An Investigation of Body Diode Reliability in Commercial 1.2 kV SiC Power MOSFETs with Planar and Trench Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Devices under Test (DUTs)
2.2. Experimental Methods
3. Results
3.1. Body Diode Stress Test Results of Commercial Planar SiC Power MOSFETs
3.2. Body Diode Stress Test Results of Commercial Trench SiC Power MOSFETs
4. Discussion
4.1. Analysis of Body Diode Stress Test Results of Commercial Planar SiC Power MOSFETs
4.2. Analysis of Body Diode Stress Test Results for Commercial Trench SiC Power MOSFETs
4.3. Structural Improvements to Enhance the Body Diode Reliability
4.3.1. Structural Improvements for Commercial Planar SiC Power MOSFETs
4.3.2. Structural Improvements for Commercial Trench SiC Power MOSFETs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H. Overview of Silicon Carbide Power Devices; Fairchild Semiconductor: San Jose, CA, USA, 2016. [Google Scholar]
- Siemieniec, R.; Peters, D.; Esteve, R.; Bergner, W.; Kück, D.; Aichinger, T.; Basler, T.; Zippelius, B. A SiC Trench MOSFET concept offering improved channel mobility and high reliability. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017. [Google Scholar]
- Anders, M.A.; Lenahan, P.M.; Cochrane, C.J.; Lelis, A.J. Relationship Between the 4H-SiC/SiO2 Interface Structure and Electronic Properties Explored by Electrically Detected Magnetic Resonance. IEEE Trans. Electron Devices 2015, 62, 301–308. [Google Scholar] [CrossRef]
- Wan, C.; Xu, H.; Xia, J.; Ao, J. Ultrahigh-temperature oxidation of 4H-SiC (0 0 0 1) and gate oxide reliability dependence on oxidation temperature. J. Cryst. Growth 2020, 530, 125250. [Google Scholar] [CrossRef]
- Chen, P.; Miao, W.; Ahmed, T.; Pan, Y.; Lin, C.; Chen, S.; Kuo, H.; Tsui, B.; Lien, D. Defect Inspection Techniques in SiC. Nanoscale Res. Lett. 2022, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. [Google Scholar] [CrossRef]
- Fukuda, K.; Suzuki, S.; Tanaka, T.; Arai, K. Reduction of interface-state density in 4H–SiC n-type metal–oxide–semiconductor structures using high-temperature hydrogen annealing. Appl. Phys. Lett. 2000, 76, 1585–1587. [Google Scholar] [CrossRef]
- Li, H.F.; Dimitrijev, S.; Harrison, H.B.; Sweatman, D. Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing. Appl. Phys. Lett. 1997, 70, 2028–2030. [Google Scholar] [CrossRef]
- Li, H.; Dimitrijev, S.; Harrison, H.B. Improved reliability of NO-nitrided SiO2 grown on p-type 4H-SiC. IEEE Electron Device Lett. 1998, 19, 279–281. [Google Scholar]
- Chung, G.Y.; Tin, C.C.; Williams, J.R.; McDonald, K.; Di Ventra, M.; Pantelides, S.T.; Feldman, L.C.; Weller, R.A. Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide. Appl. Phys. Lett. 2000, 76, 1713–1715. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Xia, X.; Wang, Y.; Zhou, P.; Li, Z. Growth of high-quality 4H-SiC epitaxial layers on 4° off-axis C-face 4H-SiC substrates. J. Cryst. Growth 2020, 531, 125355. [Google Scholar] [CrossRef]
- Itoh, H.; Enokizono, T.; Miyase, T.; Hori, T.; Wada, K.; Furumai, M. High-Quality SiC Epitaxial Wafer “EpiEra” Realizing High-Reliability Large-Current Power Devices. SEI Tech. Rev. 2020, 91, 49. [Google Scholar]
- Qian, J.; Kim, D.; Jin, M.; Zhu, S.; Shi, L.; Shimbori, A.; Sung, W.; Agarwal, A.K. A Comparison of Body Diode Degradation in Commercial 1.2 kV SiC Power MOSFETs with the Planar and Trench Structure. In Proceedings of the 2023 65th Electronic Materials Conference, Santa Barbara, CA, USA, 28–30 June 2023. [Google Scholar]
- Qian, J.; Liu, T.; Soto, J.; Al-Jassim, M.M.; Stahlbush, R.; Mahadik, N.; Shi, L.; Jin, M.; Agarwal, A.K. A Comparison of Ion Implantation at Room Temperature and Heated Ion Implantation on the Body Diode Degradation of Commercial 3.3 kV 4H-SiC Power MOSFETs. In Proceedings of the 2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), Redondo Beach, CA, USA, 7–9 November 2022. [Google Scholar]
- Zhang, X.; Gant, L. Selecting A Freewheeling Diode Solution for Lowest Losses with SiC MOSFETs. Available online: https://www.how2power.com/pdf_view.php?url=/newsletters/1806/articles/H2PToday1806_design_Littelfuse.pdf (accessed on 31 June 2018).
