Energy Harvesters and Self-Powered Sensors for Smart Electronics, 2nd Edition
1. Introduction
2. Overview of the Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Li, N.; Xia, H.; Yang, C.; Luo, T.; Qin, L. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism. Micromachines 2023, 14, 1645. https://doi.org/10.3390/mi14081645.
- Zhang, L.; Shao, H.; Zhang, J.; Liu, D.; Aw, K.C.; Su, Y. Improvement of the Airflow Energy Harvester Based on the New Diamagnetic Levitation Structure. Micromachines 2023, 14, 1374. https://doi.org/10.3390/mi14071374.
- Li, Y.; Rajendran, J.; Mariappan, S.; Rawat, A.S.; Hamid, S.S.; Kumar, N.; Othman, M.; Nathan, A. CMOS Radio Frequency Energy Harvester (RFEH) with Fully On-Chip Tunable Voltage-Booster for Wideband Sensitivity Enhancement. Micromachines 2023, 14, 392. https://doi.org/10.3390/mi14020392.
- Poongan, B.; Rajendran, J.; Li, Y.; Mariappan, S.; Parameswaran, P.; Kumar, N.; Othman, M.; Nathan, A. A 53-µA-Quiescent 400-mA Load Demultiplexer Based CMOS Multi-Voltage Domain Low Dropout Regulator for RF Energy Harvester. Micromachines 2023, 14, 379. https://doi.org/10.3390/mi14020379.
- Dipon, W.; Gamboa, B.; Estrada, M.; Flynn, W.P.; Guo, R.; Bhalla, A. Self-Sustainable IoT-Based Remote Sensing Powered by Energy Harvesting Using Stacked Piezoelectric Transducer and Thermoelectric Generator. Micromachines 2023, 14, 1428. https://doi.org/10.3390/mi14071428.
- Wang, Q.; Ruan, T.; Xu, Q.; Hu, Z.; Yang, B.; You, M.; Lin, Z.; Liu, J. A Piezoelectric MEMS Speaker with a Combined Function of a Silent Alarm. Micromachines 2023, 14, 702. https://doi.org/10.3390/mi14030702.
- Devaraj, S.A.; Gurumoorthy, K.B.; Kumar, P.; Jacob, W.S.; Prince Jenifer Darling Rosita, P.J.D.; Ali, T. Cluster-ID-Based Throughput Improvement in Cognitive Radio Networks for 5G and Beyond-5G IoT Applications. Micromachines 2022, 13, 1414. https://doi.org/10.3390/mi13091414.
- Zhang, Y.; Ge, Q.; Zeng, Y. A 0.6 VIN 100 mV Dropout Capacitor-Less LDO with 220 nA IQ for Energy Harvesting System. Micromachines 2023, 14, 998. https://doi.org/10.3390/mi14050998.
- Wu, C.; Zhang, J.; Zhang, Y.; Zeng, Y. A 7.5-mV Input and 88%-Efficiency Single-Inductor Boost Converter with Self-Startup and MPPT for Thermoelectric Energy Harvesting. Micromachines 2023, 14, 60. https://doi.org/10.3390/mi14010060.
- Lian, Q.; Han, P.; Mei, N. A Review of Converter Circuits for Ambient Micro Energy Harvesting. Micromachines 2022, 13, 2222. https://doi.org/10.3390/mi13122222.
References
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Energy Harvesting Research: The Road from Single Source to Multisource. Adv. Mater. 2018, 30, 1707271. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhong, J.; Lee, C.; Lee, S.-W.; Lin, L. A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Dan, X.; Cao, R.; Cao, X.; Wang, Y.; Xiong, Y.; Han, J.; Luo, L.; Yang, J.; Xu, N.; Sun, J.; et al. Whirligig-Inspired Hybrid Nanogenerator for Multi-Strategy Energy Harvesting. Adv. Fiber Mater. 2023, 5, 362–376. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Polash, M.H.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Ortiz, F.M.; Mohaddes, F.; et al. Review of Wearable Thermoelectric Energy Harvesting: From Body Temperature to Electronic Systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Pisignano, D.; Persano, L.; Yang, Y.; Su, Y. On the Evaluation of Output Voltages for Quantifying the Performance of Pyroelectric Energy Harvesters. Nano Energy 2021, 86, 106045. [Google Scholar] [CrossRef]
- Roldán-Carmona, C.; Malinkiewicz, O.; Soriano, A.; Mínguez Espallargas, G.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M.I.; Nazeeruddin, M.K.; Bolink, H.J. Flexible High Efficiency Perovskite Solar Cells. Energy Environ. Sci. 2014, 7, 994. [Google Scholar] [CrossRef]
- Zhang, X.; Grajal, J.; Vazquez-Roy, J.L.; Radhakrishna, U.; Wang, X.; Chern, W.; Zhou, L.; Lin, Y.; Shen, P.C.; Ji, X.; et al. Two-Dimensional MoS2-Enabled Flexible Rectenna for Wi-Fi-Band Wireless Energy Harvesting. Nature 2019, 566, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yi, Z.; Yang, B.; Lee, C. Making Use of Nanoenergy from Human–Nanogenerator and Self-Powered Sensor Enabled Sustainable Wireless IoT Sensory Systems. Nano Today 2021, 36, 101016. [Google Scholar] [CrossRef]
- Shi, Q.; Sun, Z.; Zhang, Z.; Lee, C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research 2021, 2021, 6849171. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, M.; Shu, M.; An, J.; Ding, W.; Liu, X.; Wang, S.; Zhao, C.; Yu, H.; Wang, H.; et al. Underwater Wireless Communication via TENG-Generated Maxwell’s Displacement Current. Nat. Commun. 2022, 13, 3325. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Sun, Z.; Li, L.; Zhang, Q.; Zhu, M.; Zhang, Z.; Yuan, G.; Chen, T.; Tian, Y.; Hou, X.; et al. Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at Digital Twin Applications. Nat. Commun. 2020, 11, 5381. [Google Scholar] [CrossRef] [PubMed]
- Askari, H.; Khajepour, A.; Khamesee, M.B.; Wang, Z.L. Embedded Self-Powered Sensing Systems for Smart Vehicles and Intelligent Transportation. Nano Energy 2019, 66, 104103. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Lee, C. Promoting Smart Cities into the 5G Era with Multi-Field Internet of Things (IoT) Applications Powered with Advanced Mechanical Energy Harvesters. Nano Energy 2021, 88, 106304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Q.; Liu, H. Energy Harvesters and Self-Powered Sensors for Smart Electronics, 2nd Edition. Micromachines 2024, 15, 99. https://doi.org/10.3390/mi15010099
Shi Q, Liu H. Energy Harvesters and Self-Powered Sensors for Smart Electronics, 2nd Edition. Micromachines. 2024; 15(1):99. https://doi.org/10.3390/mi15010099
Chicago/Turabian StyleShi, Qiongfeng, and Huicong Liu. 2024. "Energy Harvesters and Self-Powered Sensors for Smart Electronics, 2nd Edition" Micromachines 15, no. 1: 99. https://doi.org/10.3390/mi15010099
APA StyleShi, Q., & Liu, H. (2024). Energy Harvesters and Self-Powered Sensors for Smart Electronics, 2nd Edition. Micromachines, 15(1), 99. https://doi.org/10.3390/mi15010099