Experimental Validation of a Micro-Extrusion Set-Up with In-Line Rheometry for the Production and Monitoring of Filaments for 3D-Printing
Abstract
:1. Introduction
2. Materials and Methods
3. Filament Micro-Extrusion Line and In-Line Micro-Slit Rheometer
4. Results and Discussion
4.1. Operational Window of the Set-Up
4.2. Validation of the In-Line Micro-Slit Rheometer
4.3. Printability of the Extruded Filaments
4.4. Rheology-Printability Relationships
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef]
- Ghyr, G.; DeSimone, J.M. Review of high-performance sustainable polymers in additive manufacturing. Green Chem. 2023, 25, 453–466. [Google Scholar] [CrossRef]
- Harris, M.; Potgieter, J.; Archer, R.; Arif, K.M. Effect of Material and Process Specific Factors on the Strength of Printed Parts in Fused Filament Fabrication: A Review of Recent Developments. Materials 2019, 12, 1664. [Google Scholar] [CrossRef] [Green Version]
- Syrlybayev, D.; Zharylkassyn, B.; Seisekulova, A.; Akhmetov, M.; Perveen, A.; Talamona, D. Optimisation of StrengthProperties of FDM Printed Parts—A Critical Review. Polymers 2021, 13, 1587. [Google Scholar] [CrossRef]
- Hannibal, M.; Knight, G. Additive Manufacturing and The Global Factory: Disruptive Technologies and The Location of International Business. Int. Bus. Rev. 2018, 27, 1116–1127. Available online: https://ideas.repec.org/a/eee/iburev/v27y2018i6p1116-1127.html (accessed on 23 July 2023). [CrossRef]
- Kohlgrüber, K. Co-Rotating Twin-Screw Extruder: Fundamentals, Technology, and Applications; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2008. [Google Scholar]
- Lewandowski, A.; Wilczyínski, K.J.; Nastaj, A.; Wilczýnski, K. A composite model for an intermeshing counter-rotating twin-screw extruder and its experimental verification. Polym. Eng. Sci. 2015, 55, 2838–2848. [Google Scholar] [CrossRef]
- Jiang, Q.; White, J.L.; Yang, J. A global model for closely intermeshing counter-rotating twin screw extruders with flood feeding. Int. Polym. Process. 2010, 25, 223–235. [Google Scholar] [CrossRef]
- Covas, J.A.; Costa, P. A miniature extrusion line for small scale processing studies. Polym. Test. 2004, 23, 763–773. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Maia, J.M.; Covas, J.A.; Hilliou, L. A small-scale experimental extrusion set-up for exploring relationships between process-induced structures and characteristics of multiphase polymer systems. Macromol. Mat. Eng. 2015, 12, 1278–1289. [Google Scholar] [CrossRef]
- Coogan, T.J.; Kazmer, D.O. In-line rheological monitoring of fused deposition modelling. J. Rheol. 2019, 63, 141–155. [Google Scholar] [CrossRef]
- Fischer, J.; Echsel, M.; Springer, P.; Refle, O. In-line measurement of extrusion force and use for nozzle comparison in filament based additive manufacturing. Prog. Addit. Manuf. 2023, 8, 9–17. [Google Scholar] [CrossRef]
- Tammaro, D. Rheological characterization of complex fluids through a table-top 3D printer. Rheol. Acta 2022, 61, 761–772. [Google Scholar] [CrossRef]
- Das, A.; Gilmer, E.L.; Biria, S.; Bortner, M.J. Importance of polymer rheology on material extrusion additive manufacturing: Correlating process physics to print properties. ACS Appl. Polym. Mater. 2021, 3, 1218–1249. [Google Scholar] [CrossRef]
- Costa, S.; Teixeira, P.F.; Covas, J.A.; Hilliou, L. Assessment of piezoelectric sensors for the acquisition of steady melt pressures in polymer extrusion. Fluids 2019, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, H.; Dorigato, A.; Pegoretti, A. Thermal mending in novel epoxy/cyclic olefin copolymer blends. eXPRESS Polym. Lett. 2020, 14, 368–383. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Covas, J.A.; Hilliou, L. In-line rheo-optical investigation of the dispersion of organoclay in a polymer matrix during twin-screw compounding. Polymers 2021, 13, 2128. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Covas, J.A.; Hilliou, L.; Maia, J.M. Assessing the practical utility of the hole-pressure method for the in-line rheological characterization of polymer melts. Rheol. Acta 2013, 52, 661–772. [Google Scholar] [CrossRef]
- Teixeira, P.F.; Ferrás, L.L.; Hilliou, L.; Covas, J.A. A new double-slit rheometrical die for in-process characterization and extrusion of thermo-mechanically sensitive polymer systems. Polym. Test. 2018, 66, 137–145. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology, Principles, Measurements and Applications; VCH: New York, NY, USA, 1994. [Google Scholar]
- Vlassopoulos, D.; Snijkers, F. Appraisal of the Cox-Merz rule for well-characterized entangled linear and branched polymers. Rheol. Acta 2014, 53, 935–946. [Google Scholar] [CrossRef]
- Lu, J.; Qiang, Y.; Wu, W.; Jiang, B. Experimental study on viscosity properties of cyclic olefin copolymer (COC) flowing through micro capillary dies. Polym. Test. 2020, 89, 106635. [Google Scholar] [CrossRef]
- Wu, W.Q.; Zeng, K.; Zhao, B.S.; Duan, F.S.; Jiang, F.Z. New considerations on the determination of the apparent shear viscosity of polymer melt with micro capillary dies. Polymers 2021, 13, 4451. [Google Scholar] [CrossRef] [PubMed]
- COC Topas 8007S Datasheet. Available online: https://topas.com/sites/default/files/TDS8007S04e.pdf (accessed on 1 March 2023).
- Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Lacambra-Ambreu, X.; Morelle, X.P.; Maazouz, A.; Chenal, J.-M.; Lamnawa, K. Rheological investigation and modeling of healing properties during extrusion-based 3D printing of poly(lactic-acid). Rheol. Acta 2023, 62, 31–44. [Google Scholar] [CrossRef]
- Rashed, K.; Kafi, A.; Simons, R.; Bateman, S. Optimization of material extrusion additive manufacturing process parameters for polyethylene ketone ketone (PEKK). Int. J. Adv. Manuf. Technol. 2023, 126, 1067–1091. [Google Scholar] [CrossRef]
- Mackay, M.E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 2018, 62, 1549–1561. [Google Scholar] [CrossRef]
- McIlroy, C.; Olmsted, P.D. Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J. Rheol. 2017, 61, 379–397. [Google Scholar] [CrossRef] [Green Version]
Test | Changed Parameter | Tset (°C) | N (rpm) | Q (g/h) | ΔT (°C) | QT (g/h) |
---|---|---|---|---|---|---|
0 | Reference conditions | 180 | 15 | 90 | 0.6 ± 0.1 | 93.0 ± 1.8 |
1 | Temperature | 170 | 15 | 90 | 1.0 ± 0.1 | 90.6 ± 1.2 |
2 | Temperature | 190 | 15 | 90 | 0.4 ± 0.1 | 93.0 ± 0.6 |
3 | Screw speed | 180 | 10 | 90 | 0.5 ± 0.1 | 89.4 ± 0.6 |
4 | Screw speed | 180 | 20 | 90 | 0.6 ± 0.1 | 93.6 ± 1.8 |
5 | Feeder throughput | 180 | 15 | 60 | 0.4 ± 0.2 | 62.4 ± 0. 6 |
6 | Feeder throughput | 180 | 15 | 120 | 0.6 ± 0.2 | 120.6 ± 2.4 |
Printing Parameters | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 |
---|---|---|---|---|---|
Nozzle temperature (°C) | 190 | 190 | 190 | 215 | 240 |
Printing speed (mm/s) | 40 | 10 | 1 | 10 | 40 |
Shear rate in nozzle (s−1) | 262 | 131 | 109 | 262 | 262 |
Shear rate in road | 200 | 50 | 5 | 50 | 200 |
Printing quality (%) | n.p. | n.p. | L.V. | S.V. | 7.5 |
Printed | Injection-Molded 1 | Difference (%) | |
---|---|---|---|
Strength at yield (MPa) | 51.45 ± 3. 67 | 63 | 18.3 |
Strain at yield (%) | 3.64 ± 0.45 | 4.5 | 10.1 |
Young modulus (GPa) | 1.82 ± 0.09 | 2.6 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, J.; Teixeira, P.F.; Hilliou, L.; Covas, J.A. Experimental Validation of a Micro-Extrusion Set-Up with In-Line Rheometry for the Production and Monitoring of Filaments for 3D-Printing. Micromachines 2023, 14, 1496. https://doi.org/10.3390/mi14081496
Sousa J, Teixeira PF, Hilliou L, Covas JA. Experimental Validation of a Micro-Extrusion Set-Up with In-Line Rheometry for the Production and Monitoring of Filaments for 3D-Printing. Micromachines. 2023; 14(8):1496. https://doi.org/10.3390/mi14081496
Chicago/Turabian StyleSousa, João, Paulo F. Teixeira, Loïc Hilliou, and José A. Covas. 2023. "Experimental Validation of a Micro-Extrusion Set-Up with In-Line Rheometry for the Production and Monitoring of Filaments for 3D-Printing" Micromachines 14, no. 8: 1496. https://doi.org/10.3390/mi14081496
APA StyleSousa, J., Teixeira, P. F., Hilliou, L., & Covas, J. A. (2023). Experimental Validation of a Micro-Extrusion Set-Up with In-Line Rheometry for the Production and Monitoring of Filaments for 3D-Printing. Micromachines, 14(8), 1496. https://doi.org/10.3390/mi14081496