems. Lab A Chip 2022, 22, 1068–1092. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Scholz, C.C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 2022, 18, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro. J. Micromech. Microeng. 2018, 28, 043001. [Google Scholar] [CrossRef]
- Berthier, E.; Young, E.W.K.; Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 2012, 12, 1224–1237. [Google Scholar] [CrossRef]
- Regehr, K.J.; Domenech, M.; Koepsel, J.T.; Carver, K.C.; Ellison-Zelski, S.J.; Murphy, W.L.; Schuler, L.A.; Alarid, E.T.; Beebe, D.J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab A Chip 2009, 9, 2132–2139. [Google Scholar] [CrossRef]
- Heo, Y.S.; Cabrera, L.M.; Song, J.W.; Futai, N.; Tung, Y.-C.; Smith, G.D.; Takayama, S. Characterization and Resolution of Evaporation-Mediated Osmolality Shifts That Constrain Microfluidic Cell Culture in Poly(dimethylsiloxane) Devices. Anal. Chem. 2006, 79, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Eddington, D.T.; Puccinelli, J.P.; Beebe, D.J. Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators B Chem. 2006, 114, 170–172. [Google Scholar] [CrossRef]
- Gervais, T.; El-Ali, J.; Günther, A.; Jensen, K.F. Flow-induced deformation of shallow microfluidic channels. Lab A Chip 2006, 6, 500–507. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Yetisen, A.K. Commercialization of microfluidic devices. Trends Biotechnol. 2014, 32, 347–350. [Google Scholar] [CrossRef]
- Yeager, T.; Roy, S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation. Artif. Organs 2017, 41, 700–709. [Google Scholar] [CrossRef]
- TPXTM. Polymethyl Pentene (PMP). Available online: https://www.mitsui.com/de/en/business/plastics/__icsFiles/afieldfile/2015/12/25/100408_TPX.pdf (accessed on 17 October 2022).
- Knoepp, F.; Wahl, J.; Andersson, A.; Kraut, S.; Sommer, N.; Weissmann, N.; Ramser, K. A Microfluidic System for Simultaneous Raman Spectroscopy, Patch-Clamp Electrophysiology, and Live-Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia. Small Methods 2021, 5, 2100470. [Google Scholar] [CrossRef] [PubMed]
- Ochs, C.J.; Kasuya, J.; Pavesi, A.; Kamm, R.D. Oxygen levels in thermoplastic microfluidic devices during cell culture. Lab A Chip 2013, 14, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Hainberger, R.; Bruck, R.; Kataeva, N.; Heer, R.; Köck, A.; Czepl, P.; Kaiblinger, K.; Pipelka, F.; Bilenberg, B. Nanopatterned polymethylpentene substrates fabricated by injection molding for biophotonic applications. Microelectron. Eng. 2010, 87, 821–823. [Google Scholar] [CrossRef]
- Bruck, R.; Hainberger, R.; Heer, R.; Kataeva, N.; Köck, A.; Krapf-Günther, M.; Kaiblinger, K.; Pipelka, F.; Bilenberg, B. Direct replication of nanostructures from silicon wafers in polymethylpentene by injection molding. Polym. Opt. Des. Fabr. Mater. 2010, 7788, 86–93. [Google Scholar] [CrossRef]
- Corning Microplates Product Selection Guide, for Assays and Cell Culture. Available online: https://www.corning.com/catalog/cls/documents/selection-guides/CLS-MP-014_REV9_DL.pdf (accessed on 21 October 2022).
- Alcock, B.; Peters, T.; Tiwari, A. The effect of hot air exposure on the mechanical properties and carbon dioxide permeability of hydrogenated nitrile butadiene rubber (HNBR) with varying carbon black content. Polym. Test. 2020, 82, 106273. [Google Scholar] [CrossRef]
- Rodig, S.J. Growing Adherent Cells for Staining. Cold Spring Harb. Protoc. 2020, 2020, 333–334. [Google Scholar] [CrossRef]
- Protocol for the Preparation and Fluorescent ICC Staining of Cells on Coverslips. Available online: https://www.rndsystems.com/resources/protocols/protocol-preparation-and-fluorescent-icc-staining-cells-coverslips (accessed on 1 September 2022).
