Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Dark Conditions
3.2. Under Light Irradiation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, Z.J.; Valenta, C.R.; Durgin, G.D. Optically Transparent Antennas: A Survey of Transparent Microwave Conductor Performance and Applications. IEEE Antennas Propag. Mag. 2021, 63, 27–39. [Google Scholar] [CrossRef]
- Magrini, T.; Bouville, F.; Lauria, A.; Le Ferrand, H.; Niebel, T.P.; Studart, A.R. Transparent and tough bulk composites inspired by nacre. Nat. Commun. 2019, 10, 2794. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Park, E.H.; Kim, K.H. Moiré-fringeless Transparent Conductive Films with a Random Serpentine Network of Medium-Field Electrospun, Chemically Annealed Silver Microfibres. Sci. Rep. 2019, 9, 11226. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, V.I.; Miclea, R.C.; Korodi, A.; Silea, I. A novel approach against sun glare to enhance driver safety. Appl. Sci. 2020, 10, 3032. [Google Scholar] [CrossRef]
- Wu, F.M.; Lin, C.T.; Wei, C.C.; Chen, C.W.; Chen, Z.Y.; Huang, H.T.; Chi, S. Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication. IEEE Photonics J. 2013, 5, 7901507. [Google Scholar] [CrossRef]
- Kim, B.J.; Cho, N.K.; Park, S.; Jeong, S.; Jeon, D.; Kang, Y.; Kim, T.; Kim, Y.S.; Han, I.K.; Kang, S.J. Highly transparent phototransistor based on quantum-dots and ZnO bilayers for optical logic gate operation in visible-light. RSC Adv. 2020, 10, 16404–16414. [Google Scholar] [CrossRef]
- Song, H.J.; Seo, M.H.; Choi, K.W.; Jo, M.S.; Yoo, J.Y.; Yoon, J.B. High-Performance Copper Oxide Visible-Light Photodetector via Grain-Structure Model. Sci. Rep. 2019, 9, 7334. [Google Scholar] [CrossRef]
- Yamazato, T.; Haruyama, S. Image sensor based visible light communication and its application to pose, position, and range estimations. IEICE Trans. Commun. 2014, E97.B, 1759–1765. [Google Scholar] [CrossRef]
- Tanaka, H.; Yasuda, T.; Fujita, K.; Tsutsui, T. Transparent image sensors using an organic multilayer photodiode. Adv. Mater. 2006, 18, 2230–2233. [Google Scholar] [CrossRef]
- Meng, R.; Jiang, Q.; Liu, D. Balancing efficiency and transparency in organic transparent photovoltaics. NPJ Flex. Electron. 2022, 6, 39. [Google Scholar] [CrossRef]
- Sin, D.H.; Kim, S.H.; Lee, J.; Lee, H. Modification of Electrode Interface with Fullerene-Based Self-Assembled Monolayer for High-Performance Organic Optoelectronic Devices. Micromachines 2022, 13, 1613. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef]
- Kim, B.J.; Jeong, J.H.; Jung, E.Y.; Kim, T.Y.; Park, S.; Hong, J.A.; Lee, K.M.; Jeon, W.; Park, Y.; Kang, S.J. A visible-light phototransistor based on the heterostructure of ZnO and TiO2with trap-assisted photocurrent generation. RSC Adv. 2021, 11, 12051–12057. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, K.H.; Park, J.S.; Kang, S.J. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7, 19666–19671. [Google Scholar] [CrossRef]
- Jin, Z.; Gao, L.; Zhou, Q.; Wang, J. High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films. Sci. Rep. 2014, 4, 4268. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Lai, H.C.; Wang, J.Y.; Chiang, W.H.; Chen, C.H. High-responsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor. IEEE Electron Device Lett. 2015, 36, 44–46. [Google Scholar] [CrossRef]
- Li, Q.; van de Groep, J.; Wang, Y.; Kik, P.G.; Brongersma, M.L. Transparent multispectral photodetectors mimicking the human visual system. Nat. Commun. 2019, 10, 4982. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Hong, Y. Understanding the effect of semiconductor thickness on device characteristics in organic thin film transistors by way of two-dimensional simulations. Org. Electron. 2010, 11, 127–136. [Google Scholar] [CrossRef]
