Recent Advances in Broadband Photodetectors from Infrared to Terahertz
Abstract
:1. Introduction
2. Fundamentals of Photodetectors
2.1. Detection Mechanism
2.1.1. Photo-Bolometric Effect (PBE)
2.1.2. Photo-Thermoelectric Effect (PTE)
2.1.3. Photoconductive Effect (PCE)
2.1.4. Photovoltaic Effect (PVE)
2.1.5. Photogating Effect (PGE)
2.2. Key Characteristics of Photodetectors
2.2.1. Responsivity (R)
2.2.2. Noise Equivalent Power (NEP)
2.2.3. Detectivity (D*)
2.2.4. Quantum Efficiency
2.2.5. Response Time
2.2.6. Spectral Response Range
3. Broadband Photodetectors Based on Thermal Effects
3.1. PBE-Type Broadband Photodetector
3.2. PTE-Type Broadband Photodetector
4. Broadband Photodetectors Based on Photoelectric Effect
4.1. PCE-Type Broadband Photodetector
4.2. PVE-Type Broadband Photodetectors
4.3. PGE-Type Broadband Photodetectors
5. Broadband Photodetectors Based on Other Effects
5.1. Broadband Photodetectors Based on Nonlinear Hall Effect
5.2. Broadband Photodetectors Based on the Combination of Multiple Effects
5.3. Broadband Photodetectors Based on Electromagnetic Induction Wells Effect
6. Conclusion and Outlooks
- Explore new materials and large-area growth: We must continue to study new thermal and photoelectric materials, such as two-dimensional materials, topological insulators, organic–inorganic hybrid materials, and perovskites, which are expected to cover a wider range of wavelength bands and improve the performance and sensitivity of broadband photodetectors. To produce cost-effective FPAs ultimately, research into large-area deposition techniques for materials is also necessary, including various scalable deposition techniques such as magnetron sputtering [111], pulsed-laser deposition [112], atomic layer deposition [113], van der Waals growth [114], and others.
- