A Review on Material Selection Benchmarking in GeTe-Based RF Phase-Change Switches for Each Layer
Abstract
:1. Introduction
2. Selection of Phase-Change Material
2.1. The Phase Change of Chalcogenides
2.2. The Structural Analysis of GeTe
2.3. Characteristic of GeTe Films
3. GeTe-Based Phase-Change Switches (PCSs) for RF Application
3.1. Comparison with Direct and Indirect Heating Structure Phase-Change Switches
3.2. The Direct Heating Structure of Phase-Change Switches
3.3. The Indirect Heating Structure of Phase-Change Switches
3.3.1. Substrate and Insulator Layer
3.3.2. Heater Layer
3.3.3. Dielectric Layer
3.3.4. RF Electrode
4. Conclusions
- (1)
- The relative permittivity and of substrate significantly influences overall RF performance. Concurrently, the thermal conductivity of the substrate plays a crucial role in determining the required drive voltage for the switch.
- (2)
- The heater must be capable of being driven, with sufficient power at high speed so that one can reach temperatures above 730 °C and cool sufficiently fast. A wider heater width would increase the power consumption of the PCS. A preliminary conclusion is drawn that a smaller heater width results in lower insertion loss (IL), and higher isolation (Iso) and return loss (RL).
- (3)
- The thicker dielectric layer could decrease COFF but increase power consumption for a higher MPA. AlN could lower power consumption for PCSs compared to a device using SiNx. It becomes apparent that a thicker dielectric layer leads to reduced IL, increased Iso, and diminished RL. This relationship implies a trade-off between IL and Iso.
- (4)
- There is a trade-off between RON and COFF and insertion loss and isolation for the gap width of the RF transmission electrodes. Obviously, as the gap decreases, the insertion loss decreases, but so does the isolation and return loss. In addition, the effect of contact resistance due to the interaction of the electrodes with the GeTe must be considered.
5. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daneshmand, M. Multi-Port RF MEMS Switches and Switch Matrices. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2006. [Google Scholar]
- Rebeiz, G.M. RF MEMS: Theory, Design, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Chauffleur, X.; Rabbia, L.; Pons, P.; Grenier, K.; Plana, R.; Dantas, L.; Flourens, F.; Kuchenbecker, J.; Dubuc, D.; Boukabache, A. Effect of membrane shape on mechanical behavior of RF switches. Sens. Actuators A Phys. 2004, 112, 148. [Google Scholar] [CrossRef]
- Gong, Y.; Teng, J.W.; Cressler, J.D. A Compact, High-Power, 60 GHz SPDT Switch Using Shunt-Series SiGe PIN Diodes. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, 2–4 June 2019; pp. 15–18. [Google Scholar]
- Kumar, J.; Basu, B.; Talukdar, F.A. Modeling of a PIN Diode RF Switch for Reconfigurable Antenna Application. Sci. Iran. 2019, 26, 1714–1723. [Google Scholar]
- Wu, Z.; Lu, W.; Bao, X.; Meng, F.; Yang, Z.; Sun, Q.; Zhao, F.; Wang, Y. Study on cut-off characteristics of sub-nanosecond silicon carbide PiN switch. Int. J. Mod. Phys. B 2021, 35, 150107. [Google Scholar] [CrossRef]
- Yang, X.; Lin, J.; Chen, G.; Kong, F. Frequency reconfigurable antenna for wireless communications using GaAs FET switch. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 807–810. [Google Scholar] [CrossRef]
- Mizutani, H.; Takayama, Y. DC-110-GHz MMIC traveling-wave switch. IEEE Trans. Microw. Theory Tech. 2000, 48, 840–845. [Google Scholar] [CrossRef]
- Souchon, F.; Saint-Patrice, D.; Pornin, J.L.; Bouchu, D.; Baret, C.; Reig, B. Thin film packaged redundancy RF MEMS switches for space applications. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, 18–22 June 2017; pp. 175–178. [Google Scholar]