- Xu, M.; Nakamura, M.; Kudo, K. Thickness dependence of mobility of pentacene planar bottom-contact organic thin-film transistors. Thin Solid Film. 2008, 516, 2776–2778. [Google Scholar] [CrossRef]
- Shin, H.; Kim, D.Y. Rotating Gate-Driven Solution-Processed Triboelectric Transistors. Sensors 2022, 22, 3309. [Google Scholar] [CrossRef] [PubMed]
- Haneef, H.F.; Zeidell, A.M.; Jurchescu, O.D. Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 2020, 8, 759–787. [Google Scholar] [CrossRef]
- Basiricò, L.; Mattana, G.; Mas-Torrent, M. Editorial: Organic Electronics: Future Trends in Materials, Fabrication Techniques and Applications. Front. Phys. 2022, 10, 307. [Google Scholar] [CrossRef]
- Scaccabarozzi, A.D.; Basu, A.; Aniés, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M.I.; Lin, Y.; Campoy-Quiles, M.; et al. Doping Approaches for Organic Semiconductors. Chem. Rev. 2022, 122, 4420–4492. [Google Scholar] [CrossRef]
- Bronstein, H.; Nielsen, C.B.; Schroeder, B.C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. [Google Scholar] [CrossRef]
- Taheri, N.; Dinari, M.; Asgari, M. Recent Applications of Porous Organic Polymers Prepared via Friedel-Crafts Reaction under the Catalysis of AlCl3: A Review. ACS Appl. Polym. Mater. 2022, 4, 6288–6302. [Google Scholar] [CrossRef]
- Raghuwanshi, V.; Bharti, D.; Mahato, A.K.; Varun, I.; Tiwari, S.P. Semiconductor:polymer blend ratio dependent performance and stability in low voltage flexible organic field-effect transistors. Synth. Met. 2018, 236, 54–60. [Google Scholar] [CrossRef]
- Park, S.K.; Anthony, J.E.; Jackson, T.N. Solution-processed TIPS-pentacene organic thin-film-transistor circuits. IEEE Electron Device Lett. 2007, 28, 877–879. [Google Scholar] [CrossRef]
- Gunduz, B.; Yakuphanoglu, F. Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor. Sens. Actuators A Phys. 2012, 178, 141–153. [Google Scholar] [CrossRef]
- Jang, Y.; Jo, J.; Lee, S.H.; Kim, I.; Lee, T.M.; Woo, K.; Kwon, S.; Seok, J.Y. Achieving high-mobility pentacene thin-film transistors by reducing the trapping density between insulators and organic semiconductors. Mater. Lett. 2022, 329, 133197. [Google Scholar] [CrossRef]
- Al-Shawi, A.; Alias, M.; Sayers, P.; Mabrook, M.F. Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors. Micromachines 2019, 10, 643. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, J.H.; Lee, W.H.; Kim, H.H.; Park, Y.D. Tailoring the crystallinity of solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene via controlled solidification. Soft Matter 2019, 15, 7369–7373. [Google Scholar] [CrossRef]
- Müsse, A.; La Malfa, F.; Brunetti, V.; Rizzi, F.; De Vittorio, M. Flexible Enzymatic Glucose Electrochemical Sensor Based on Polystyrene-Gold Electrodes. Micromachines 2021, 12, 805. [Google Scholar] [CrossRef]
- Prime, D.; Paul, S. Electrical and morphological properties of polystyrene thin films for organic electronic applications. Vacuum 2010, 84, 1240–1243. [Google Scholar] [CrossRef]
- Raghuwanshi, V.; Bharti, D.; Mahato, A.K.; Varun, I.; Tiwari, S.P. Effect of TIPS-Pentacene: Polystyrene Blend Ratio on Electrical Performance and Stability of Solution Processed Organic Field-Effect Transistors. In Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE), Bengaluru, India, 17–19 December 2018. [Google Scholar] [CrossRef]
- Shin, H.; Lee, H.; Kim, B.; Zhang, X.; Bae, J.H.; Park, J. Effects of Blended Poly(3-hexylthiophene) and 6,13-bis(triisopropylsilylethynyl) pentacene Organic Semiconductors on the Photoresponse Characteristics of Thin-Film Transistors. J. Korean Inst. Met. Mater. 2022, 60, 198–205. [Google Scholar] [CrossRef]
