Wearable High Voltage Compliant Current Stimulator for Restoring Sensory Feedback
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bumbaširević, M.; Lesic, A.; Palibrk, T.; Milovanovic, D.; Zoka, M.; Kravić-Stevović, T.; Raspopovic, S. The current state of bionic limbs from the surgeon’s viewpoint. EFORT Open Rev. 2020, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Rawshani, A.; Franzén, S.; Rawshani, A.; Svensson, A.-M.; Rosengren, A.; McGuire, D.K.; Eliasson, B.; Gudbjörnsdottir, S. Age at Diagnosis of Type 2 Diabetes Mellitus and Associations with Cardiovascular and Mortality Risks: Findings from the Swedish National Diabetes Registry. Circulation 2019, 139, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, F.L.; Maggini, M.; De Bellis, A.; Seghieri, G.; Anichini, R. Lower Extremity Amputations in Persons with and without Diabetes in Italy: 2001–2010. PLoS ONE 2014, 9, e86405. [Google Scholar] [CrossRef] [Green Version]
- Belter, J.T.; Segil, J.L.; Dollar, A.M.; Weir, R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabilitation Res. Dev. 2013, 50, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Demofonti, A.; Carpino, G.; Tagliamonte, N.L.; Baldini, G.; Bramato, L.; Zollo, L. Design of a modular and compliant wrist module for upper limb prosthetics. Anat. Rec. 2022, 306, 764–776. [Google Scholar] [CrossRef]
- Price, M.A.; Beckerle, P.; Sup, F.C. Design Optimization in Lower Limb Prostheses: A Review. IEEE Trans. Neural Syst. Rehabilitation Eng. 2019, 27, 1574–1588. [Google Scholar] [CrossRef] [PubMed]
- Fogelberg, D.J.; Allyn, K.; Smersh, M.; Maitland, M.E. What People Want in a Prosthetic Foot: A Focus Group Study. JPO J. Prosthetics Orthot. 2016, 28, 145–151. [Google Scholar] [CrossRef]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef]
- Nolan, L.; Wit, A.; Dudziñ, K.; Lees, A.; Lake, M.; Wychowañ, M. Adjustments in Gait Symmetry with Walking Speed in Trans-Femoral and Trans-Tibial Amputees. Gait Posture 2003, 17, 142–151. [Google Scholar] [CrossRef]
- Roffman, C.E.; Buchanan, J.; Allison, G.T. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: Development and validation of clinical prediction rules. J. Physiother. 2014, 60, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, J.; Tyler, D.J. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 2014, 6, 257ra138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oddo, C.M.; Raspopovic, S.; Artoni, F.; Mazzoni, A.; Spigler, G.; Petrini, F.; Giambattistelli, F.; Vecchio, F.; Miraglia, F.; Zollo, L.; et al. Intraneural Stimulation Elicits Discrimination of Textural Features by Artificial Fingertip in Intact and Amputee Humans. elife 2016, 5, e09148. [Google Scholar] [CrossRef]
- Mazzoni, A.; Oddo, C.M.; Valle, G.; Camboni, D.; Strauss, I.; Barbaro, M.; Barabino, G.; Puddu, R.; Carboni, C.; Bisoni, L.; et al. Morphological Neural Computation Restores Discrimination of Naturalistic Textures in Trans-radial Amputees. Sci. Rep. 2020, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, C.; Segil, J.L.; Clemente, F.; Weir, R.F.F.; Edin, B. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand. Exp. Brain Res. 2014, 232, 3421–3429. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. New Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.J.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.-P.; Huang, H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2021. [Google Scholar] [CrossRef] [PubMed]
- Raspopovic, S.; Valle, G.; Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 2021, 20, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Valle, G. Peripheral Neurostimulation for Encoding Artificial Somatosensations. Eur. J. Neurosci. 2022, 56, 5888–5901. [Google Scholar] [CrossRef]
- Risso, G.; Valle, G. Multisensory Integration in Bionics: Relevance and Perspectives. Curr. Phys. Med. Rehabilitation Rep. 2022, 10, 123–130. [Google Scholar] [CrossRef]