- Slepička, P.; Trostová, S.; Kasálková, N.S.; Kolská, Z.; Malinský, P.; Macková, A.; Bačáková, L.; Švorčík, V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stab. 2012, 97, 1075–1082. [Google Scholar] [CrossRef]
- Michaljaničová, I.; Slepička, P.; Hadravová, J.; Rimpelová, S.; Ruml, T.; Malinský, P.; Veselý, M.; Švorčík, V. High power plasma as an efficient tool for polymethylpentene cytocompatibility enhancement. RSC Adv. 2016, 6, 76000–76010. [Google Scholar] [CrossRef]
- Icha, J.; Weber, M.; Waters, J.C.; Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 2017, 39, 1700003. [Google Scholar] [CrossRef]
- Nishikawa, M.; Ito, H.; Tokito, F.; Hirono, K.; Inamura, K.; Scheidecker, B.; Danoy, M.; Kawanishi, T.; Arakawa, H.; Kato, Y.; et al. Accurate Evaluation of Hepatocyte Metabolisms on a Noble Oxygen-Permeable Material with Low Sorption Characteristics. Front. Toxicol. 2022, 4, 810478. [Google Scholar] [CrossRef]
- Danoy, M.; Scheidecker, B.; Arakawa, H.; Esashika, K.; Ishida, N.; Ito, H.; Yanai, H.; Takahashi, J.; Nishikawa, M.; Kato, Y.; et al. Cryopreserved human hepatocytes culture optimization on polymethylpentene oxygen permeable membranes for drug screening purposes. Fundam. Toxicol. Sci. 2022, 9, 135–144. [Google Scholar] [CrossRef]
- Chen, X.; Hou, S.; Chu, J.; Xiong, Y.; Xiong, P.; Liu, G.; Tian, Y. Observation Interface of PDMS Membrane in a Microfluidic Chip Based on One-Step Molding. Micromachines 2017, 8, 64. [Google Scholar] [CrossRef]
- Cromey, D. The Importance of #1.5 Thickness Coverslips for Microscopy. 2020. Available online: http://microscopy.arizona.edu/sites/default/files/sites/default/files/upload/coverslips_for_microscopy.pdf (accessed on 12 September 2022).
- TPXTM. Polymethylpentene (PMP). Available online: https://us.mitsuichemicals.com/service/product/tpx.htm (accessed on 12 September 2022).
- Uchida, T.; Rossignol, F.; Matthay, M.A.; Mounier, R.; Couette, S.; Clottes, E.; Clerici, C. Prolonged Hypoxia Differentially Regulates Hypoxia-inducible Factor (HIF)-1α and HIF-2α Expression in Lung Epithelial Cells. J. Biol. Chem. 2004, 279, 14871–14878. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.A.; Venkataraman, S.; Buettner, G.R. The Rate of Oxygen Utilization by Cells. Free Radic. Biol. Med. 2011, 51, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Useful Numbers for Cell Culture. Available online: https://www.thermofisher.cn/cn/zh/home/references/gibco-cell-culture-basics/cell-culture-protocols/cell-culture-useful-numbers.html (accessed on 24 October 2022).
Sample | O2 Permeability (Barrer) | CO2 Permeability (Barrer) |
---|---|---|
PDMS film | 732.7 | 3246.4 |
PMP film | 31.2 | 90.7 |
Polycarbonate | 1.0 | 3.7 |
Oxygen Flux Through: | P (Permeability) or D (Diffusion Coefficient) | Δp (Pressure) or ΔC (Concentration) | Δx (Thickness) (µm) | F (Flux) (pmol cm−2 s−1) |
---|---|---|---|---|
PMP film | 31.2 barrer | 141.4 mmHg | 125 | 157.5 |
100 µL medium in 96-well plate | 2.69 × 10−5 cm2/s | 0.183 mM | 3125 | 15.75 |
200 µL medium in 96-well plate | 2.69 × 10−5 cm2/s | 0.183 mM | 6250 | 7.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sønstevold, L.; Czerkies, M.; Escobedo-Cousin, E.; Blonski, S.; Vereshchagina, E. Application of Polymethylpentene, an Oxygen Permeable Thermoplastic, for Long-Term on-a-Chip Cell Culture and Organ-on-a-Chip Devices. Micromachines 2023, 14, 532. https://doi.org/10.3390/mi14030532
Sønstevold L, Czerkies M, Escobedo-Cousin E, Blonski S, Vereshchagina E. Application of Polymethylpentene, an Oxygen Permeable Thermoplastic, for Long-Term on-a-Chip Cell Culture and Organ-on-a-Chip Devices. Micromachines. 2023; 14(3):532. https://doi.org/10.3390/mi14030532
Chicago/Turabian StyleSønstevold, Linda, Maciej Czerkies, Enrique Escobedo-Cousin, Slawomir Blonski, and Elizaveta Vereshchagina. 2023. "Application of Polymethylpentene, an Oxygen Permeable Thermoplastic, for Long-Term on-a-Chip Cell Culture and Organ-on-a-Chip Devices" Micromachines 14, no. 3: 532. https://doi.org/10.3390/mi14030532
APA StyleSønstevold, L., Czerkies, M., Escobedo-Cousin, E., Blonski, S., & Vereshchagina, E. (2023). Application of Polymethylpentene, an Oxygen Permeable Thermoplastic, for Long-Term on-a-Chip Cell Culture and Organ-on-a-Chip Devices. Micromachines, 14(3), 532. https://doi.org/10.3390/mi14030532