- Angira, M.; Rangra, K. Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Microsyst. Technol. 2015, 21, 1173–1178. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Han, L.; Wang, L.F.; Tang, J.Y.; Huang, Q.A. A Novel Three-State RF MEMS Switch for Ultrabroadband (DC-40 GHz) Applications. IEEE Electron Device Lett. 2013, 34, 1062–1064. [Google Scholar] [CrossRef]
- Stegmaier, M.; Ríos, C.; Bhaskaran, H.; Wright, C.D.; Pernice, W.H.P. Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks. Adv. Opt. Mater. 2017, 5, 1600346. [Google Scholar] [CrossRef]
- Tanaka, D.; Shoji, Y.; Kuwahara, M.; Wang, X.; Kintaka, K.; Kawashima, H.; Toyosaki, T.; Ikuma, Y.; Tsuda, H. Ultra-Small, Self-Holding, Optical Gate Switch Using Ge_2Sb_2Te_5 with a Multi-Mode Si Waveguide. Opt. Express 2012, 20, 10283. [Google Scholar] [CrossRef]
- Zhang, Y.; Chou, J.B.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.; Zhong, H.; et al. Broadband Transparent Optical Phase Change Materials for High-Performance Nonvolatile Photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef]
- Mikulics, M.; Hardtdegen, H.H. Fully Photon Operated Transmistor / All-Optical Switch Based on a Layered Ge1Sb2Te4 Phase Change Medium. FlatChem 2020, 23, 100186. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, S.; Xu, P.; Dunham, S.; Majumdar, A. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. ACS Appl. Mater. Interfaces 2020, 12, 21827–21836. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.R.; Dhawan, A. Integrated Non-Volatile Plasmonic Switches Based on Phase-Change-Materials and Their Application to Plasmonic Logic Circuits. Sci. Rep. 2021, 11, 18811. [Google Scholar] [CrossRef]
- Shim, Y.; Hummel, G.; Rais-Zadeh, M. RF switches using phase change materials. In Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 237–240. [Google Scholar]
- Wang, M.; Rais-Zadeh, M. Directly heated four-terminal phase change switches. In Proceedings of the IEEE MTT-S International Microwave Symposium-IMS, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Wang, M.; Shim, Y.; Rais-Zadeh, M. A low-loss directly heated two-port RF phase change switch. IEEE Electron Device Lett. 2014, 35, 491–493. [Google Scholar] [CrossRef]
- Leon, A.; Reig, B.; Perret, E.; Podevin, F.; Saint-Patrice, D.; Puyal, V.; Lugo-Alvarez, J.; Ferrari, P. RF Power-Handling Performance for Direct Actuation of Germanium Telluride Switches. IEEE Trans. Microw. Theory Tech. 2020, 68, 60–73. [Google Scholar] [CrossRef]
- Leon, A.; Navarro, G.; Puyal, V.; Reig, B.; Podevin, F.; Ferrari, P.; Perret, E. In-depth characterization of the structural phase change of Germanium Telluride for RF switches. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 20–22 September 2017. [Google Scholar]
- El-Hinnawy, N.; Borodulin, P.; Jones, E.B.; Wagner, B.P.; Young, R.M. 12.5 THz Fco GeTe inline phase-change switch technology for reconfigurable RF and switching applications. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014; pp. 1–3. [Google Scholar]
- Moon, J.S.; Seo, H.C.; Le, D.; Fung, H.; Yang, B. 10.6 THz figure-of-merit phase-change RF switches with embedded micro-heater. In Proceedings of the IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, USA, 26–28 January 2015; pp. 73–75. [Google Scholar]
- Moon, J.S.; Seo, H.C.; Son, K.A.; Lee, K.; Tai, H. 5 THz figure-of- merit reliable phase-change RF switches for millimeter-wave applications. In Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 836–838. [Google Scholar]
- Fu, S.S.; Gao, L.; Peng, Y.; Qu, S.; Wang, J.; Chen, H.; Liu, N.; Zhang, J. Novel four-port RF phase change switches based on GeTe thin film. J. Micromechanics Micro Eng. 2023, 33, 095004. [Google Scholar] [CrossRef]
- Ghalem, A.; Hariri, A.; Guines, C.; Passerieux, D.; Huitema, L.; Blondy, P.; Crunteanu, A. Arrays of GeTe electrically activated RF switches. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 20–22 September 2017; pp. 1–3. [Google Scholar]
