Internally Harmonic Matched Compact GaN Power Amplifier with 78.5% PAE for 2.45 GHz Wireless Power Transfer Systems
Abstract
:1. Introduction
2. Overall Design
3. High-Efficiency Matching Circuit Design
4. Results and Discussion
4.1. Small-Signal Measurement
4.2. Large-Signal Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless Power Transfer—An Overview. IEEE Trans. Ind. Electron. 2019, 66, 1044–1058. [Google Scholar] [CrossRef]
- Yamasaki, T.; Kittaka, Y.; Minamide, H.; Yamauchi, K.; Miwa, S.; Goto, S.; Nakayama, M.; Kohno, M.; Yoshida, N. A 68% efficiency, C-band 100W GaN power amplifier for space applications. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 1384–1387. [Google Scholar]
- Li, R.; Zhong, S. Design of Internal-matching High Power Class-F Doherty Power Amplifier. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Gao, H.; Liu, D.; Zhou, Z. S-band Broadband Power Amplifier Based on Internal Matching and Micro-assembly Technology. In Proceedings of the 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 17–20 May 2020; pp. 1–3. [Google Scholar]
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Trans. Microw. Theory Tech. 2013, 60, 1764–1783. [Google Scholar] [CrossRef]
- Liu, C. Analysis of class-F power amplifiers with a second-harmonic input voltage manipulation. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 225–229. [Google Scholar] [CrossRef]
- Dhar, S.K.; Sharma, T.; Zhu, N.; Darraji, R.; Mclaren, R.; Holmes, D.G.; Mallette, V.; Ghannouchi, F.M. Input-harmonic-controlled broadband continuous class-F power amplifiers for sub-6-GHz 5G applications. IEEE Trans. Microw. Theory Techn. 2020, 68, 3120–3133. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, Q.-F. A Novel Compensation Circuit of High-Efficiency Concurrent Dual-Band Class-E Power Amplifiers. IEEE Microw. Wirel. Components Lett. 2018, 28, 720–722. [Google Scholar] [CrossRef]
- Cumana, J.; Grebennikov, A.; Sun, G.; Kumar, N.; Jansen, R.H.T. An extended topology of parallel-circuit class-E power amplifier to account for larger output capacitances. IEEE Trans. Microw. Theory Techn. 2011, 59, 3174–3183. [Google Scholar] [CrossRef]
- Sheikhi, A.; Hemesi, H. Analysis and Design of the Novel Class-F/E Power Amplifier with Series Output Filter. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 779–783. [Google Scholar] [CrossRef]
- Stameroff, A.; Pham, A.-V. Wide bandwidth inverse class F power amplifier with novel balun harmonic matching network. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium, Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Yamanaka, K.; Morimoto, T.; Chaki, S.; Nakayama, M.; Hirano, Y. X-band internally harmonic controlled GaN HEMT amplifier with 57% power added efficiency. In Proceedings of the 2011 6th European Microwave Integrated Circuit Conference, Manchester, UK, 10–11 October 2011; pp. 61–64. [Google Scholar]
- Yoshioka, T.; Kosaka, N.; Hangai, M.; Yamanaka, K. An S-band 240 W output 54% PAE GaN power amplifier with broadband output matching network for both fundamental and 2nd harmonic frequencies. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Sugitani, T.; Iyomasa, K.; Hangai, M.; Kawamura, Y.; Nishihara, J.; Shinjo, S. 2.45 GHz ISM-Band 450W High Efficiency GaN Pallet Amplifier for Microwave Heating. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1621–1623.
- Gu, L.; Feng, W.; Yang, B.; Che, W. A high efficiency X-band internally-matched GaN power amplifier using on-chip harmonic tuning Technology. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 13–15 November 2022; pp. 1–3. [Google Scholar]
- Miwa, S.; Kamo, Y.; Kittaka, Y.; Yamasaki, T.; Tsukahara, Y.; Tanii, T.; Kohno, M.; Goto, S.; Shima, A. A 67% PAE, 100 W GaN power amplifier with on-chip harmonic tuning circuits for C-band space applications. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Chéron, J.; Campovecchio, M.; Barataud, D.; Reveyrand, T.; Stanislawiak, M.; Eudeline, P.; Floriot, D. Wideband 50W packaged GaN HEMT with over 60% PAE through internal harmonic control in S-band. In Proceedings of the 2012 IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Lu, Y.; Cao, M.; Wei, J.; Zhao, B.; Ma, X.; Hao, Y. 71% PAE C-band GaN power amplifier using harmonic tuning technology. Electron. Lett. 2014, 50, 1207–1209. [Google Scholar] [CrossRef]
- Motoi, K.; Matsunaga, K.; Yamanouchi, S.; Kunihiro, K.; Fukaishi, M. A 72% PAE, 95-W, single-chip GaN FET S-band inverse class-F power amplifier with a harmonic resonant circuit. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Ghannouchi, F.M.; Ebrahimi, M.M.; Helaoui, M. Inverse Class F Power Amplifier for WiMAX Applications with 74% Efficiency at 2.45 GHz. In Proceedings of the 2009 IEEE International Conference on Communications Workshops, Dresden, Germany, 14–18 June 2009; pp. 1–5. [Google Scholar]