- Telford, M. SiC making further inroads into silicon for EV powertrains. Semicond. Today 2023, 18, 3. Available online: https://www.semiconductor-today.com/news_items/backissues/semiconductor-today-april-2023.pdf (accessed on 17 April 2023).
- Sarnago, H.; Lucía, Ó.; Jiménez, R.; Gaona, P. Differential-Power-Processing On-Board-Charger for 400/800-V Battery Architectures using 650-V Super Junction MOSFETs. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021. [Google Scholar]
- SiC Is Replacing Si in Electric Vehicles. Available online: https://fastsic.com/2020/06/24/sic-is-replacing-si-in-electric-vehicles/ (accessed on 24 June 2020).
- Jung, C. Power Up with 800-V Systems: The benefits of upgrading voltage power for battery-electric passenger vehicles. IEEE Electrif. Mag. 2017, 5, 53–58. [Google Scholar] [CrossRef]
- Lucid Air to be the Fastest Charging EV, Featuring a 900 V+ Architecture Delivering a Charging Rate of up to 20 Miles Per Minute. Available online: https://lucidmotors.com/media-room/lucid-air-fastest-charging-ev (accessed on 19 August 2020).
- Goldberg, L. Exploiting SiC MOSFETs to Power EV Innovation. Available online: https://www.electronicdesign.com/markets/automotive/article/21262547/electronic-design-exploiting-sic-mosfets-to-power-ev-innovation (accessed on 23 March 2023).
- Johnstone, C. Power Electronics Cooling: How to Reduce the Cost of Inverter Modules by Reducing SiC Area. Available online: https://jetcool.com/post/power-electronics-cooling-how-to-reduce-the-cost-of-inverter-modules-by-reducing-sic-area/ (accessed on 8 October 2020).
- Roccaforte, F.; Greco, G.; Fiorenza, P. Processing Issues in SiC and GaN Power Devices Technology: The Cases of 4H-SiC Planar MOSFET and Recessed Hybrid GaN MISHEMT. In Proceedings of the 2018 International Semiconductor Conference (CAS), Sinaia, Romania, 10–12 October 2018. [Google Scholar]
- Chaturvedi, M.; Dimitrijev, S.; Haasmann, D.; Moghadam, H.A.; Pande, P.; Jadli, U. Comparison of Commercial Planar and Trench SiC MOSFETs by Electrical Characterization of Performance-Degrading Near-Interface Traps. IEEE Trans. Electron Devices 2022, 69, 6225–6230. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K. 4H-SiC Double-Trench MOSFET with Side Wall Heterojunction Diode for Enhanced Reverse Recovery Performance. Energies 2020, 13, 4602. [Google Scholar] [CrossRef]
- Seok, O.; Kang, I.; Moon, J.; Kim, H.; Ha, M.; Bahng, W. Double p-base structure for 1.2-kV SiC trench MOSFETs with the suppression of electric-field crowding at gate oxide. Microelectron. Eng. 2020, 225, 111280. [Google Scholar] [CrossRef]
- Park, Y.; Yoon, H.; Kim, C.; Kim, G.; Kang, G.; Seok, O.; Ha, M. Design and Optimization of 1.2 kV SiC Trench MOSFETs Using a Tilted Ion Implantation Process for High Breakdown Voltage. Jpn. J. Appl. Phys. 2023, 62, 011001. [Google Scholar] [CrossRef]
- Russell, S.; Gammon, P. ROHM Gen 4: A Technical Review. Available online: https://www.techinsights.com/blog/rohm-gen-4-technical-review (accessed on 2 August 2022).
- Yang, T.; Wang, Y.; Yue, R. SiC Trench MOSFET with Reduced Switching Loss and Increased Short-Circuit Capability. IEEE Trans. Electron Devices 2020, 67, 3685–3690. [Google Scholar] [CrossRef]
- Williams, R.K.; Darwish, M.N.; Blanchard, R.A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. The Trench Power MOSFET: Part I—History, Technology, and Prospects. IEEE Trans. Electron Devices 2017, 64, 674–691. [Google Scholar] [CrossRef]
- Allouche, A.; Barbarini, E. Power Electronics: SiC Is on a Roll—The Chronicles by Yole SystemPlus. Available online: https://www.yolegroup.com/technology-outlook/power-electronics-sic-is-on-a-roll-the-chronicles-by-yole-systemplus/ (accessed on 16 March 2023).
