Optical Logic Gates Based on Z-Shaped Silicon Waveguides at 1.55 μm
Abstract
:1. Introduction
2. Waveguide Structure
3. Waveguide Performance
4. XOR, AND, OR
4.1. XOR
4.2. AND
4.3. OR
5. NOT, NOR, NAND, XNOR
5.1. NOT
5.2. NOR
5.3. NAND
5.4. XNOR
6. Comparison
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipson, M. Guiding, modulating, and emitting light on silicon—Challenges and opportunities. J. Light. Technol. 2005, 23, 4222–4238. [Google Scholar] [CrossRef]
- Vlasov, Y.A. Silicon photonics for next-generation computing systems. In Proceedings of the 34th European Conference on Optical Communication (ECOC 2008), Brussels, Belgium, 21–25 September 2008. paper Tu.1.A.1. [Google Scholar]
- Lee, B.G.; Bergmann, K. Silicon nano-photonic interconnection networks in multicore processor systems. In Proceedings of the Frontiers in Optics OSA Annual Meeting, Rochester, NY, USA, 19–23 October 2008. paper FTh S1. [Google Scholar]
- Thourhout, D.V.; Campenhout, J.V.; Baets, R.; Rojo-Romeo, P.; Regreny, P.; Seassal, C.; Binetti, P.; Leijtens, X.J.M.; Ntzel, R.; Smit, M.K.; et al. Photonic interconnect layer on CMOS. In Proceedings of the 33rd European Conference and Exhibition on Optical Communication (ECOC 2007), Berlin, Germany, 16–20 September 2007. paper 6.3.1. [Google Scholar]
- Tsybeskov, L.; Lockwood, D.J.; Ichikawa, M. Silicon photonics: CMOS going optical. Proc. IEEE 2009, 97, 1161–1165. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photon. Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Tsuchizawa, T.; Yamada, K.; Fukuda, H.; Watanabe, T.; Takahashi, J.; Takahashi, M.; Shoji, T.; Tamechika, E.; Itabashi, S.; Morita, H.; et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quant. Electron. 2005, 11, 232–240. [Google Scholar] [CrossRef]
- Rani, P.; Kalra, Y.; Sinha, R.K. Design of all optical logic gates in photonic crystal waveguides. Optik 2015, 126, 950–955. [Google Scholar] [CrossRef]
- Husko, C.; Vo, T.D.; Corcoran, B.; Li, J.; Krauss, T.; Eggleton, B. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. Opt. Express 2011, 19, 20681–20690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andalib, P.; Granpayeh, N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 2009, 26, 10–16. [Google Scholar] [CrossRef]
- Jandieri, V.; Khomeriki, R.; Erni, D. Realization of true all-optical AND logic gate based on the nonlinear coupled air-hole type photonic crystal waveguide. Opt. Express 2018, 26, 19845–19853. [Google Scholar] [CrossRef] [Green Version]
- Priya, N.H.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and analysis of an optical three-input AND gate using a photonic crystal fiber. Appl. Opt. 2022, 61, 77–83. [Google Scholar]
- Priya, N.H.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and analysis of a photonic crystal-based all-optical 3-input OR gate for high-speed optical processing. Opt. Quantum Electron. 2021, 53, 720. [Google Scholar] [CrossRef]
- Rao, D.G.S.; Swarnakar, S.; Palacharla, V.; Raju, K.S.R.; Kumar, S. Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photonic Netw. Commun. 2021, 41, 109–118. [Google Scholar] [CrossRef]
- Swarnakar, S.; Palacharla, V.; Muduli, A.; Kumar, S. Design and optimization of photonic crystal based all-optical logic gate with enhanced contrast ratio. Opt. Quantum Electron. 2023, 55, 623. [Google Scholar] [CrossRef]
- Rachana, M.; Swarnakar, S.; Babu, M.R.; Swetha, P.M.; Rangaiah, Y.P.; Krishna, S.V.; Kumar, S. Optimization of an all-optical 3-input universal logic gate with an enhanced contrast ratio by exploiting T-shaped photonic crystal waveguide. App. Opt. 2022, 61, 8162–8171. [Google Scholar] [CrossRef]
