In Situ Pre-Metallization Cleaning of CoSi2 Contact-Hole Patterns with Optimized Etching Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chamber System Testing
3.2. Etching of Various Oxide Layer Types
3.3. Damage Analysis
3.4. Sub-Layer Removal and Contact Profile Changes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, R.; Wada, M.; Arnauts, S.; Takahashi, H.; Cuypers, D.; Struyf, H.; Mertens, P. Cleaning aspects of novel materials after CMP. ECS Trans. 2011, 34, 671. [Google Scholar] [CrossRef]
- Beyer, K.; Kastl, R. Impact of deionized water rinses on silicon surface cleaning. J. Electrochem. Soc. 1982, 129, 1027. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, L.; Zhang, P.; Wang, H.; Qian, L. Simple method to measure the etching rate of monocrystalline silicon in KOH solution. Micro Nano Lett. 2018, 13, 481–485. [Google Scholar] [CrossRef]
- Vos, I.; Hellin, D.; Vereecke, G.; Pavel, E.; Boullart, W.; Vertommen, J. Effect of etch-clean delay time on post-etch residue removal for front-end-of-line applications. J. Vac. Sci. Technol. B 2009, 27, 2301–2308. [Google Scholar] [CrossRef]
- Sayed, S.Y.; Wang, F.; Malac, M.; Meldrum, A.; Egerton, R.F.; Buriak, J.M. Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS Nano 2009, 3, 2809–2817. [Google Scholar] [CrossRef]
- Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M. Growth of native oxide on a silicon surface. J. Appl. Phys. 1990, 68, 1272–1281. [Google Scholar] [CrossRef]
- Zhang, Y.; Loh, J.Y.; Flood, A.G.; Mao, C.; Sharma, G.; Kherani, N.P. Ultra-Sensitive Cubic-ITO/Silicon Photodiode via Interface Engineering of Native SiOx and Lattice-Strain-Assisted Atomic Oxidation. Adv. Funct. Mater. 2022, 32, 2109794. [Google Scholar] [CrossRef]
- Kurhekar, A.S.; Apte, P.R. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process. Int. Nano Lett. 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Juodkazis, K.; Juodkazytė, J.; Šebeka, B.; Savickaja, I.; Juodkazis, S. Photoelectrochemistry of silicon in HF solution. J. Solid State Electrochem. 2013, 17, 2269–2276. [Google Scholar] [CrossRef]
- Chen, H.-W.; Gouk, R.; Verhaverbeke, S.; Visser, R.J. Non-Stiction Performance of Various Post Wet-Clean Drying Schemes on High-Aspect-Ratio Device Structures. ECS Trans. 2013, 58, 205. [Google Scholar] [CrossRef]
- Yang, C.C.; Ko, C.C.; Yang, H.O.; Chen, K.F.; Peng, Y.Y.; Liou, J.W.; Chou, C.C.; Tsai, H.Y.; Lin, K.C.; Jeng, S.M.; et al. Wet Clean Induce Pattern Collapse Mechanism Study. Solid State Phenom. 2012, 187, 253–256. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Kondoh, E.; Donaton, R.A.; Vanhaelemeersch, S.; Maex, K. Limitation of HF-Based Chemistry for Deep-Submicron Contact Hole Cleaning on Silicides. J. Electrochem. Soc. 1998, 145, 3240. [Google Scholar] [CrossRef]
- Lehmann, H.W.; Widmer, R. Profile control by reactive sputter etching. J. Vac. Sci. Technol. 1978, 15, 319–326. [Google Scholar] [CrossRef]
- Mikhailenko, M.S.; Pestov, A.E.; Chkhalo, N.I.; Zorina, M.V.; Chernyshev, A.K.; Salashchenko, N.N.; Kuznetsov, I.I. Influence of ion-beam etching by Ar ions with an energy of 200–1000 eV on the roughness and sputtering yield of a single-crystal silicon surface. Appl. Opt. 2022, 61, 2825–2833. [Google Scholar] [CrossRef]