- Yi, B.; Hu, H.; Lin, J.; Cheng, J.; Huang, H.; Kong, M. SiC trench MOSFET with integrated side-wall Schottky barrier diode having P+ electric field shield. IEICE Electron. Express 2019, 16, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, H.; Rao, Y.; He, Z.; Lai, P.; Chen, Y.; Xu, X.; Liu, C. Degradation assessment of 1.2-kV SiC MOSFETs and comparative study with 1.2-kV Si IGBTs under power cycling. Microelectron. Reliab. 2022, 132, 114528. [Google Scholar] [CrossRef]
- Ni, Z.; Lyu, X.; Yadav, O.P.; Singh, B.N.; Zheng, S.; Cao, D. Overview of Real-Time Lifetime Prediction and Extension for SiC Power Converters. IEEE Trans. Power Electron. 2020, 35, 7765–7794. [Google Scholar] [CrossRef]
- Volke, A.; Hornkamp, M. Type tests and routine tests. In IGBT Modules: Technologies, Driver and Application, 2nd ed.; Infineon Technologies AG: Richardson, TX, USA, 2012; p. 509. [Google Scholar]
- Galeckas, A.; Linnros, J.; Pirouz, P. Recombination-enhanced Extension of Stacking Faults in 4H-SiC p-i-n Diodes under Forward Bias. Appl. Phys. Lett. 2002, 81, 883–885. [Google Scholar] [CrossRef]
- Stahlbush, R.; Mahadik, N.; Bonanno, P.; Soto, J. Defects in 4H-SiC epilayers affecting device yield and reliability. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022. [Google Scholar]
- Tawara, T.; Miyazawa, T.; Ryo, M.; Miyazato, M.; Fujimoto, T.; Takenaka, K.; Matsunaga, S.; Miyajima, M.; Otsuki, A.; Yonezawa, Y.; et al. Suppression of the Forward Degradation in 4H-SiC PiN Diodes by Employing a Recombination-Enhanced Buffer Layer. Mater. Sci. Forum 2017, 897, 419–422. [Google Scholar] [CrossRef]
- Zhang, Z.; Sudarshan, T. Basal Plane Dislocation-free Epitaxy of Silicon Carbide. Appl. Phys. Lett. 2005, 87, 151913. [Google Scholar] [CrossRef]
- Zhang, Z.; Moulton, E.; Sudarshan, T. Mechanism of Eliminating Basal Plane Dislocations in SiC Thin Films by Epitaxy on an Etched Substrate. Appl. Phys. Lett. 2006, 89, 081910. [Google Scholar] [CrossRef]
- Stahlbush, R.; Mahakik, K.; Lelis, A.; Green, R. Effects of Basal Plane Dislocations on SiC Power Device Reliability. In Proceedings of the 2018 IEEE 64th International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar]
- Stahlbush, R.; Mahadik, N. Defects Affecting SiC Power Device Reliability. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018. [Google Scholar]
Vendor | Voltage Ratings (V) | Current Ratings (A) | Structure |
---|---|---|---|
E | 1200 | 11 | Planar |
I | 1200 | 10 | Planar |
C | 1200 | 12 | Planar |
K | 1200 | 13 | Single Trench |
D (Gen 3) | 1200 | 17 | Double Trench |
D (Gen 4) | 1200 | 26 | Double Trench |
Vendors of Devices | Yields of Qualified Body Diodes |
---|---|
K | 30% |
D (Gen 3) | 100% |
D (Gen 4) | 0% |
JFET Type | JFET Depth (µm) | Voltage Ratings (V) | Current Ratings (A) | Structure |
---|---|---|---|---|
Nominal | 0.6 | 1200 | 21 | Planar |
Deep | 0.9 | 1200 | 21 | Planar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Shi, L.; Jin, M.; Bhattacharya, M.; Shimbori, A.; Yu, H.; Houshmand, S.; White, M.H.; Agarwal, A.K. An Investigation of Body Diode Reliability in Commercial 1.2 kV SiC Power MOSFETs with Planar and Trench Structures. Micromachines 2024, 15, 177. https://doi.org/10.3390/mi15020177
Qian J, Shi L, Jin M, Bhattacharya M, Shimbori A, Yu H, Houshmand S, White MH, Agarwal AK. An Investigation of Body Diode Reliability in Commercial 1.2 kV SiC Power MOSFETs with Planar and Trench Structures. Micromachines. 2024; 15(2):177. https://doi.org/10.3390/mi15020177
Chicago/Turabian StyleQian, Jiashu, Limeng Shi, Michael Jin, Monikuntala Bhattacharya, Atsushi Shimbori, Hengyu Yu, Shiva Houshmand, Marvin H. White, and Anant K. Agarwal. 2024. "An Investigation of Body Diode Reliability in Commercial 1.2 kV SiC Power MOSFETs with Planar and Trench Structures" Micromachines 15, no. 2: 177. https://doi.org/10.3390/mi15020177
APA StyleQian, J., Shi, L., Jin, M., Bhattacharya, M., Shimbori, A., Yu, H., Houshmand, S., White, M. H., & Agarwal, A. K. (2024). An Investigation of Body Diode Reliability in Commercial 1.2 kV SiC Power MOSFETs with Planar and Trench Structures. Micromachines, 15(2), 177. https://doi.org/10.3390/mi15020177