- Swarnakar, S.; Anguluri, S.P.K.; Alluru Sreevani, A.; Kumar, S. A novel structure of all-optical optimised NAND, NOR and XNOR logic gates employing a Y-shaped plasmonic waveguide for better performance and high-speed computations. Opt. Quantum Electron. 2022, 54, 530. [Google Scholar] [CrossRef]
- Ishizaka, Y.; Kawaguchi, Y.; Saitoh, K.; Koshiba, M. Design of ultracompact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 2011, 284, 3528–3533. [Google Scholar] [CrossRef]
- Kita, S.; Nozaki, K.; Takata, K.; Shinya, A.; Notomi, M. Ultrashort low-loss Ψ gates for linear optical logic on Si photonics platform. Commun. Phys. 2020, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Zhang, Y.; Pun, E. Ultrasmall optical logic gates based on silicon periodic dielectric waveguides. Photon. Nanostr. Fundam. Appl. 2010, 8, 32. [Google Scholar] [CrossRef]
- Cui, L.; Yu, L. Multifunctional logic gates based on silicon hybrid plasmonic waveguides. Mod. Phys. Lett. B 2018, 32, 1850008. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Li, W. Silicon-on-silica waveguides-based all-optical logic gates at 1.55 μm. Phys. Scr. 2023, 98, 035517. [Google Scholar] [CrossRef]
- Gao, L.; Chen, L.; Wei, H.; Xu, H. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 2018, 10, 14771. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Wei, H.; Xu, H. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt. Express 2013, 21, 9556. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Gong, Q. Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt. Commun. 2014, 313, 27–35. [Google Scholar] [CrossRef]
- Al-Musawi, H.K.; Al-Janabi, A.K.; Al-Abassi, S.A.W.; Abusiba, N.A.A.; Al-Fatlawi, N.A.Q. Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optik 2020, 223, 165416. [Google Scholar] [CrossRef]
- Yao, C.; Kotb, A.; Wang, B.; Singh, S.; Guo, C. All-optical logic gates using dielectric-loaded waveguides with quasi-rhombus metasurfaces. Opt. Lett. 2020, 45, 3769–3772. [Google Scholar] [CrossRef]
- Keshtkar, P.; Miri, M.; Yasrebi, N. Low power, high speed, all-optical logic gates based on optical bistability in graphene-containing compact microdisk resonators. Appl. Opt. 2021, 60, 7234–7242. [Google Scholar] [CrossRef]
- Kotb, A.; Guo, C. 100 Gb/s all-optical multifunctional AND, XOR, NOR, OR, XNOR, and NAND logic gates in a single compact scheme based on semiconductor optical amplifiers. Opt. Laser Technol. 2021, 137, 106828. [Google Scholar] [CrossRef]
- Available online: www.lumerical.com/tcadproducts/fdtd/ (accessed on 31 December 2018).
- Smith, B.J.; Kundys, D.; Thomas-Peter, N.; Smith, P.G.R.; Walmsley, I.A. Phase-controlled integrated photonic quantum circuits. Opt. Express 2009, 17, 13516–13525. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, Z.; Li, Y.; Zhang, Z.; Wang, L.; Chen, Q. Phase customization in photonic integrated circuits with trimmed waveguides. Opt. Lett. 2022, 47, 5889–5892. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, C.; Chen, Y.; Feng, L.; Yan, L.; Zhang, Q.; Bao, J.; Liu, B.; Ren, X.; Jianwei Wang, J.; et al. On-chip path encoded photonic quantum Toffoli gate. Photon. Res. 2022, 10, 1533–1542. [Google Scholar] [CrossRef]
- Klauck, F.; Heinrich, M.; Szameit, A. Photonic two-particle quantum walks in Su–Schrieffer–Heeger lattices. Photon. Res. 2021, 9, A1–A7. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Xu, J.; Lin, Z.; Yu, H.; Wang, M.; Fang, Z.; Cheng, Y.; Gong, Q.; Li, Y. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photon. Res. 2019, 7, 503–507. [Google Scholar] [CrossRef]
