Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts
Abstract
:1. Introduction
2. Synthesis of AgNWs
2.1. Chemical Reduction Method
2.2. Template-Assisted Method
2.3. Template-Assisted Electrodeposition Method
3. Applications of AgNWs
3.1. Touch Screens
3.2. Solar Cells
3.3. Transparent Heaters
3.4. Anti-Counterfeiting Materials
3.5. Biomedical Applications
3.6. Triboelectric Nanogenerators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, Y.; Kim, C.; Jo, S. Spray Deposition of Ag Nanowire–Graphene Oxide Hybrid Electrodes for Flexible Polymer–Dispersed Liquid Crystal Displays. Materials 2018, 11, 2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, J.; Kim, D.; Kim, B.; Chae, H.; Yi, H.; Hwang, B. High-Performance Transparent Quantum Dot Light-Emitting Diode with Patchable Transparent Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 26333–26338. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, F.S.F.; Kabra, D.; Massip, S.; Brenner, T.J.K.; Lyons, P.E.; Coleman, J.N.; Friend, R.H. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl. Phys. Lett. 2011, 99, 183307. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, A.R.b.M.; Lee, S.J.; Shneider, F.K.; da Silva, W.J.; Jang, J. High-Performance Semitransparent Tandem Solar Cell of 8.02% Conversion Efficiency with Solution-Processed Graphene Mesh and Laminated Ag Nanowire Top Electrodes. Adv. Energy Mater. 2014, 4, 1301989. [Google Scholar] [CrossRef]
- He, J.-H.; Elazem, N.Y. The Carbon Nanotube-Embedded Boundary Layer Theory for Energy Harvesting. Facta Univ. Ser. Mech. Eng. 2022, 20, 221–235. [Google Scholar] [CrossRef]
- Seo, Y.; Hwang, B. Mulberry-paper-based composites for flexible electronics and energy storage devices. Cellulose 2019, 26, 8867–8875. [Google Scholar] [CrossRef]
- Hwang, B.; Kim, M.; Cho, S.M.; Becker, S.; Kim, Y.-H.; Kim, H. Embedded silver-nanowire electrode in an acrylic polymer–silicate nanoparticle composite for highly robust flexible devices. J. Appl. Polym. Sci. 2017, 134, 45203. [Google Scholar] [CrossRef]
- Park, M.; Kim, W.; Hwang, B.; Han, S.M. Effect of varying the density of Ag nanowire networks on their reliability during bending fatigue. Scr. Mater. 2019, 161, 70–73. [Google Scholar] [CrossRef]
- Hwang, B.; Han, Y.; Matteini, P. Bending Fatigue Behavior of Ag Nanowire/Cu Thin-Film Hybrid Interconnects for Wearable Electronics. Facta Univ. Ser. Mech. Eng. 2022, 20, 553–560. [Google Scholar] [CrossRef]
- Seo, Y.; Ha, H.; Cheong, J.Y.; Leem, M.; Darabi, S.; Matteini, P.; Müller, C.; Yun, T.G.; Hwang, B. Highly Reliable Yarn-Type Supercapacitor Using Conductive Silk Yarns with Multilayered Active Materials. J. Nat. Fibers 2022, 19, 835–846. [Google Scholar] [CrossRef]
- Kim, H.; Qaiser, N.; Hwang, B. Electro-Mechanical Response of Stretchable PDMS Composites with a Hybrid Filler System. Facta Univ. Ser. Mech. Eng. 2023, 2766459-4. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Kan, C.-X.; Wan, J.-G.; Han, M.; Wang, G.-H. High-Yield Synthesis of Uniform Ag Nanowires with High Aspect Ratios by Introducing the Long-Chain PVP in an Improved Polyol Process. J. Nanomater. 2011, 2011, 982547. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S.S.; Ko, S.H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414. [Google Scholar] [CrossRef]
- Conte, A.; Baron, M.; Bonacchi, S.; Antonello, S.; Aliprandi, A. Copper and silver nanowires for CO2 electroreduction. Nanoscale 2023, 15, 3693–3703. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, P.; Song, L.; Liu, L.; Yan, X.; Zhou, Z.; Liu, D.; Wang, J.; Yuan, H.; Zhang, Z.; et al. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. J. Phys. D Appl. Phys. 2005, 38, 1061. [Google Scholar] [CrossRef]