- Ismail, A.A.; Younis, A.T.; Abduljabbar, N.A.; Mohammed, B.A.; Abd-Alhameed, R.A. A 2.45-GHz class-F power amplifier for CDMA systems. In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 428–433. [Google Scholar]
- Xu, Y.; Wang, C.; Sun, H.; Wen, Z.; Wu, Y.; Xu, R.; Yu, X.; Ren, C.; Wang, Z.; Zhang, B.; et al. A Scalable Large-signal Multi-harmonic Model of Al-GaN/GaN HEMTs and Its Application in C-band High Power Amplifier MMIC. IEEE Trans. Micro Wave Theory Tech. 2017, 65, 2836–2846. [Google Scholar] [CrossRef]
- Smith, M.C.; Dixit, R. Future trends in filter technology for military multifunction systems. In Proceedings of the 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Maui, HI, USA, 11–16 November 2012; pp. 1–4. [Google Scholar]
- Suzuki, A.; Hara, S. 2.4GHz High Efficiency GaN Power Amplifier using Matching Circuit Less Design. In Proceedings of the 2020 4th Australian Microwave Symposium (AMS), Sydney, NSW, Australia, 13–14 February 2020; pp. 1–2. [Google Scholar]
- Chen, K.; Peroulis, D. A 3.1-GHz Class-F Power Amplifier with 82% Power-Added-Efficiency. IEEE Microw. Wirel. Components Lett. 2013, 23, 436–438. [Google Scholar] [CrossRef]
- Saad, P.; Nemati, H.M.; Thorsell, M.; Andersson, K.; Fager, C. An inverse class-F GaN HEMT power amplifier with 78% PAE at 3.5 GHz. In Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 29 September–1 October 2009; pp. 496–499. [Google Scholar]
- Tanaka, S.; Asami, H. 2-GHz Class-E Power Amplifier Using a Compact Redundancy-Free Harmonic Tuning Circuit. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 13–16. [Google Scholar]
- Kondo, T.; Fujiwara, K.; Yaginuma, K.; Mizojiri, S.; Hara, S.; Tanba, N. Development and environmental evaluation of 10- W class-F power amplifier for microwave-discharge ion thruster on satellites. In Proceedings of the 2023 Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, 5–8 December 2023; pp. 387–389. [Google Scholar]
- Tanaka, S.; Iisaka, N. A 2-GHz 79%-PAE Power Amplifier with a Novel Harmonic Tuning Circuit Using Only CRLH TLs. In Proceedings of the 2021 51st European Microwave Conference (EuMC), London, UK, 4–6 April 2022; pp. 358–361. [Google Scholar]
- Jiang, X.; Bo, C.; Wu, X.; Dong, Q.; Yang, S.; Wei, K.; Liu, X.; Luo, W. A Simple Design Method for Harmonic-Tuned GaN MMIC Power Amplifier Using Real-to-Real LPF Matching Network. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 528–531. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Gai, C.; Liu, C.; Qi, T.; Hu, B.; Hu, X.; Chen, W.; Helaoui, M.; Ghannouchi, F.M. Theory and Design Methodology for Reverse-Modulated Dual-Branch Power Amplifiers Applied to a 4G/5G Broadband GaN MMIC PA Design. IEEE Trans. Microw. Theory Tech. 2021, 69, 3120–3131. [Google Scholar] [CrossRef]
Reference | Freq (GHz) | Pout (W) | Gain (dB) | PAE (%) | Type | Size (mm2) | |
---|---|---|---|---|---|---|---|
2018 [14] | 2.45 | 450 | 13 | 67 | Internally-matched | NA | NA |
2020 [24] | 2.4 | 33 | 13.6 | 78.8 | Externally-matched | 1.27 | |
2013 [25] | 3.1 | 10 | 15 | 82 | Externally-matched | 0.46 | |
2009 [26] | 3.5 | 11 | 12 | 78 | Externally-matched | 0.1 | |
2021 [27] | 2 | 7 | 10 | 74 | Externally-matched | 0.17 | |
2023 [28] | 4.25 | 11.8 | 11.5 | 55.3 | Externally-matched | 0.14 | |
2022 [10] | 2.21 | 11.5 | 15.6 | 82.6 | Externally-matched | 0.51 | |
2022 [29] | 1.97 | 10.4 | 10.8 | 79.3 | Externally-matched | 0.69 | |
2024 [30] | 2.6–3.6 | 12.0 | 8.5 | 50.8 | MMIC | 45.8 | |
2021 [31] | 2.6–3.8 | 5.25 | 10.2 | 55 | MMIC | 29.6 | |
This work | 2.45 | 23.7 | 15.75 | 78.5 | Internally-matched | 10.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, Z.; Pei, Y.; Chen, C.; Feng, G.; Xu, Y. Internally Harmonic Matched Compact GaN Power Amplifier with 78.5% PAE for 2.45 GHz Wireless Power Transfer Systems. Micromachines 2024, 15, 1354. https://doi.org/10.3390/mi15111354
Li C, Zhang Z, Pei Y, Chen C, Feng G, Xu Y. Internally Harmonic Matched Compact GaN Power Amplifier with 78.5% PAE for 2.45 GHz Wireless Power Transfer Systems. Micromachines. 2024; 15(11):1354. https://doi.org/10.3390/mi15111354
Chicago/Turabian StyleLi, Caoyu, Ziliang Zhang, Yi Pei, Changchang Chen, Gang Feng, and Yuehang Xu. 2024. "Internally Harmonic Matched Compact GaN Power Amplifier with 78.5% PAE for 2.45 GHz Wireless Power Transfer Systems" Micromachines 15, no. 11: 1354. https://doi.org/10.3390/mi15111354
APA StyleLi, C., Zhang, Z., Pei, Y., Chen, C., Feng, G., & Xu, Y. (2024). Internally Harmonic Matched Compact GaN Power Amplifier with 78.5% PAE for 2.45 GHz Wireless Power Transfer Systems. Micromachines, 15(11), 1354. https://doi.org/10.3390/mi15111354