- Anton, C.; Loredo, J.C.; Coppola, G.; Ollivier, H.; Viggianiello, N.; Harouri, A.; Somaschi, N.; Crespi, A.; Sagnes, I.; Lemaitre, A.; et al. Interfacing scalable photonic platforms: Solid-state based multi-photon interference in a reconfigurable glass chip. Optica 2019, 6, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, S.; Rab, A.S.; Corrielli, G.; Polino, E.; Valeri, M.; Mataloni, P.; Spagnolo, N.; Crespi, A.; Sciarrino, F.; Osellame, R. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits. Optica 2018, 5, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. 2018, 12, 596–600. [Google Scholar] [CrossRef]
- Rizzo, A.; Dave, U.; Novick, A.; Freitas, A.; Roberts, S.P.; James, A.; Lipson, M.; Bergman, K. Fabrication-robust silicon photonic devices in standard sub-micron silicon-on-insulator processes. Opt. Lett. 2023, 48, 215–218. [Google Scholar] [CrossRef]
- Marshall, G.D.; Politi, A.; Matthews, J.C.F.; Dekker, P.; Ams, M.; Withford, M.J.; O’Brien, J.L. Laser written waveguide photonic quantum circuits. Opt. Express 2009, 17, 12546–12554. [Google Scholar] [CrossRef]
- Xu, Q.; Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 2007, 15, 924–929. [Google Scholar] [CrossRef]
- Crisp, J.; Elliott, B. Introduction to Fiber Optics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Vercruysse, D.; Sapra, N.V.; Su, L.; Trivedi, R.; Vučković, J. Analytical level set fabrication constraints for inverse design. Sci. Rep. 2019, 9, 8999. [Google Scholar] [CrossRef] [Green Version]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Outlook for inverse design in nanophotonics. Nat. Photon. 2018, 12, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Vuckovic, J. Nanophotonic Computational Design. Opt. Express 2013, 21, 7748–7759. [Google Scholar] [CrossRef]
- Jensen, J.S.; Sigmund, O. Topology optimization for nano-photonics. Laser Photon. Rev. 2011, 5, 308–321. [Google Scholar] [CrossRef]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express 2014, 22, 27175–27182. [Google Scholar] [CrossRef] [PubMed]
- Piggott, A.Y.; Lu, J.; Lagoudakis, K.G.; Petykiewicz, J.; Babinec, T.M.; Vučković, J. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 2015, 9, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beam splitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Sell, D.; Yang, J.; Doshay, S.; Yang, R.; Fan, J.A. Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. Nano Lett. 2017, 17, 3752–3757. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Cui, H.; Sun, X. Genetically optimized on-chip wideband ultracompact refectors and Fabry–Perot cavities. Photon. Res. 2017, 5, B15–B19. [Google Scholar] [CrossRef]
- Su, L.; Piggott, A.Y.; Sapra, N.V.; Petykiewicz, J.; Vučković, J. Inverse Design and Demonstration of a Compact on-Chip Narrowband Tree-Channel Wavelength Demultiplexer. ACS Photon. 2018, 5, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Sitawarin, C.; Jin, W.; Lin, Z.; Rodriguez, A.W. Inverse-designed photonic fbers and metasurfaces for nonlinear frequency conversion. Photon. Res. 2018, 6, 82–89. [Google Scholar] [CrossRef]
- Pestourie, R.; Pérez-Arancibia, C.; Lin, Z.; Shin, W.; Capasso, F.; Johnson, S.G. Inverse design of large-area metasurfaces. Opt. Express 2018, 26, 33732–33747. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Hughes, T.; Zhao, Z.; Fan, S. Adjoint-based optimization of active nanophotonic devices. Opt. Express 2018, 26, 3236–3248. [Google Scholar] [CrossRef]