- Singh, T.; Mansour, R.R. A Miniaturized Monolithic PCM Based Scalable Four-Port RF Switch Unit-Cell. In Proceedings of the 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; pp. 180–183. [Google Scholar]
- Huber, E.; Marinero, E.E. Laser-induced crystallization of amorphous GeTe: A time-resolved study. Phys. Rev. B 1987, 36, 1595–1604. [Google Scholar] [CrossRef]
- Ghalem, A.; Guines, C.; Passerieux, D.; Orlianges, J.C.; Huitema, L.; Crunteanu, A. Reversible, fast optical switching of phase change materials for active control of high-frequency functions. In Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 839–842. [Google Scholar]
- El-Hinnawy, N.; Borodulin, P.; Wagner, B.P.; King, M.R.; Jones, E.B.; Howell, R.S.; Lee, M.J.; Young, R.M. Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials. Appl. Phys. Lett. 2014, 105, 013501. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Characterization, Optimization, and Fabrication of Phase Change Material Germanium Telluride Based Miniaturized DC–67 GHz RF Switches. IEEE Trans. Microw. Theory Tech. 2019, 67, 3237–3250. [Google Scholar] [CrossRef]
- Kohara, S.; Kato, K.; Kimura, S.; Tanaka, H.; Usuki, T.; Suzuya, K.; Tanaka, H.; Moritomo, Y.; Matsunaga, T.; Yamada, N.; et al. Structural basis for the fast phase change of Ge2Sb2Te5. Ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 2006, 89, 201910. [Google Scholar] [CrossRef]
- Ren, K.; Duan, X.; Xiong, Q.; Li, Y.; Song, Z. Constructing reliable PCM and OTS devices with an inter-facial carbon layer. J. Mater. Sci. Mater. Electron. 2019, 30, 20037–20042. [Google Scholar] [CrossRef]
- Yu, H.; Du, Y. Increasing Endurance and security of phase-change memory with multi-way wear-leveling. IEEE Trans. Comput. 2019, 63, 1157–1168. [Google Scholar]
- Lama, G.; Bourgeois, G.; Bernard, M.; Castellani, N.; Sandrini, J.; Nolot, E.; Garrione, J.; Cyrille, M.C.; Navarro, G.; Nowak, E. Reliability analysis in GeTe and GeSbTe based phase-change memory 4 kb arrays targeting storage class memory applications. Microelectron. Reliab. 2020, 114, 113823. [Google Scholar] [CrossRef]
- Park, S.; Kim, T.; Hwang, S.; Park, D.; Ahn, M.; Cho, M.H. In situ thermal behavior of resistance drift in GeTe and Ge2Sb2Te5 nanowires via raman thermometry. J. Mater. Chem. C 2020, 8, 11032–11041. [Google Scholar] [CrossRef]
- Kunkel, T.; Vorobyov, Y.; Smayev, M.; Lazarenko, P.; Veretennikov, V.; Sigaev, V.; Kozyukhin, S. Experimental observation of two-stage crystallization of Ge2Sb2Te5 amorphous thin films under the influence of a pulsed laser. J. Alloys Compd. 2021, 851, 156924. [Google Scholar] [CrossRef]
- Moon, J.S.; Sun, J.; Seo, H.C.; Son, K.A.; Lee, K.; Zehnder, D.; Tai, H.; Le, D. Phase-change RF switches with robust switching cycle endurance. In Proceedings of the IEEE Radio and Wireless Symposium, Anaheim, CA, USA, 15–18 January 2018. [Google Scholar]
- Yalon, E.; Datye, I.M.; Moon, J.S.; Son, K.A.; Lee, K.; Pop, E. Energy-efficient indirectly heated phase change RF switch. IEEE Electron Device Lett. 2019, 40, 455–458. [Google Scholar] [CrossRef]
- Mennai, A.; Bessaudou, A.; Cosset, F.; Guines, C.; Blondy, P.; Aurelian, C. Bistable RF switches using Ge2Sb2Te5 phase change material. In Proceedings of the IEEE 2015 European Microwave Conference, Paris, France, 7–10 September 2015; pp. 945–947. [Google Scholar]
- Field, M.; Hillman, C.; Stupar, P.; Hacker, J.; Griffith, Z.K.; Lee, J. Vanadium dioxide phase change switches. In Proceedings of the International Society for Optics and Photonic, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar]
- Kovitz, J.M.; Allen, K.W. Recent Developments toward reconfigurable mmwave apertures and components using vanadium dioxide RF switches. In Proceedings of the IEEE 19th Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 9–10 April 2018; pp. 1–4. [Google Scholar]