- Choi, H.K.; Yoon, J. Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. Biosensors 2023, 13, 208. [Google Scholar] [CrossRef]
- Li, S.; Jin, H.; Wang, Y. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. Nanoscale 2023, 15, 2488–2515. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, G.; Zhou, N. The large-scale synthesis and growth mechanism of II-B metal nanosponges through a vacuum vapor deposition route. Nanotechnology 2009, 20, 085602. [Google Scholar] [CrossRef]
- Hwang, B.; Shin, H.-A.-S.; Kim, T.; Joo, Y.-C.; Han, S.M. Highly Reliable Ag Nanowire Flexible Transparent Electrode with Mechanically Welded Junctions. Small 2014, 10, 3397–3404. [Google Scholar] [CrossRef]
- Hwang, B.; An, Y.; Lee, H.; Lee, E.; Becker, S.; Kim, Y.-H.; Kim, H. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities. Sci. Rep. 2017, 7, 41336. [Google Scholar] [CrossRef] [Green Version]
- Hwang, B.; Qaiser, N.; Lee, C.; Matteini, P.; Yoo, S.J.; Kim, H. Effect of Al2O3/Alucone nanolayered composite overcoating on reliability of Ag nanowire electrodes under bending fatigue. J. Alloy. Compd. 2020, 846, 156420. [Google Scholar] [CrossRef]
- Chu, X.; Wang, K.; Tao, J.; Li, S.; Ji, S.; Ye, C. Tackling the Stability Issues of Silver Nanowire Transparent Conductive Films through FeCl3 Dilute Solution Treatment. Nanomaterials 2019, 9, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, B.; An, C.-H.; Becker, S. Highly robust Ag nanowire flexible transparent electrode with UV-curable polyurethane-based overcoating layer. Mater. Des. 2017, 129, 180–185. [Google Scholar] [CrossRef]
- Hwang, B.; Park, M.; Kim, T.; Han, S.M. Effect of RGO deposition on chemical and mechanical reliability of Ag nanowire flexible transparent electrode. RSC Adv. 2016, 6, 67389–67395. [Google Scholar] [CrossRef]
- Hwang, B.; Ha, H.; Matteini, P.; Lim, S. Effect of reduced graphene oxide overcoating on scratch resistance of Ag nanowire electrodes. Mater. Lett. 2020, 280, 128575. [Google Scholar] [CrossRef]
- Chupradit, S.; Kavitha, M.; Suksatan, W.; Ansari, M.J.; Al Mashhadani, Z.I.; Kadhim, M.M.; Mustafa, Y.F.; Shafik, S.S.; Kianfar, E. Morphological Control: Properties and Applications of Metal Nanostructures. Adv. Mater. Sci. Eng. 2022, 2022, 1971891. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, X.; Yang, H.; Chao, Y.; Guo, S.; Wang, C. One-Step Synthesis of Silver Nanowires with Ultra-Long Length and Thin Diameter to Make Flexible Transparent Conductive Films. Materials 2019, 12, 401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wyman, I.; Hu, J.; Lin, S.; Zhong, Z.; Tu, Y.; Huang, Z.; Wei, Y. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B 2017, 223, 1–23. [Google Scholar] [CrossRef]
- Jones, R.S.; Draheim, R.R.; Roldo, M. Silver Nanowires: Synthesis, Antibacterial Activity and Biomedical Applications. Appl. Sci. 2018, 8, 673. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Huang, X.; Huang, Y.; Pan, Y.; Zhu, Y.; Tang, X. Preparation of Silver Nanocables Wrapped with Highly Cross-Linked Organic−Inorganic Hybrid Polyphosphazenes via a Hard-Template Approach. J. Phys. Chem. C 2008, 112, 16840–16844. [Google Scholar] [CrossRef]
- Peng, C.-H.; Wu, T.-Y.; Hwang, C.-C. A Preliminary Study on the Synthesis and Characterization of Multilayered Ag/Co Magnetic Nanowires Fabricated via the Electrodeposition Method. Sci. World J. 2013, 2013, 837048. [Google Scholar] [CrossRef] [PubMed]