- Donzella, V.; Sherwali, A.; Flueckiger, J.; Grist, S.M.; Fard, S.T.; Chrostowski, L. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express 2015, 23, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 2012, 12, 5784–5790. [Google Scholar] [CrossRef] [PubMed]
Symbol | Definition | Value | Unit |
---|---|---|---|
L1 | Length of short slot | 1.0 | μm |
L2 | Length of long slot | 1.5 | μm |
w | Width of slot | 0.3 | μm |
d | Thickness of slot | 0.3 | μm |
θ | Angle between slots | 70 | degree |
λ | Operating wavelength | 1.55 | μm |
Tth | Threshold transmission | 0.12 | - |
Pin1 (Clk) | Pin2 | Pin3 | T | Pout | CR (dB) |
---|---|---|---|---|---|
1 | 0 | 0 | 0.028 | 0 | 29 |
1 | 0 | 1 | 0.576 | 1 | |
1 | 1 | 0 | 0.552 | 1 | |
1 | 1 | 1 | 0.034 | 0 |
Pin1 (Clk) | Pin2 | Pin3 | T | Pout | CR (dB) |
---|---|---|---|---|---|
1 | 0 | 0 | 0.028 | 0 | 33.26 |
1 | 0 | 1 | 0.036 | 0 | |
1 | 1 | 0 | 0.026 | 0 | |
1 | 1 | 1 | 0.835 | 1 |
Pin1 (Clk) | Pin2 | Pin3 | T | Pout | CR (dB) |
---|---|---|---|---|---|
1 | 0 | 0 | 0.028 | 0 | 31.51 |
1 | 0 | 1 | 0.576 | 1 | |
1 | 1 | 0 | 0.552 | 1 | |
1 | 1 | 1 | 0.835 | 1 |
Gate | CR (dB) with Clk | CR (dB) without Clk |
---|---|---|
XOR | 29 | 8.2 |
AND | 33.26 | 10.6 |
OR | 31.51 | 9.8 |
Pin1 | Pin3 (Clk) | T | Pout | CR (dB) |
---|---|---|---|---|
0 | 1 | 0.862 | 0 | 31.76 |
1 | 1 | 0.036 | 1 |
Pin1 | Pin2 | Pin3 (Clk) | T | Pout | CR (dB) |
---|---|---|---|---|---|
0 | 0 | 1 | 0.862 | 1 | 31.50 |
0 | 1 | 1 | 0.038 | 0 | |
1 | 0 | 1 | 0.036 | 0 | |
1 | 1 | 1 | 0.036 | 0 |
Pin1 | Pin2 | Pin3 (Clk) | T | Pout | CR (dB) |
---|---|---|---|---|---|
0 | 0 | 1 | 0.862 | 1 | 29.83 |
0 | 1 | 1 | 0.735 | 1 | |
1 | 0 | 1 | 0.536 | 1 | |
1 | 1 | 1 | 0.036 | 0 |
Pin1 | Pin2 | Pin3 (Clk) | T | Pout | CR (dB) |
---|---|---|---|---|---|
0 | 0 | 1 | 0.862 | 1 | 31.33 |
0 | 1 | 1 | 0.038 | 0 | |
1 | 0 | 1 | 0.036 | 0 | |
1 | 1 | 1 | 0.836 | 1 |
Gates | Platform | Size | Wavelength (nm) | CR (dB) | Refs. |
---|---|---|---|---|---|
AND, XOR, OR, NOT, NAND, NOR XNOR | PC waveguides | - | 1550 | 5.42–9.59 | [8] |
AND, XOR, OR | T-shaped PC waveguides | 9 μm × 5 μm | 1550 | 8.29–33.05 | [12,13,14] |
AND, NOR, XNOR | Silicon photonics platform | 3 μm × 1.5 μm | 1550 | >10 dB | [19] |
XOR, AND, OR, NOT, NOR, XNOR, NAND | Silicon-on-silica waveguides | 1.5 μm × 2.36 μm | 1550 | 20.51–30.33 | [22] |
NOT, XOR, AND, OR, NOR, NAND, XNOR | Metal slot waveguide | 5.33 μm × 0.42 μm | 632.8 | 6–16 | [24] |
NOT, XOR, AND, OR, NOR, NAND, XNOR | Metal-insulator-metal structures | 50 μm × 2 μm | 632.8 | 15 | [25] |
NOT, XOR, AND, OR, NOR, NAND, XNOR | Dielectric-metal-dielectric design | 0.4 μm × 0.15 μm | 900 and 1330 | 5.37–22 | [26] |
XOR, AND, OR, NOR, NAND, XNOR | Dielectric-loaded waveguides | - | 471 | 24.41–33.39 | [27] |
XOR, AND, OR, NOT, NOR, XNOR, NAND | Z-shaped silicon waveguides | 1.0 μm × 1.5 μm | 1550 | 29–33.26 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotb, A.; Zoiros, K.E.; Hatziefremidis, A.; Guo, C. Optical Logic Gates Based on Z-Shaped Silicon Waveguides at 1.55 μm. Micromachines 2023, 14, 1266. https://doi.org/10.3390/mi14061266
Kotb A, Zoiros KE, Hatziefremidis A, Guo C. Optical Logic Gates Based on Z-Shaped Silicon Waveguides at 1.55 μm. Micromachines. 2023; 14(6):1266. https://doi.org/10.3390/mi14061266
Chicago/Turabian StyleKotb, Amer, Kyriakos E. Zoiros, Antonios Hatziefremidis, and Chunlei Guo. 2023. "Optical Logic Gates Based on Z-Shaped Silicon Waveguides at 1.55 μm" Micromachines 14, no. 6: 1266. https://doi.org/10.3390/mi14061266