- Pan, K.; Wang, W.; Shin, E.; Freeman, K.; Subramanyam, G. Vanadium oxide thin-film variable resistor-based RF switches. IEEE Trans. Electron Devices 2015, 62, 2959–2965. [Google Scholar]
- Chattopadhyay, T.; Pannetier, J.; Schnering, H.G.V. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 1986, 47, 879–885. [Google Scholar] [CrossRef]
- Deringer, V.L.; Dronskowski, R.; Wuttig, M. Microscopic Complexity in Phase-Change Materials and its Role for Applications. Adv. Funct. Mater. 2015, 25, 6343–6359. [Google Scholar] [CrossRef]
- Sosman, R.B. The Phases of Silica; Rutgers University Press: New Brunswick, NJ, USA, 1965. [Google Scholar]
- Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hap, S.; Uher, C.; Wolverton, C.; et al. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. J. Am. Chem. Soc. 2018, 140, 2673–2686. [Google Scholar] [CrossRef]
- Ali, A.; Ansari, S.M.; Ehab, B.; Mohammad, B.; Anjum, D.H.; Aldosari, H.M. Effect of vacuum annealing on structural and electrical properties of germanium telluride thin films. Mater. Res. Bull. 2022, 146, 111575. [Google Scholar] [CrossRef]
- Yu, N.N.; Tong, H.; Miao, X.S. Structure and phonon behavior of crystalline GeTe ultrathin film. Appl. Phys. Lett. 2014, 105, 121902. [Google Scholar] [CrossRef]
- Liu, W.D.; Wang, D.Z.; Liu, Q.F.; Zhou, W.; Shao, Z.P.; Chen, Z.G. High-Performance GeTe-Based Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2020, 10, 2000367. [Google Scholar] [CrossRef]
- Hong, M.; Zou, J.; Chen, Z.G. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. Adv. Mater. 2019, 31, 1807071. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.Z.; Sun, J.F.; Li, Y.W.; Fan, X.F.; Zheng, W.T.; Singh, D.J. Thermoelectric properties of p-type cubic and rhombohedral GeTe. J. Appl. Phys. 2018, 123, 195105. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Fons, P.; Frenkel, A.I.; Ankudinov, A.L.; Tominaga, J.; Uruga, T. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 2004, 3, 703–708. [Google Scholar] [CrossRef]
- Wełnic, W.; Pamungkas, A.; Detemple, R.; Steimer, C.; Blügel, S.; Wuttig, M. Unravelling the interplay of local structure and physical properties in phase-change materials. Nat. Mater. 2006, 5, 56–62. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Fons, P.; Tominaga, J. Understanding Phase-Change Memory Alloys from a Chemical Perspective. Sci. Rep. 2015, 5, 13698. [Google Scholar] [CrossRef]
- Andrikopoulos, K.S.; Yannopoulos, S.N.; Voyiatzis, G.A.; Kolobov, A.V.; Ribes, M.; Tominaga, J. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous-to-crystal transition. J. Phys.-Condens. Matter 2006, 18, 965–979. [Google Scholar] [CrossRef]
- Sun, C.; Tay, B.K.; Zeng, X.; Li, S.; Chen, T.; Zhou, J.; Bai, H.; Jiang, E. Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J. Phys.-Condens. Matter 2002, 14, 7781–7795. [Google Scholar] [CrossRef]
- Andrikopoulos, K.S.; Yannopoulos, S.N.; Kolobov, A.V.; Fons, P.; Tominaga, J. Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials. J. Phys. Chem. Solids 2017, 68, 1074–1078. [Google Scholar] [CrossRef]
- Deringer, V.L.; Zhang, W.; Lumeij, M.; Maintz, S.; Wuttig, M.; Mazzarello, R.; Dronskowski, R. Bonding Nature of Local Structural Motifs in Amorphous GeTe. Angew. Chem. Int. Ed. 2014, 53, 10817–10820. [Google Scholar] [CrossRef]
- Mazzarello, R.; Caravati, S.; Angioletti-Uberti, S.; Bernasconi, M.; Parrinello, M. Signature of Tetrahedral Ge in the Raman Spectrum of Amorphous Phase-Change Materials. Phys. Rev. Lett. 2011, 107, 085503. [Google Scholar] [CrossRef]
- Wdowik, U.D.; Parlinski, K.; Rols, S.; Chatterji, T. Soft-phonon mediated structural phase transition in GeTe. Phys. Rev. B 2014, 89, 224306. [Google Scholar] [CrossRef]
- Sengottaiyan, R.; Saxena, N.; Shukla, K.D.; Manivannan, A. Temperature dependent structural evolution and crystallization properties of thin Ge15Te85 film revealed by in situ resistance, X-ray diffraction and scanning electron microscopic studies. J. Phys. D Appl. Phys. 2020, 53, 205108. [Google Scholar] [CrossRef]