- Gupta, V.; Madaan, N.; Jensen, D.S.; Kunzler, S.C.; Linford, M.R. Hydrogen Plasma Treatment of Silicon Dioxide for Improved Silane Deposition. Langmuir 2013, 29, 3604–3609. [Google Scholar] [CrossRef]
- Williams, T.S.; Hicks, R.F. Aging mechanism of the native oxide on silicon (100) following atmospheric oxygen plasma cleaning. J. Vac. Sci. Technol. A 2011, 29, 041403. [Google Scholar] [CrossRef]
- Aronsson, B.-O.; Lausmaa, J.; Kasemo, B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J. Biomed. Mater. Res. 1997, 35, 49–73. [Google Scholar] [CrossRef]
- Vossen, J.L. The preparation of substrates for film deposition using glow discharge techniques. J. Phys. E Sci. Instrum. 1979, 12, 159. [Google Scholar] [CrossRef]
- Mittal, K.L. Surface Contamination: An Overview. In Surface Contamination: Genesis, Detection, and Control; Mittal, K.L., Ed.; Springer: Boston, MA, USA, 1979; pp. 3–45. [Google Scholar] [CrossRef]
- Grégoire, M.; Horvat, B.; Bozon, B.N.; Combe, D.; Dabertrand, K.; Roy, D. Additional Siconi™ pre-clean for reliable TiSix contacts in advanced imager technologies. Micro Nano Eng. 2019, 2, 104–109. [Google Scholar] [CrossRef]
- Shiyang, Z.; Detavernier, C.; Meirhaeghe, R.L.V.; Cardon, F.; Blondeel, A.; Clauws, P.; Guo-Ping, R.; Bing-Zong, L. Electrical characterization of Ar-ion-bombardment-induced damage in Au/Si and PtSi/Si Schottky barrier contacts. Semicond. Sci. Technol. 2001, 16, 83. [Google Scholar] [CrossRef]
- Maex, K. Silicides for integrated circuits: TiSi2 CoSi2. Mater. Sci. Eng. R Rep. 1993, 11, vii-153. [Google Scholar] [CrossRef]
- Romanyuk, O.; Gordeev, I.; Paszuk, A.; Supplie, O.; Stoeckmann, J.P.; Houdkova, J.; Ukraintsev, E.; Bartoš, I.; Jiříček, P.; Hannappel, T. GaP/Si(0 0 1) interface study by XPS in combination with Ar gas cluster ion beam sputtering. Appl. Surf. Sci. 2020, 514, 145903. [Google Scholar] [CrossRef]
- Yew, T.R.; Reif, R. Low-temperature in situ surface cleaning of oxide-patterned wafers by Ar/H2 plasma sputter. J. Appl. Phys. 1990, 68, 4681–4693. [Google Scholar] [CrossRef]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma. Plasma Sources Sci. Technol. 2002, 11, 525. [Google Scholar] [CrossRef]
- Pu, Y. Plasma Etch Equipment. In Handbook of Integrated Circuit Industry; Wang, Y., Chi, M.-H., Lou, J.J.-C., Chen, C.-Z., Eds.; Springer: Singapore, 2024; pp. 1441–1493. [Google Scholar] [CrossRef]
- Todorov, S.S.; Fossum, E.R. Sputtering of silicon dioxide near threshold. Appl. Phys. Lett. 1988, 52, 365–367. [Google Scholar] [CrossRef]
- Lee, Y.H. Surface damage threshold of Si and SiO2 in electron-cyclotron-resonance plasmas. J. Vac. Sci. Technol. A 1992, 10, 1318–1324. [Google Scholar] [CrossRef]
- Smentkowski, V.S. Trends in sputtering. Prog. Surf. Sci. 2000, 64, 1–58. [Google Scholar] [CrossRef]
- Yamada, N. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations. Spectrochim. Acta Part B At. Spectrosc. 2015, 110, 31–44. [Google Scholar] [CrossRef]
- Kushner, M.J. Monte-Carlo simulation of electron properties in rf parallel plate capacitively coupled discharges. J. Appl. Phys. 1983, 54, 4958–4965. [Google Scholar] [CrossRef]
- Yabumoto, N.; Oshima, M.; Michikami, O.; Yoshii, S. Surface Damage on Si Substrates Caused by Reactive Sputter Etching. Jpn. J. Appl. Phys. 1981, 20, 893. [Google Scholar] [CrossRef]
