Reconfigurable Terahertz Spatial Deflection Varifocal Metamirror
Abstract
:1. Introduction
2. Structure Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless Phase Discontinuities for Controlling Light Propagation. Nano Lett. 2012, 12, 5750–5755. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Zhang, Y.; Cheng, H.; Tian, J. Phase Manipulation of Electromagnetic Waves with Metasurfaces and Its Applications in Nanophotonics. Adv. Opt. Mater. 2018, 6, 1800104. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Liu, C.; Shah, S.M.A. A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 2019, 153, 179–188. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Kenney, M.; Su, X.; Xu, N.; Ouyang, C.; Shi, Y.; Han, J.; Zhang, W.; Zhang, S. Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude. Adv. Mater. 2014, 26, 5031–5036. [Google Scholar] [CrossRef]
- Kindness, S.J.; Almond, N.W.; Michailow, W.; Wei, B.; Delfanazari, K.; Braeuninger-Weimer, P.; Hofmann, S.; Beere, H.E.; Ritchie, D.A.; Degl’Innocenti, R. A Terahertz Chiral Metamaterial Modulator. Adv. Opt. Mater. 2020, 8, 2000581. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, S.; Hu, H.; Song, H.; Zeng, W.; Gan, Q. Artificial birefringent metallic planar structures for terahertz wave polarization manipulation. Opt. Lett. 2014, 39, 311–314. [Google Scholar] [CrossRef]
- Xu, H.X.; Hu, G.; Li, Y.; Han, L.; Zhao, J.; Sun, Y.; Yuan, F.; Wang, G.M.; Jiang, Z.H.; Ling, X.; et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light Sci. Appl. 2019, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.E.; Staude, I.; James, A.; Dominguez, J.; Liu, S.; Campione, S.; Subramania, G.S.; Luk, T.S.; Decker, M.; Neshev, D.N.; et al. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. Nano Lett. 2015, 15, 5369–5374. [Google Scholar] [CrossRef]
- Lalanne, P.; Chavel, P. Metalenses at visible wavelengths: Past, present, perspectives. Laser Photon- Rev. 2017, 11, 1600295. [Google Scholar] [CrossRef]
- Fallah, S.; Rouhi, K.; Abdolali, A. Optimized chemical potential graphene-based coding metasurface approach for dynamic manipulation of terahertz wavefront. J. Phys. D Appl. Phys. 2019, 53, 085102. [Google Scholar] [CrossRef]
- Huang, C.; Liao, J.; Ji, C.; Peng, J.; Yuan, L.; Luo, X. Graphene-Integrated Reconfigurable Metasurface for Independent Manipulation of Reflection Magnitude and Phase. Adv. Opt. Mater. 2021, 9, 2001950. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Shi, G.; Zhu, C.; Shi, Y. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 2016, 108, 241901. [Google Scholar] [CrossRef]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Briere, G.; Fang, X.; Ni, P.; Sawant, R.; Héron, S.; Chenot, S.; Vézian, S.; Damilano, B.; Brändli, V.; et al. Metasurface orbital angular momentum holography. Nat. Commun. 2019, 10, 2986. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Li, Z.; Wan, S.; Wang, Z.; Wan, C.; Dai, C.; Li, Z. Angular Multiplexing Nanoprinting with Independent Amplitude Encryption Based on Visible-Frequency Metasurfaces. ACS Appl. Mater. Interfaces 2021, 13, 38623–38628. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-J.; Yen, T.-J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Appl. Phys. Lett. 2013, 102, 011129. [Google Scholar] [CrossRef]
- Mueller, J.P.B.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, J.; Yuan, W.; Zhao, J.; Dai, J.Y.; Guo, T.C.; Liang, J.; Xu, G.Y.; Cheng, Q.; Cui, T.J. An ultralight and thin metasurface for radar-infrared bi-stealth applications. J. Phys. D Appl. Phys. 2017, 50, 444002. [Google Scholar] [CrossRef]
- Zhong, S.; Wu, L.; Liu, T.; Huang, J.; Jiang, W.; Ma, Y. Transparent transmission-selective radar-infrared bi-stealth structure. Opt. Express 2018, 26, 16466–16476. [Google Scholar] [CrossRef]
- Zahra, S.; Ma, L.; Wang, W.; Li, J.; Chen, D.; Liu, Y.; Zhou, Y.; Li, N.; Huang, Y.; Wen, G. Electromagnetic Metasurfaces and Reconfigurable Metasurfaces: A Review. Front. Phys. 2021, 8, 593411. [Google Scholar] [CrossRef]