- Navarro, G.; Sousa, V.; Persico, A.; Pashkov, N.; Toffoli, A.; Bastien, J.C.; Perniola, L.; Maitrejean, S.; Roule, A.; Zuliani, P.; et al. Material engineering of GexTe100−x compounds to improve phase-change memory performances. Solid State Electron. 2013, 89, 93–100. [Google Scholar] [CrossRef]
- Raoux, S.; Muñoz, B.; Cheng, H.Y.; Jordan-Sweet, J.L. Phase transitions in Ge–Te phase change materials studied by time-resolved x-ray diffraction. Appl. Phys. Lett. 2009, 95, 143118. [Google Scholar] [CrossRef]
- Raoux, S.; Cheng, H.Y.; Caldwell, M.A.; Wong, H.S.P. Crystallization times of GeTe phase change materials as a function of composition. Appl. Phys. Lett. 2009, 95, 071910. [Google Scholar] [CrossRef]
- Hyot, B.; Biquard, X.; Poupinet, L. Local structures of morphous and crystalline GeTe and GeSbTe. In Proceedings of the EPCOS, Lugano, Switzerland, 10–11 March 2003. [Google Scholar]
- Chopra, K.L.; Bahl, S.K. Amorphous versus Crystalline GeTe Films. I. Growth and Structural Behavior. Phys. Rev. B 2006, 73, 045210. [Google Scholar] [CrossRef]
- Wang, M. Phase Change Material Based Ohmic Switches for Reconfigurable RF Applications. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2017. [Google Scholar]
- Chua, E.K.; Shi, L.P.; Zhao, R.; Lim, K.G.; Chong, T.C.; Schlesinger, T.E.; Bain, J.A. Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications. Appl. Phys. Lett. 2010, 97, 418–419. [Google Scholar] [CrossRef]
- King, M.R.; Wagner, B.P.; Jones, E.B.; El-Hinnawy, N.; Borodulin, P.; McLaughlin, S.R.; Mason, J.S.; Howell, R.S.; Lee, M.J.; Young, R.M. Development of cap-free sputtered GeTe films for inline phase change switch based RF circuits. J. Vac. Sci. Technol. B 2014, 32, 041204. [Google Scholar] [CrossRef]
- Kolb, A.N.D.; Bernier, N.; Robin, E.; Benayad, A.; Rouvière, J.-L.; Sabbione, C.; Hippert, F.; Noé, P. Understanding the Crystallization Behavior of Surface-Oxidized GeTe Thin Films for Phase-Change Memory Application. ACS Appl. Electron. Mater. 2019, 1, 701–710. [Google Scholar] [CrossRef]
- Shim, Y.; Rais-Zadeh, M. Non-Linearity analysis of RF ohmic switches based on phase change materials. IEEE Electron Device Lett. 2014, 35, 405–407. [Google Scholar] [CrossRef]
- Ielmini, D.; Zhang, Y. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 2007, 102, 662–667. [Google Scholar] [CrossRef]
- Kostylev, S.A. Threshold and Filament Current Densities in Chalcogenide-Based Switches and Phase-Change-Memory Devices. IEEE Trans. Electron Devices 2009, 30, 814–816. [Google Scholar] [CrossRef]
- El-Hinnawy, N.; Borodulin, P.; Wagner, B.P.; King, M.R.; Mason, J.S.; Jones, E.B.; Veliadis, V.; Howell, R.S.; Young, R.M.; Lee, M.J. A 7.3 THz cut-off frequency, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 13–16 October 2013; pp. 1–4. [Google Scholar]
- Suresh, R.; Borodulin, P.; El-Hinnawy, N.; Kuss, F.C.; Young, R.M.; Howell, R.S.; Lee, M. Low-loss non-volatile phase-change RF switching technology for system reconfigurability and reliability. In Proceedings of the Architecture/Open Business Model Net-Centric Systems and Defense Transformation, Baltimore, MD, USA, 5–9 May 2014; Volume 9096. [Google Scholar]
- El-Hinnawy, N.; Borodulin, P.; Wagner, B.; King, M.R.; Mason, J.S.; Jones, E.B.; McLaughlin, S.; Veliadis, V.; Snook, M.; Sherwin, M.E.; et al. A Four-Terminal, Inline, Chalcogenide Phase-Change RF Switch Using an Independent Resistive Heater for Thermal Actuation. IEEE Electron Device Lett. 2013, 34, 1313–1315. [Google Scholar] [CrossRef]
- Young, R.M.; El-Hinnawy, N.; Borodulin, P.; Wagner, B.P.; King, M.R.; Jones, E.B.; Howell, R.S.; Lee, M.J. Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch. J. Appl. Phys. 2014, 116, 054504. [Google Scholar] [CrossRef]