- Eriguchi, K. Characterization techniques of ion bombardment damage on electronic devices during plasma processing—Plasma process-induced damage. Jpn. J. Appl. Phys. 2021, 60, 040101. [Google Scholar] [CrossRef]
Plasma Power (W) * | RF Power (W) † | Ar Flow Rate (sccm) | Pressure (mtorr) | DC Bias (V) | Etching Amount (Å)/Uniformity (%) |
---|---|---|---|---|---|
300 | 500 | 10 | 0.68 | −404 | 366.21/1.83 |
200 | 400 | 10 | 0.68 | −460 | 224.88/2.89 |
300 | 400 | 10 | 0.68 | −332 | 306.29/1.82 |
400 | 400 | 10 | 0.68 | −247 | 238.79/1.36 |
500 | 400 | 10 | 0.68 | −190 | 406.23/0.86 |
200 | 300 | 10 | 0.68 | −362 | 182.55/3.10 |
300 | 300 | 10 | 0.68 | −258 | 245.31/2.01 |
400 | 300 | 10 | 0.68 | −182 | 308.92/0.85 |
500 | 300 | 10 | 0.68 | −134 | 340.90/0.85 |
200 | 200 | 10 | 0.68 | −257 | 134.00/3.28 |
300 | 200 | 10 | 0.68 | −170 | 190.19/1.78 |
400 | 200 | 10 | 0.68 | −111 | 217.28/1.48 |
500 | 200 | 10 | 0.68 | −75 | 230.48/0.68 |
500 | 150 | 10 | 0.68 | −45 | 168.90/0.00 |
300 | 300 | 5 | 0.35 | −244 | - |
300 | 300 | 10 | 0.68 | −255 | - |
300 | 300 | 20 | 1.36 | −282 | - |
300 | 300 | 30 | 2.05 | −313 | 220.57/7.56 |
300 | 300 | 35 | 2.35 | −322 | - |
500 | 300 | 30 | 2.05 | −146 | 300.00/4.06 |
300 | 400 | 30 | 2.06 | −398 | 272.20/6.52 |
300 | 200 | 5 | 0.31 | −158 | 185.97/1.55 |
300 | 200 | 20 | 1.36 | −183 | 169.79/4.32 |
300 | 200 | 30 | 2.03 | −204 | 154.76/7.52 |
Wafer # | a | b | c | d | e | CoSi2 Layer Etching Amount | b/a | d/c |
---|---|---|---|---|---|---|---|---|
1 | 800 | 1570 | 2870 | 3200 | 900 (630) | All + Si 300 | 1.95 | 1.11 |
2 | 600 | 1600 | 2970 | 3230 | 370 (100) | All | 2.67 | 1.09 |
3 | 730 | 1370 | 2970 | 3230 | 400 (130) | All + Si 70 | 1.86 | 1.09 |
4 | 800 | 1330 | 3070 | 3300 | 400 (130) | All + Si 30 | 1.67 | 1.08 |
5 | 730 | 1230 | 2670 | 2930 | 330 (70) | 200 | 1.68 | 1.10 |
6 | 800 | 1200 | 2800 | 3070 | 270 (0) | 100 | 1.5 | 1.09 |
7 | – | – | 3130 | 3340 | 270 | 70 | – | 1.06 |
Wafer # | Plasma Power (W) | RF Power (W) | DC Bias (V) | Si Etching Rate (Å/s) | CoSi2 Etching Rate (Å/s) |
---|---|---|---|---|---|
1 | 300 | 400 | −334 | 31.7 | Etching off + Si loss |
2 | 300 | 300 | −256 | 4.0 | Etching off |
3 | 300 | 200 | −172 | 4.2 | Etching off + Si loss |
4 | 200 | 200 | −265 | 2.9 | Etching off |
5 | 500 | 200 | −78 | 2.5 | 5.11 |
6 | 500 | 150 | −50 | 0 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, T.-M.; Jung, E.-S.; Yoo, J.-U.; Lee, H.-R.; Yoon, S.; Pyo, S.-G. In Situ Pre-Metallization Cleaning of CoSi2 Contact-Hole Patterns with Optimized Etching Process. Micromachines 2024, 15, 1409. https://doi.org/10.3390/mi15121409
Choi T-M, Jung E-S, Yoo J-U, Lee H-R, Yoon S, Pyo S-G. In Situ Pre-Metallization Cleaning of CoSi2 Contact-Hole Patterns with Optimized Etching Process. Micromachines. 2024; 15(12):1409. https://doi.org/10.3390/mi15121409
Chicago/Turabian StyleChoi, Tae-Min, Eun-Su Jung, Jin-Uk Yoo, Hwa-Rim Lee, Songhun Yoon, and Sung-Gyu Pyo. 2024. "In Situ Pre-Metallization Cleaning of CoSi2 Contact-Hole Patterns with Optimized Etching Process" Micromachines 15, no. 12: 1409. https://doi.org/10.3390/mi15121409
APA StyleChoi, T.-M., Jung, E.-S., Yoo, J.-U., Lee, H.-R., Yoon, S., & Pyo, S.-G. (2024). In Situ Pre-Metallization Cleaning of CoSi2 Contact-Hole Patterns with Optimized Etching Process. Micromachines, 15(12), 1409. https://doi.org/10.3390/mi15121409