Three-Dimensional Displacement Measurement of Micro-Milling Tool Based on Fiber Array Encoding
Abstract
:1. Introduction
2. Methodology
3. Experimental Setup
4. Measurement Procedure and Results
4.1. Validation of the Optical Fiber System
4.2. Validation of the Measurement System for Tool Three-Dimensional Motion in Space
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamedov, A. Micro milling process modeling: A review. Manuf. Rev. 2021, 8, 3. [Google Scholar] [CrossRef]
- Balázs, B.Z.; Geier, N.; Takács, M.; Davim, J.P. A review on micro-milling: Recent advances and future trends. Int. J. Adv. Manuf. Technol. 2021, 112, 655–684. [Google Scholar] [CrossRef]
- Mokhtari, A.; Jalili, M.M.; Mazidi, A. Study on frequency response and bifurcation analyses under primary resonance conditions of micro-milling operations. Appl. Math. Model. 2020, 87, 404–429. [Google Scholar] [CrossRef]
- Rehman, G.U.; Jaffery, S.H.I.; Khan, M.; Ali, L.; Khan, A.; Butt, S.I. Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy (Ti-6Al-4V). Mech. Sci. 2018, 9, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Jahan, M.P.; Arbuckle, G.K.; Rumsey, A.M. A comparative study on the effectiveness of TiN, TiCN, and AlTiN coated carbide tools for dry micro-milling of aluminium, copper and brass at low spindle speed. Int. J. Mach. Mach. Mater. 2018, 20, 141. [Google Scholar] [CrossRef]
- Yadav, A.K.; Kumar, M.; Bajpai, V.; Singh, N.K.; Singh, R.K. FE modeling of burr size in high- speed micro-milling of Ti6Al4V. Precis. Eng. 2017, 49, 287–292. [Google Scholar] [CrossRef]
- Fang, F.; Lai, M.; Wang, J.; Luo, X.; Yan, J.; Yan, Y. Nanometric cutting: Mechanisms, practices and future perspectives. Int. J. Mach. Tools Manuf. 2022, 178, 103905. [Google Scholar] [CrossRef]
- Heitz, T.; He, N.; Chen, N.; Zhao, G.; Li, L. A review on dynamics in micro-milling. Int. J. Adv. Manuf. Technol. 2022, 122, 3467–3491. [Google Scholar] [CrossRef]
- Shekhar, S.; Nahata, S.; Ozdoganlar, O.B. The effect of spindle dynamics on tool-tip radial throw in micromachining. J. Manuf. Process. 2020, 56, 1397–1403. [Google Scholar] [CrossRef]
- Jing, X.; Zheng, Z.; Xu, J.; Wang, F.; Jaffery, S.H.I.; Li, H. Stability analysis in micro milling based on p-leader multifractal method. J. Manuf. Process. 2022, 77, 495–507. [Google Scholar] [CrossRef]
- Zhang, H.; Anders, D.; Löser, M.; Ihlenfeldt, S.; Czarske, J.; Kuschmierz, R. Non-contact, bi-directional tool tip vibration measurement in CNC milling machines with a single optical sensor. Mech. Syst. Signal Process. 2020, 139, 106647. [Google Scholar] [CrossRef]
- Schmitz, T.; Betters, E.; Budak, E.; Yüksel, E.; Park, S.; Altintas, Y. Review and status of tool tip frequency response function prediction using receptance coupling. Precis. Eng. 2023, 79, 60–77. [Google Scholar] [CrossRef]
- Martins, C.F.J.; Saulo, M. Evaluation of an experimental modal analysis device for micromilling tools. Int. J. Adv. Manuf. Technol. 2022, 119, 6679–6692. [Google Scholar] [CrossRef]
- Shekhar, S.; Bediz, B.; Ozdoganlar, O.B. Tool-tip dynamics in micromachining with arbitrary tool geometries and the effect of spindle speed. Int. J. Mach. Tools Manuf. 2023, 185, 103981. [Google Scholar] [CrossRef]
- Wang, P.; Bai, Q.; Cheng, K.; Zhang, Y.; Zhao, L.; Ding, H. Investigation on an in-process chatter detection strategy for micro-milling titanium alloy thin-walled parts and its implementation perspectives. Mech. Syst. Signal Process. 2023, 183, 109617. [Google Scholar] [CrossRef]
- Fu, M.; Wang, J. Size effects in multi-scale materials processing and manufacturing. Int. J. Mach. Tools Manuf. 2021, 167, 103755. [Google Scholar] [CrossRef]
- Mohanraj, T.; Shankar, S.; Rajasekar, R.; Sakthivel, N.R.; Pramanik, A. Tool condition monitoring techniques in milling process—A review. J. Mater. Res. Technol. 2020, 9, 1032–1042. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, K.; Wang, G. Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method. Int. J. Adv. Manuf. Technol. 2020, 111, 3175–3188. [Google Scholar] [CrossRef]
- Chen, N.; Li, H.N.; Wu, J.; Li, Z.; Li, L.; Liu, G.; He, N. Advances in micro milling: From tool fabrication to process outcomes. Int. J. Mach. Tools Manuf. 2021, 160, 103670. [Google Scholar] [CrossRef]
- Lu, X.; Jia, Z.; Wang, X.; Liu, Y.; Liu, M.; Feng, Y.; Liang, S.Y. Measurement and prediction of vibration displacement in micro-milling of nickel-based superalloy. Measurement 2019, 145, 254–263. [Google Scholar] [CrossRef]
- Shrivastava, Y.; Singh, B. Tool chatter prediction based on empirical mode decomposition and response surface methodology. Measurement 2020, 173, 108585. [Google Scholar] [CrossRef]