- Desai, P.D.; Chu, T.K.; James, H.M.; Ho, C.Y. Electrical Resistivity of Selected Elements. J. Phys. Chem. Ref. Data 1984, 13, 1069–1096. [Google Scholar] [CrossRef]
- El-Hinnawy, N.; Borodulin, P.; King, M.R.; Padilla, C.R.; Ezis, A.; Nichols, D.T.; Paramesh, J.; Bain, J.A.; Young, R.M. Origin and Optimization of RF Power Handling Limitations in Inline Phase-Change Switches. IEEE Trans. Electron Devices 2017, 64, 3934–3942. [Google Scholar] [CrossRef]
- Wang, M.; Lin, F.; Rais-Zadehm, M. An X-band reconfigurable bandpass filter using phase change RF switches. In Proceedings of the IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA, 24–27 January 2016; pp. 38–41. [Google Scholar]
- Singh, T.; Mansour, R.R. Reconfigurable PCM GeTe-Based Latching 6-Bit Digital Switched Capacitor Bank. In Proceedings of the European Microwave Integrated Circuits Conference, Milan, Italy, 26–27 September 2022. [Google Scholar]
- Singh, T.; Mansour, R.R. Miniaturized Reconfigurable 28 GHz PCM-Based 4-Bit Latching Variable Attenuator for 5G mmWave Applications. In Proceedings of the IEEE MTT-S International Microwave Symposium, Los Angeles, CA, USA, 4–6 August 2020. [Google Scholar]
- Singh, T.; Mansour, R.R. Chalcogenide GeTe-Based Non-Volatile Switched K-Band Tunable Reflective Load for Reconfigurable RF Circuits. In Proceedings of the IEEE/MTT-S International Microwave Symposium, Denver, CO, USA, 19–24 June 2022; pp. 967–970. [Google Scholar]
- Singh, T.; Mansour, R.R. Loss compensated pcm GeTe-based latching wideband 3-bit switched true-time-delay phase shifters for mmwave phased arrays. IEEE Trans. Microw. Theory Tech. 2020, 68, 3745–3755. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Scalable mmwave non-volatile phase change GeTe-based compact monolithically integrated wideband digital switched attenuator. IEEE Trans. Electron Devices 2021, 68, 2306–2312. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Compact 26–30 GHz Reflection-Type Phase Shifter With 8-Bit Switched Phase Tuning Utilizing Chalcogenide Phase-Change Switches. IEEE Trans. Microw. Theory Tech. 2023, 71, 193–202. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Reconfigurable and Scalable Monolithic Band Reject Circuit Utilizing Phase-Change Switch Matrices. In Proceedings of the 16th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 April 2021; pp. 34–37. [Google Scholar]
- Singh, T.; Mansour, R.R. Miniaturized DC-60 GHz RF PCM GeTe-based monolithically integrated redundancy switch matrix using T-type switching unit cells. IEEE Trans. Microw. Theory Tech. 2019, 67, 5181–5190. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Non-volatile multiport DC–30 GHz monolithically integrated phase-change transfer switches. IEEE Electron Device Lett. 2021, 42, 867–870. [Google Scholar] [CrossRef]
- Singh, T.; Mansour, R.R. Monolithic PCM Based Miniaturized T-type RF Switch for Millimeter Wave Redundancy Switch Matrix Applications. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 658–660. [Google Scholar]
- Hariri, A.; Crunteanu, A.; Guines, C.; Hallepee, C.; Passerieux, D.; Blondy, P. Double-port double-throw (DPDT) switch matrix based on phase change material (PCM). In Proceedings of the 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 479–482. [Google Scholar]
- Slovin, G.; El-Hinnawy, N.; Masse, C.; Rose, J.; Howard, D. Multi-Throw SPNT Circuits Using Phase-Change Material RF Switches for 5G and Millimeter Wave Applications. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 7–25 June 2021; pp. 428–430. [Google Scholar]
- King, M.R.; El-Hinnawy, N.; Borodulin, P.; Ezis, A.; Luu, V.; Salmon, M.; Gu, J.; Nichols, D.T.; Dickey, E.; Maria, J.-P.; et al. Connecting post-pulsing electrical and microstructural features in GeTe-based inline phase change switches. J. Appl. Phys. 2018, 124, 195103. [Google Scholar] [CrossRef]