- Pasluosta, C.; Kiele, P.; Čvančara, P.; Micera, S.; Aszmann, O.C.; Stieglitz, T. Bidirectional bionic limbs: A perspective bridging technology and physiology. J. Neural Eng. 2022, 19, 013001. [Google Scholar] [CrossRef]
- Petrini, F.M.; Valle, G.; Strauss, I.; Granata, G.; Di Iorio, R.; D’Anna, E.; Čvančara, P.; Mueller, M.; Carpaneto, J.; Clemente, F.; et al. Six-Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Ann. Neurol. 2018, 85, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Navarro, X.; Krueger, T.B.; Lago, N.; Micera, S.; Stieglitz, T.; Dario, P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 2005, 10, 229–258. [Google Scholar] [CrossRef] [PubMed]
- Sluka, K.A.; Walsh, D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J. Pain 2003, 4, 109–121. [Google Scholar] [CrossRef]
- Scarpelli, A.; Demofonti, A.; Terracina, F.; Ciancio, A.L.; Zollo, L. Evoking Apparent Moving Sensation in the Hand via Transcutaneous Electrical Nerve Stimulation. Front. Neurosci. 2020, 14, 534. [Google Scholar] [CrossRef] [PubMed]
- Demofonti, A.; Scarpelli, A.; Cordella, F.; Zollo, L. Modulation of Sensation Intensity in the Lower Limb via Transcutaneous Electrical Nerve Stimulation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Guadalajara, Mexico, 1–5 November 2021; pp. 6470–6474. [Google Scholar]
- Osborn, L.E.; Dragomir, A.; Betthauser, J.L.; Hunt, C.L.; Nguyen, H.H.; Kaliki, R.R.; Thakor, N.V. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 2018, 3, eaat3818. [Google Scholar] [CrossRef] [Green Version]
- D’Anna, E.; Petrini, F.M.; Artoni, F.; Popovic, I.; Simanić, I.; Raspopovic, S.; Micera, S. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 2017, 7, 10930. [Google Scholar] [CrossRef]
- Pan, L.; Vargas, L.; Fleming, A.; Hu, X.; Zhu, Y.; Huang, H. Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. J. Neural Eng. 2020, 17, 036020. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, P.; Tang, X.; Jiang, N.; Tian, L.; Li, X.; Zheng, Y.; Huang, J.; Samuel, O.W.; Wang, H.; et al. Effective Evaluation of Finger Sensation Evoking by Non-Invasive Stimulation for Sensory Function Recovery in Transradial Amputees. IEEE Trans. Neural Syst. Rehabilitation Eng. 2022, 30, 519–528. [Google Scholar] [CrossRef]
- Pasluosta, C.; Kiele, P.; Stieglitz, T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin. Neurophysiol. 2018, 129, 851–862. [Google Scholar] [CrossRef]
- Shirafkan, R.; Shoaei, O.; Ahmadi, M.K. A high efficient adiabatic Transcutaneous Electrical Nerve Stimulator (TENS) with current regulation. AEU-Int. J. Electron. Commun. 2020, 123, 153275. [Google Scholar] [CrossRef]
- Masdar, A.; Ibrahim, B.K.K.; Jamil, M.M.A. Development of wireless-based low-cost current controlled stimulator for patients with spinal cord injuries. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2012, Langkawi, Malaysia, 17–19 December 2012; pp. 493–498. [Google Scholar] [CrossRef]
- Cheng, K.; Lu, Y.; Tong, K.Y.; Rad, A.; Chow, D.; Sutanto, D. Development of a circuit for functional electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 43–47. [Google Scholar] [CrossRef]
- Johnson, D.C.; Repperger, D.W. Skin Impedance Implications of TENS Function and the Development of an Improved Stimulation Waveform. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, Montreal, QC, Canada, 20–23 September 1995; Volume 17, pp. 1687–1688. [Google Scholar]
- I Bîrlea, S.; Breen, P.; Corley, G.J.; Bîrlea, N.M.; Quondamatteo, F.; Ólaighin, G. Changes in the electrical properties of the electrode–skin–underlying tissue composite during a week-long programme of neuromuscular electrical stimulation. Physiol. Meas. 2014, 35, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Luna, J.L.V.; Krenn, M.; Ramírez, J.A.C.; Mayr, W. Dynamic Impedance Model of the Skin-Electrode Interface for Transcutaneous Electrical Stimulation. PLoS ONE 2015, 10, e0125609. [Google Scholar] [CrossRef]