- Afzaal Khan, M.; Ahmed, N.; Khan, M.S.; Shahid, H.; Murtaza, I.; Abbas, N.; Javed, K.; Gulab, A.; Khan, S. Silver nanowires/polypyrrole nanostructured composite as an alternative electrocatalytic material for dye-sensitized solar cells. Optik 2022, 268, 169734. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, J.H.; Song, J.-Y.; Ghani, F.; Lee, D. Continuous Patterning of Silver Nanowire-Polyvinylpyrrolidone Composite Transparent Conductive Film by a Roll-to-Roll Selective Calendering Process. Nanomaterials 2023, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Noh, Y.; Kim, G.Y.; Lee, H.; Lee, D. Roll-to-roll processed silver nanowire/silicon dioxide microsphere composite for high-accuracy flexible touch sensing application. Surf. Interfaces 2022, 30, 101976. [Google Scholar] [CrossRef]
- Moon, H.; Won, P.; Lee, J.; Ko, S.H. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology 2016, 27, 295201. [Google Scholar] [CrossRef]
- Im, H.-G.; Jang, J.; Jeon, Y.; Noh, J.; Jin, J.; Lee, J.-Y.; Bae, B.-S. Flexible Transparent Crystalline-ITO/Ag Nanowire Hybrid Electrode with High Stability for Organic Optoelectronics. ACS Appl. Mater. Interfaces 2020, 12, 56462–56469. [Google Scholar] [CrossRef]
- Chen, S.; Guan, Y.; Li, Y.; Yan, X.; Ni, H.; Li, L. A water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. J. Mater. Chem. C 2017, 5, 2404–2414. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Kim, D.; Ha, H.; Qaiser, N.; Yi, H.; Hwang, B. Ethylcellulose/Ag nanowire composites as multifunctional patchable transparent electrodes. Surf. Coat. Technol. 2020, 394, 125898. [Google Scholar] [CrossRef]
- Kang, M.-G.; Xu, T.; Park, H.J.; Luo, X.; Guo, L.J. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Adv. Mater. 2010, 22, 4378–4383. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Peng, R.; Song, W.; Hong, L.; Huang, J.; Fei, N.; Ge, Z. Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency. J. Mater. Chem. A 2019, 7, 3737–3744. [Google Scholar] [CrossRef]
- Septiningrum, F.; Sofyan, N.; Dhaneswara, D.; Reddy, M.V.; Herman Yuwono, A. One-dimensional silver-titania nanocomposites as modification of photoanode for enhanced dye-sensitized solar cells—A review. Mater. Today Proc. 2022, 62, 3301–3305. [Google Scholar] [CrossRef]
- Noorasid, N.S.; Arith, F.; Mustafa, A.N.; Azam, M.A.; Mahalingam, S.; Chelvanathan, P.; Amin, N. Current advancement of flexible dye sensitized solar cell: A review. Optik 2022, 254, 168089. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, W.; Chen, X.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H.; Sun, W.; Shen, Y.; Li, Y.; et al. Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. J. Am. Chem. Soc. 2022, 144, 8658–8668. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wan, J.; Xu, G.; Wu, X.; Li, X.; Shen, Y.; Yang, F.; Ou, X.; Li, Y.; Li, Y. “Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness. Sci. China Chem. 2022, 65, 1164–1172. [Google Scholar] [CrossRef]
- Mahmood, K.; Akhtar, H.H.; Qutab, H.G.; Ramzan, N.; Sharif, R.; Rehman, A.; Khalid, A.; Mehran, M.T. Solution processed high performance perovskite solar cells based on a silver nanowire-titanium dioxide hybrid top electrode. RSC Adv. 2022, 12, 35350–35357. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Reshmi, T.H.; Ahmed, S.; Alam, M.A. Impact of localized surface plasmon resonance on efficiency of zinc oxide nanowire-based organic–inorganic perovskite solar cells fabricated under ambient conditions. RSC Adv. 2022, 12, 25163–25171. [Google Scholar] [CrossRef] [PubMed]
- Parida, B.; Yoon, S.; Kang, D.-W. Room-Temperature Solution-Processed 0D/1D Bilayer Electrodes for Translucent CsPbBr3 Perovskite Photovoltaics. Nanomaterials 2021, 11, 1489. [Google Scholar] [CrossRef]
- Yu, S.; Tang, B.; Wu, C.; Li, L. Ultraflexible transparent conductive films based on Ag nanowires for use in quick thermal response transparent heater. Opt. Mater. 2022, 125, 112083. [Google Scholar] [CrossRef]