- Wang, M.; Lin, F.; Rais-Zadehm, M. Performance measurements and non-linearity modeling of GeTe phase change RF switches with direct and indirect heating schemes. In Proceedings of the IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015. [Google Scholar]
- Suemune, I.; Uesugi, K.; Kumano, H. Study of light emitters with capability of multi-wavelength emissions in visible and infrared wavelength ranges on GaAs substrates. Photonics Based Wavel. Integr. Manip. 2005, 2, 71–92. [Google Scholar]
- Majumdar, S.; Biswas, D. Evaluating substrate’s effect on RF switch performance via Verilog-a GaN HEMT model. Microelectron J. 2017, 62, 43–48. [Google Scholar] [CrossRef]
- Gao, L.; Liu, M.; Qu, S.; Liu, J.; Fu, S.; Ding, Y.; Chen, H.; Zhang, J. Nano-Scanning Calorimetry Applied to Phase Change Processes in GeTe Thin Films. IEEE Trans. Electron Devices 2023, 70, 4128–4132. [Google Scholar] [CrossRef]
- King, M.R.; El-Hinnawy, N.; Salmon, M.; Gu, J.; Wagner, B.P.; Jones, E.B.; Borodulin, P.; Howell, R.S.; Nichols, D.T.; Young, R.M. Morphological analysis of GeTe in inline phase change switches. J. Appl. Phys. 2015, 118, 094501. [Google Scholar] [CrossRef]
- El-Hinnawy, N.; Borodulin, P.; King, M.R.; Furrow, C.; Padilla, C.R.; Ezis, A.; Nichols, D.T.; Paramesh, J.; Bain, J.A.; Young, R.M. Experimental Demonstration of AlN Heat Spreaders for the Monolithic Integration of Inline Phase-Change Switches. IEEE Electron Device Lett. 2018, 39, 610–613. [Google Scholar] [CrossRef]
- Xu, M.; Slovin, G.; Paramesh, J.; Schlesinger, T.E.; Bain, J.A. Thermometry of a high temperature high speed micro heater. Rev. Sci. Instrum. 2016, 87, 164–167. [Google Scholar] [CrossRef]
- Slovin, G.; Xu, M.; Singh, R.; Schlesinger, T.E.; Paramesh, J.; Bain, J.A. Design Criteria in Sizing Phase-Change RF Switches. IEEE Trans. Microw. Theory Tech. 2017, 65, 4531–4540. [Google Scholar] [CrossRef]
- Slovin, G.; Xu, M.; Paramesh, J.; Schlesinger, T.E.; Bain, J.A. AlN Barriers for Capacitance Reduction in Phase-Change RF Switches. IEEE Electron Device Lett. 2016, 37, 568–571. [Google Scholar] [CrossRef]
- Chua, E.K.; Zhao, R.; Shi, L.P.; Chong, T.C.; Schlesinger, T.E.; Bain, J.A. Effect of metals and annealing on specific contact resistivity of GeTe/metal contacts. Appl. Phys. Lett. 2012, 101, 012107. [Google Scholar] [CrossRef]
- Cooley, K.A.; Aldosari, H.M.; Yang, K.; Mohney, S.E. Review of electrical contacts to phase change materials and an unexpected trend between metal work function and contact resistance to germanium telluride. J. Vac. Sci. Technol. A 2020, 38, 050805. [Google Scholar] [CrossRef]
Phase-Change Material | Ge2Sb2Te5 | GeTe | SbxTey | VO2 |
---|---|---|---|---|
Crystallization temperature Tc (°C) | 140 | 190–210 | 145–150 | 65–80 |
Crystalline resistivity (Ω·cm) | 10−1 | 10−4 | 10−2 | 10−1 |
Ron (Ω) | 10 | 0.9 | 4.5 | 10 |
Roff (Ω) | 150 k | 35.3 k | 35 k | 10 k |
Switching time | 270 μs | 2 μs | 1.3 μs | 0.4 μs |
Non-volatile | Yes | Yes | Yes | No |
Ref. | [41] | [16,17,18,19,20,21,22,23,24,25,26,27,28] | [39,40] | [42,43,44] |
Components | Range (GHz) | RF Performance *: IL (Insertion Loss), ISO (Isolation), RL (Return Loss), PH (Power Handling), etc. |
---|---|---|
X-Band Reconfigurable bandpass filters [82] | 7.45–8.07 | IL: 2.6–3.2 dB IIP3 **: 30 dBm Tuning speed: <6 μs |
6-bit latching switched capacitor bank [83] | 2–7 | Capacitance tuning range: 0.14 pF to 8 pF Capacitance ratio: 58:1 Tuning speed: 1.4 μs |
4-bit Latching Variable Attenuator [84] | 24–32 | Maximum attenuation: 37 dB Minimum attenuation: 4.7 dB RL: >20 dB |
Switched K-Band Tunable Reflective Load [85] | DC-60 | The resonance: <18 GHz or > 26.5 GHz Phase shift: 30° at 18 GHz and up to 45° at 26.5 GHz |
3-bit switched True-Time-Delay phase Wideband shifters [86] | 26–34 | Phase shifter at 30 GHz: 170° (ps-a), 173° (ps-b) ILmax: 4.9 dB (ps-a), 4.7 dB (ps-b) RLmin: 16.5 dB (ps-a), 14 dB (ps-b) |