- Wang, D.; Penter, L.; Hänel, A.; Yang, Y.; Ihlenfeldt, S. Investigation on dynamic tool deflection and runout-dependent analysis of the micro-milling process. Mech. Syst. Signal Process. 2022, 178, 109282. [Google Scholar] [CrossRef]
- Brito, L.C.; Gomes, M.C.; de Oliveira, D.; da Silva, M.B.; Duarte, M.A.V. Vibration features for indirect monitoring of end micromilling process. Precis. Eng. 2023, 79, 7–15. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, T. Online Tool Wear Monitoring Via Hidden Semi-Markov Model with Dependent Durations. IEEE Trans. Industr. Informa. 2018, 14, 69–78. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T.; Xu, P.; Zhao, J. In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling. Mech. Syst. Signal Process. 2021, 164, 108233. [Google Scholar] [CrossRef]
- Shi, J.; Jin, X.; Cao, H. Chatter stability analysis in Micro-milling with aerostatic spindle considering speed effect. Mech. Syst. Signal Process. 2022, 169, 108620. [Google Scholar] [CrossRef]
- Wang, G.; Yu, T.; Zhou, X.; Guo, R.; Chen, M.; Sun, Y. Material removal mechanism and microstructure fabrication of GDP during micro-milling. Int. J. Mech. Sci. 2023, 240, 107946. [Google Scholar] [CrossRef]
- Zhao, Z.; Ding, D.; Fu, Y. Error identification and compensation for a laser displacement sensor based on on-machine measurement. Optik 2020, 225, 165902. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, X.; Lu, X.; Ren, Z. Research on Vibration Measurement System for Micro-milling Machine. Int. J. Acoust. Vib. 2018, 23, 454–460. [Google Scholar]
- Liu, J.; Nape, I.; Wang, Q.; Vallés, A.; Wang, J.; Forbes, A. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 2020, 6, eaay0837. [Google Scholar] [CrossRef] [Green Version]
- Orth, A.; Ploschner, M.; Wilson, E.R.; Maksymov, I.S.; Gibson, B.C. Optical fiber bundles: Ultra-slim light field imaging probes. Sci. Adv. 2019, 5, eaav1555. [Google Scholar] [CrossRef] [Green Version]
- Mayer-Schönberger, V. The future is fiber. Science 2019, 363, 133. [Google Scholar] [CrossRef]
- Bai, H.; Li, S.; Barreiros, J.; Tu, Y.; Pollock, C.R.; Shepherd, R.F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848–852. [Google Scholar] [CrossRef]
- Liu, M.; Bing, J.; Xiao, L.; Yun, K.; Wan, L. Development and Testing of an Integrated Rotating Dynamometer Based on Fiber Bragg Grating for Four-Component Cutting Force Measurement. Sensors 2018, 18, 1254. [Google Scholar] [CrossRef] [Green Version]
- Yi-Yang, S.; Kai, X.; Zhan-Jiang, Y.; Xiang-Hui, Z.; Ya-Ya, C.; Hua-Dong, Y. Coaxial holographic reconstruction method of micro-milling tool pose. Chin. Opt. 2001, 15, 356–364. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, T.; Wu, J.; Qiao, H.; Lin, X.; Fang, L.; Dai, Q. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 2023, 9, eadf8437. [Google Scholar] [CrossRef]
- Chen, J.-H.; Xiong, Y.-F.; Xu, F.; Lu, Y.-Q. Silica optical fiber integrated with two-dimensional materials: Towards opto-electro-mechanical technology. Light. Sci. Appl. 2021, 10, 1–18. [Google Scholar] [CrossRef]
- Di Renzo, M.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L. Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proc. IEEE 2013, 102, 56–103. [Google Scholar] [CrossRef]
- Forbes, A.; de Oliveira, M.; Dennis, M.R. Structured light. Nat. Photonics 2021, 15, 253–262. [Google Scholar] [CrossRef]
- Li, S.; Saunders, C.; Lum, D.J.; Murray-Bruce, J.; Goyal, V.K.; Čižmár, T.; Phillips, D.B. Compressively sampling the optical transmission matrix of a multimode fibre. Light. Sci. Appl. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Huang, H. Comparison of three approaches for computing measurement uncertainties. Measurement 2020, 163, 107923. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Zhang, M. Three-Dimensional Displacement Measurement of Micro-Milling Tool Based on Fiber Array Encoding. Micromachines 2023, 14, 631. https://doi.org/10.3390/mi14030631
Jia B, Zhang M. Three-Dimensional Displacement Measurement of Micro-Milling Tool Based on Fiber Array Encoding. Micromachines. 2023; 14(3):631. https://doi.org/10.3390/mi14030631
Chicago/Turabian StyleJia, Binghui, and Min Zhang. 2023. "Three-Dimensional Displacement Measurement of Micro-Milling Tool Based on Fiber Array Encoding" Micromachines 14, no. 3: 631. https://doi.org/10.3390/mi14030631
APA StyleJia, B., & Zhang, M. (2023). Three-Dimensional Displacement Measurement of Micro-Milling Tool Based on Fiber Array Encoding. Micromachines, 14(3), 631. https://doi.org/10.3390/mi14030631