- Collu, R.; Earley, E.J.; Barbaro, M.; Ortiz-Catalan, M. Non-rectangular neurostimulation waveforms elicit varied sensation quality and perceptive fields on the hand. Sci. Rep. 2023, 13, 1588. [Google Scholar] [CrossRef] [PubMed]
- Günter, C.; Delbeke, J.; Ortiz-Catalan, M. Safety of long-term electrical peripheral nerve stimulation: Review of the state of the art. J. Neuroeng. Rehabil. 2019, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Karpul, D.; McIntyre, S.; Van Schaik, A.; Breen, P.P. Measurement of Perception Thresholds for Electrical Noise Stimuli. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Jeju, Republic of Korea, 11–15 July 2017; pp. 2166–2169. [Google Scholar]
- Zollo, L.; Di Pino, G.; Ciancio, A.L.; Ranieri, F.; Cordella, F.; Gentile, C.; Noce, E.; Romeo, R.A.; Bellingegni, A.D.; Vadalà, G.; et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 2019, 4. [Google Scholar] [CrossRef]
- Valle, G.; Petrini, F.M.; Strauss, I.; Iberite, F.; D’Anna, E.; Granata, G.; Controzzi, M.; Cipriani, C.; Stieglitz, T.; Rossini, P.M.; et al. Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 2018, 8, 16666. [Google Scholar] [CrossRef] [Green Version]
- Formento, E.; D’Anna, E.; Gribi, S.; Lacour, S.P.; Micera, S. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. J. Neural Eng. 2020, 17, 046019. [Google Scholar] [CrossRef]
- George, J.A.; Kluger, D.T.; Davis, T.S.; Wendelken, S.M.; Okorokova, E.V.; He, Q.; Duncan, C.C.; Hutchinson, D.T.; Thumser, Z.C.; Beckler, D.T.; et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 2019, 4, eaax2352. [Google Scholar] [CrossRef] [Green Version]
- Bensmaia, S.J.; Tyler, D.J.; Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. 2020. [Google Scholar] [CrossRef] [PubMed]
- Karpul, D.; Cohen, G.K.; Gargiulo, G.D.; Van Schaik, A.; McIntyre, S.; Breen, P.P. Low-power transcutaneous current stimulator for wearable applications. Biomed. Eng. Online 2017, 16, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-P.; Guo, A.-W.; Zhou, Y.-X.; Xia, Y.; Huang, J.; Xu, C.-Y.; Huang, Z.-H.; Lü, X.-Y.; Wang, Z.-G. A wireless wearable surface functional electrical stimulator. Int. J. Electron. 2017, 104, 1514–1526. [Google Scholar] [CrossRef]
- Farahmand, S.; Vahedian, H.; Abedinkhan Eslami, M.; Sodagar, A.M. Wearable, Battery-Powered, Wireless, Programmable 8-Channel Neural Stimulator. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, San Diego, CA, USA, 28 August–1 September 2012; pp. 6120–6123. [Google Scholar]
- Jovičić, N.S.; Saranovac, L.V.; Popović, D.B. Wireless distributed functional electrical stimulation system. J. Neuroeng. Rehabil. 2012, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Work | Input Voltage | Output Voltage | Size | PW | Freq | Shape | Tested on |
---|---|---|---|---|---|---|---|
This work | 5 V | ±90 | 115.9 mm × 61 mm | ≥50 μs | ≤500 Hz | Programmable | Skin-like circuit |
[45] | - | ±72 | 46 mm × 89 mm | - | ≤1 kHz | Sinusoidal | 60 kΩ load |
[31] | 3.7–4.2 V | ±80 | 96 mm × 89 mm | 100–1000 μs | 1–200 Hz | Biphasic Symmetric | RC series circuit R ≤ 2 kΩ C ≤ 1 μF |
[46] | 12 V | ±60 | 170 mm × 75 mm | 100–600 μs | 20–80 Hz | Biphasic Asymmetric | 1 kΩ |
[47] | 3.3 V | 23 | 90 mm × 50 mm | 0–500 μs | 1–60 Hz | Biphasic | 15 kΩ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collu, R.; Paolini, R.; Bilotta, M.; Demofonti, A.; Cordella, F.; Zollo, L.; Barbaro, M. Wearable High Voltage Compliant Current Stimulator for Restoring Sensory Feedback. Micromachines 2023, 14, 782. https://doi.org/10.3390/mi14040782
Collu R, Paolini R, Bilotta M, Demofonti A, Cordella F, Zollo L, Barbaro M. Wearable High Voltage Compliant Current Stimulator for Restoring Sensory Feedback. Micromachines. 2023; 14(4):782. https://doi.org/10.3390/mi14040782
Chicago/Turabian StyleCollu, Riccardo, Roberto Paolini, Martina Bilotta, Andrea Demofonti, Francesca Cordella, Loredana Zollo, and Massimo Barbaro. 2023. "Wearable High Voltage Compliant Current Stimulator for Restoring Sensory Feedback" Micromachines 14, no. 4: 782. https://doi.org/10.3390/mi14040782