- Go, M.; Hwang, B.; Lim, S. Highly reliable mulberry paper (Hanji)-based electrode with printed silver nanowire/zinc oxide hybrid for soft electronics. Mater. Manuf. Process. 2019, 34, 1605–1611. [Google Scholar] [CrossRef]
- Tan, D.; Jiang, C.; Li, Q.; Bi, S.; Song, J. Silver Nanowire Networks with Preparations and Applications: A Review. J. Mater. Sci. Mater. Electron. 2020, 31, 15669–15696. [Google Scholar] [CrossRef]
- Bobinger, M.; Dergianlis, V.; Becherer, M.; Lugli, P. Comprehensive Synthesis Study of Well-Dispersed and Solution-Processed Metal Nanowires for Transparent Heaters. J. Nanomater. 2018, 2018, 7304807. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Du, X.; Li, L.; Cao, Y.; Yang, Y.; Wang, W.; Wang, J. Multifunctional AgNW@MXene decorated polymeric textile for highly-efficient electro-/photothermal conversion and triboelectric nanogenerator. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106883. [Google Scholar] [CrossRef]
- Becerra-Paniagua, D.K.; Díaz-Cruz, E.B.; Baray-Calderón, A.; Garcia-Angelmo, A.R.; Regalado-Pérez, E.; del Pilar Rodriguez-Torres, M.; Martínez-Alonso, C. Nanostructured metal sulphides synthesized by microwave-assisted heating: A review. J. Mater. Sci. Mater. Electron. 2022, 33, 22631–22667. [Google Scholar] [CrossRef]
- Liu, H.; Xie, D.; Shen, H.; Li, F.; Chen, J. Functional Micro–Nano Structure with Variable Colour: Applications for Anti-Counterfeiting. Adv. Polym. Technol. 2019, 2019, 6519018. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, G.; Park, C.; You, J.; Park, W. Anti-Counterfeiting Tags Using Flexible Substrate with Gradient Micropatterning of Silver Nanowires. Micromachines 2022, 13, 168. [Google Scholar] [CrossRef]
- Amicucci, C.; Ha, H.; Matteini, P.; Hwang, B. Facile fabrication of silver-nanowire-based chips using dry-film photoresist for wearable optical detection. Fash. Text. 2022, 9, 20. [Google Scholar] [CrossRef]
- Barucci, A.; D’Andrea, C.; Farnesi, E.; Banchelli, M.; Amicucci, C.; de Angelis, M.; Hwang, B.; Matteini, P. Label-free SERS detection of proteins based on machine learning classification of chemo-structural determinants. Analyst 2021, 146, 674–682. [Google Scholar] [CrossRef]
- Aazem, I.; Mathew, D.T.; Radhakrishnan, S.; Vijoy, K.V.; John, H.; Mulvihill, D.M.; Pillai, S.C. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv. 2022, 12, 10545–10572. [Google Scholar] [CrossRef]
- Onyibo, E.C.; Safaei, B. Application of finite element analysis to honeycomb sandwich structures: A review. Rep. Mech. Eng. 2022, 3, 192–209. [Google Scholar] [CrossRef]
- Shi, Y.; Ding, T.; Yuan, Z.; Li, R.; Wang, B.; Wu, Z. Ultrathin Stretchable All-Fiber Electronic Skin for Highly Sensitive Self-Powered Human Motion Monitoring. Nanoenergy Adv. 2022, 2, 52–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.; Schlenker, E.; Ha, H.; Cheong, J.Y.; Hwang, B. Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts. Micromachines 2023, 14, 562. https://doi.org/10.3390/mi14030562
Choi C, Schlenker E, Ha H, Cheong JY, Hwang B. Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts. Micromachines. 2023; 14(3):562. https://doi.org/10.3390/mi14030562
Chicago/Turabian StyleChoi, Chunghyeon, Erik Schlenker, Heebo Ha, Jun Young Cheong, and Byungil Hwang. 2023. "Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts" Micromachines 14, no. 3: 562. https://doi.org/10.3390/mi14030562
APA StyleChoi, C., Schlenker, E., Ha, H., Cheong, J. Y., & Hwang, B. (2023). Versatile Applications of Silver Nanowire-Based Electrodes and Their Impacts. Micromachines, 14(3), 562. https://doi.org/10.3390/mi14030562