- Lee, W.H.; Kwak, D.; Anthony, J.E.; Lee, H.S.; Choi, H.H.; Kim, D.H.; Lee, S.G.; Cho, K. The influence of the solvent evaporation rate on the phase separation and electrical performances of soluble acene-polymer blend semiconductors. Adv. Funct. Mater. 2012, 22, 267–281. [Google Scholar] [CrossRef]
- Zajaczkowska, H.; Veith, L.; Waliszewski, W.; Bartkiewicz, M.A.; Borkowski, M.; Sleczkowski, P.; Ulanski, J.; Graczykowski, B.; Blom, P.W.M.; Pisula, W.; et al. Self-Aligned Bilayers for Flexible Free-Standing Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 59012–59022. [Google Scholar] [CrossRef]
- Brixi, S.; Melville, O.A.; Boileau, N.T.; Lessard, B.H. The influence of air and temperature on the performance of PBDB-T and P3HT in organic thin film transistors. J. Mater. Chem. C 2018, 6, 11972–11979. [Google Scholar] [CrossRef]
- Bharti, D.; Tiwari, S.P. Phase separation induced high mobility and electrical stability in organic field-effect transistors. Synth. Met. 2016, 221, 186–191. [Google Scholar] [CrossRef]
- Kazim, S.; Ramos, F.J.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M.; Ahmad, S. A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy Environ. Sci. 2015, 8, 1816–1823. [Google Scholar] [CrossRef]
- Liu, Y.X.; Summers, M.A.; Scully, S.R.; McGehee, M.D. Resonance energy transfer from organic chromophores to fullerene molecules. J. Appl. Phys. 2006, 99, 093521. [Google Scholar] [CrossRef]
- Mottram, A.D.; Lin, Y.H.; Pattanasattayavong, P.; Zhao, K.; Amassian, A.; Anthopoulos, T.D. Quasi Two-Dimensional Dye-Sensitized In2O3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications. ACS Appl. Mater. Interfaces 2016, 8, 4894–4902. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Brotherton, S.D. Introduction to Thin Film Transistors: Physics and Technology of TFTs; Springer International Publishing: Cham, Switzerland, 2013. [Google Scholar] [CrossRef]
- Tavasli, A.; Gurunlu, B.; Gunturkun, D.; Isci, R.; Faraji, S. A Review on Solution-Processed Organic Phototransistors and Their Recent Developments. Electronics 2022, 11, 316. [Google Scholar] [CrossRef]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 2012, 24, 5832–5836. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, W.G.; Kang, B.H.; Kim, H.T.; Park, J.W.; Choi, D.H.; Kim, T.S.; Lim, J.H.; Kim, H.J. High Photosensitive Indium-Gallium-Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection. ACS Appl. Mater. Interfaces 2020, 12, 10673–10680. [Google Scholar] [CrossRef] [PubMed]
Parameters | Pristine TIPS-Pn | Blend 90k 1.5:1 | Blend 280k 1.5:1 | Blend 90k 2:1 | Blend 280k 2:1 |
---|---|---|---|---|---|
Ion/off (A/A) | 7.17 × 104 | 7.94 × 105 | 8.18 × 105 | 2.44 × 105 | 1.02 × 106 |
μ (cm2/V∙s) | 0.03 | 0.07 | 0.12 | 0.03 | 0.05 |
VT (V) | −9.77 | −10.85 | −11.58 | −4.19 | −0.47 |
SS (V/decade) | 1.41 | 0.88 | 1.94 | 1.08 | 0.33 |
EQE (%) | |||||
---|---|---|---|---|---|
Wavelength (nm) | Pristine TIPS-Pn | Blend 90k 1.5:1 | Blend 280k 1.5:1 | Blend 90k 2:1 | Blend 280k 2:1 |
690 | 0.004 | 0.114 | 83 | 145 | 6 |
450 | 108 | 997 | 1072 | 588 | 432 |
340 | 1821 | 8284 | 7197 | 4342 | 4119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Kim, D.; Park, J.; Kim, D.Y. Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines 2023, 14, 620. https://doi.org/10.3390/mi14030620
Shin H, Kim D, Park J, Kim DY. Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines. 2023; 14(3):620. https://doi.org/10.3390/mi14030620
Chicago/Turabian StyleShin, Hyunji, Dongwook Kim, Jaehoon Park, and Dae Yu Kim. 2023. "Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers" Micromachines 14, no. 3: 620. https://doi.org/10.3390/mi14030620
APA StyleShin, H., Kim, D., Park, J., & Kim, D. Y. (2023). Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines, 14(3), 620. https://doi.org/10.3390/mi14030620