- Jablan, M.; Buljan, H.; Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.R.; Gutierrez, C.E.; Nemilentsau, A.; Lee, I.H.; Oh, S.H.; Avouris, P.; Low, T. Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing. Phys. Rev. Appl. 2018, 9, 034021. [Google Scholar] [CrossRef] [Green Version]
- Hanson, G.W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 2008, 104, 084314. [Google Scholar] [CrossRef]
- Hosseininejad, S.E.; Rouhi, K.; Neshat, M.; Faraji-Dana, R.; Cabellos-Aparicio, A.; Abadal, S.; Alarcón, E. Reprogrammable Graphene-based Metasurface Mirror with Adaptive Focal Point for THz Imaging. Sci. Rep. 2019, 9, 2868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Shi, L.; Yang, J.; Fu, Y.; Liu, C.; Wu, J.W.; Yang, F.; Bao, L.; Cui, T.J. Flexible Terahertz Beam Manipulations Based on Liquid-Crystal-Integrated Programmable Metasurfaces. ACS Appl. Mater. Interfaces 2022, 14, 22287–22294. [Google Scholar] [CrossRef]
- Shabanpour, J.; Sedaghat, M.; Nayyeri, V.; Oraizi, H.; Ramahi, O.M. Real-time multi-functional near-infrared wave manipulation with a 3-bit liquid crystal based coding metasurface. Opt. Express 2021, 29, 14525–14535. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef]
- Hashemi, M.R.M.; Yang, S.H.; Wang, T.Y.; Sepulveda, N.; Jarrahi, M. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces. Sci. Rep-Uk 2016, 6, 35439. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, W.; Deng, S.; Qu, J.; Li, Y.; Lv, B.; Li, W.; Gao, X.; Zhu, Z.; Guan, C.; et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces. Opt. Lett. 2022, 47, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Yatooshi, T.; Ishikawa, A.; Tsuruta, K. Terahertz wavefront control by tunable metasurface made of graphene ribbons. Appl. Phys. Lett. 2015, 107, 053105. [Google Scholar] [CrossRef]
- Mehmood, M.Q.; Seong, J.; Naveed, M.A.; Kim, J.; Zubair, M.; Riaz, K.; Massoud, Y.; Rho, J. Single-Cell-Driven Tri-Channel Encryption Meta-Displays. Adv. Sci. 2022, 9, 2203962. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Kim, M.; Rho, J. Next-Generation Imaging Techniques: Functional and Miniaturized Optical Lenses Based on Metamaterials and Metasurfaces. Micromachines 2021, 12, 1142. [Google Scholar] [CrossRef]
- Chen, Y.; Pu, S.; Wang, C.; Yi, F. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity. Opt. Lett. 2021, 46, 1930–1933. [Google Scholar] [CrossRef]
- Shao, L.; Zhou, K.; Zhao, F.; Gao, Y.; Wang, B.; Shen, X. Mid-Infrared Continuous Varifocal Metalens with Adjustable Intensity Based on Phase Change Materials. Photonics 2022, 9, 959. [Google Scholar] [CrossRef]
- Kim, J.; Seong, J.; Yang, Y.; Moon, S.W.; Badloe, T.; Rho, J. Tunable metasurfaces towards versatile metalenses and metaholograms: A review. Adv. Photonics 2022, 4, 024001. [Google Scholar] [CrossRef]
- Fan, J.; Cheng, Y. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D Appl. Phys. 2019, 53, 025109. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Zhang, L.; Xu, Q.; Wang, Q.; Wan, X.; Gu, J.Q.; Tang, W.X.; Qing Qi, M.; Han, J.G.; et al. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Adv. Sci. 2016, 3, 1600156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Zhong, R.; Xu, B.; Zhang, H.; Wu, Q.; Guo, B.; Wang, J.; Wu, Z.; Hu, M.; Zhang, K.; et al. Reconfigurable Terahertz Spatial Deflection Varifocal Metamirror. Micromachines 2023, 14, 1313. https://doi.org/10.3390/mi14071313
Fang J, Zhong R, Xu B, Zhang H, Wu Q, Guo B, Wang J, Wu Z, Hu M, Zhang K, et al. Reconfigurable Terahertz Spatial Deflection Varifocal Metamirror. Micromachines. 2023; 14(7):1313. https://doi.org/10.3390/mi14071313
Chicago/Turabian StyleFang, Jianhui, Renbin Zhong, Boli Xu, Huimin Zhang, Qian Wu, Benzheng Guo, Jianian Wang, Zhenhua Wu, Min Hu, Kaichun Zhang, and et al. 2023. "Reconfigurable Terahertz Spatial Deflection Varifocal Metamirror" Micromachines 14, no. 7: 1313. https://doi.org/10.3390/mi14071313
APA StyleFang, J., Zhong, R., Xu, B., Zhang, H., Wu, Q., Guo, B., Wang, J., Wu, Z., Hu, M., Zhang, K., & Liu, D. (2023). Reconfigurable Terahertz Spatial Deflection Varifocal Metamirror. Micromachines, 14(7), 1313. https://doi.org/10.3390/mi14071313