Integrated Wideband Digital Switched Attenuator [87] | 26–34 | Attenuation range: 24.1 dB IL: 3.9 dB, RLmin: 13 dB PH: 35.5 dBm, IIP3: 4 1 dBm |
Reflection-Type Phase Shifter With 8-Bit Switched Phase Tuning [88] | 26–30 | Phase shifter at 30 GHz: 280° ILmax: 6 dB RLmin: 14.2 dB; |
Monolithic Band Reject Circuit [89] | 1–8 | Four states of this circuit: reject f1 at 2.6 GHz; reject f2 at 5.8 GHz; reject f1 and f2 at the same time; no rejection IL < 2.2 dB RL > 17 dB |
Switch matrix [90] | DC-60 | IL < 3 dB, RL > 14 dB, ISO > 20 dB |
R-type and C-type Switch [91] | DC-30 | C-type: IL < 0.75 dB, RL > 18 dB R-type: IL < 1.1 dB (state I/II), <1.5 dB (state III), RL > 18 dB, ISO > 25 dB |
T-type switch [92] | DC-67 | IL < 0.6 dB, RL > 20 dB, ISO > 20 dB |
DPDT (Double-Pole, Double-Throw) Switch [93] | DC-20 | IL < 2 dB (0–5 GHz), IL < 4 dB (@20 GHz) ISO > 17.5 dB (0–20 GHz) |
SPNT (Single-Pole, N-Throw) Switches [94] | DC-40 | SP2T: IL < 0.5 dB (0–20 GHz), IL < 0.7 dB (0–40 GHz) ISO > 26 dB (0–40 GHz) SP4T: IL < 0.6 dB (0–20 GHz), IL < 1 dB (0–40 GHz) ISO > 25 dB (0–40 GHz) SP9T: IL < 0.5 dB (0–20 GHz), IL < 1.5 dB (0–40 GHz) ISO > 28 dB (0–40 GHz) |
Substrate (Sub) | Thermal Conductivity (W/m·K) | Relative Permittivity of Sub | Insulator | Refs. |
---|---|---|---|---|
HR-Si | 150 | 11.9 | SiO2 | [23,95,100] |
HR-Si | SiNx | [99] | ||
HR-Si | AlN | [19] | ||
SiC | 120–490 | 10 | SiO2 | [79] |
Alumina | 18–35 | 11.5 | SiO2 | [28] |
Sapphire | 25–40 | 9.8 | N/A | [32] |
GaAs | 46 | 12.5 | N/A | [97] |
GaN | 9 | 150 | N/A | [98] |
Material | Thermal Conductivity (W/m·K) | Melting Point (°C) | Resistivity (Ω·m) | Type | Refs. |
---|---|---|---|---|---|
Mo | 142 | 2610 | 5.2 × 10−8 | indirect | [93] |
AlCu | 104 | 670 | 2.5 × 10−8 | direct | [21,22] |
W | 174 | 3390 | 5.0 × 10−8 | indirect | [26,32,84,91] |
NiCr | 12.2 | 1350 | 1.1 × 10−6 | indirect | [28] |
NiCrSi | - | - | - | indirect | [18,67,68,93] |
TiN | 19.2 | 2950 | 2.0 × 10−7 | indirect | [27] |
TiN | 19.2 | 2950 | 2.0 × 10−7 | direct | [19,20] |
Dielectric Material | Thermal Conductivity (W/m·K) | Melting Temperature (°C) | Resistivity (Ω·m) | Refs. |
---|---|---|---|---|
SiO2 | 1.4 | 1700 | 1012~1014 | [17,18,19,20,21,22,23,31] |
SiNx | 3 | 1900 | 109~1012 | [90] |
AlN | 140 | 2500 | 1010~1014 | [23,102,104] |
Contact Metal | Contact Resistance Rc (Ω·mm) | Specific Contact Resistivity ρc (Ω·cm2) | Sheet Resistance Rsh (Ω/sq) |
---|---|---|---|
Pd/Ti/Pt/Au | 0.0036 ± 0.002 | (3.7 ± 0.2) × 10−9 | 36 |
Mo/Ti/Pt/Au | 0.0035 ± 0.001 | (3.6 ± 0.7) × 10−9 | 38 |
Ni/Ti/Pt/Au | 0.016 ± 0.003 | (6.4 ± 2.2) × 10−8 | 40 |
Sn/Fe/Au | 0.0037 ± 0.001 | (5.2 ± 0.6) × 10−9 | 43 |
Ti/Pt/Au | 0.034 ± 0.0028 | (3.13 ± 0.6) × 10−7 | 38 |
TiW/Al | 0.0054 ± ⋯ | (1.43 ± ⋯) × 10−8 | … |
Cr/Pt/Au | 0.0055 ± 0.002 | (9.6 ± 0.8) × 10−9 | 36 |
W/Al | 0.0054 ± ⋯ | (1.4 ± ⋯) × 10−8 | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, S.; Gao, L.; Wang, J.; Chen, H.; Zhang, J. A Review on Material Selection Benchmarking in GeTe-Based RF Phase-Change Switches for Each Layer. Micromachines 2024, 15, 380. https://doi.org/10.3390/mi15030380
Qu S, Gao L, Wang J, Chen H, Zhang J. A Review on Material Selection Benchmarking in GeTe-Based RF Phase-Change Switches for Each Layer. Micromachines. 2024; 15(3):380. https://doi.org/10.3390/mi15030380
Chicago/Turabian StyleQu, Sheng, Libin Gao, Jiamei Wang, Hongwei Chen, and Jihua Zhang. 2024. "A Review on Material Selection Benchmarking in GeTe-Based RF Phase-Change Switches for Each Layer" Micromachines 15, no. 3: 380. https://doi.org/10.3390/mi15030380
APA StyleQu, S., Gao, L., Wang, J., Chen, H., & Zhang, J. (2024). A Review on Material Selection Benchmarking in GeTe-Based RF Phase-Change Switches for Each Layer. Micromachines, 15(3), 380. https://doi.org/10.3390/mi15030380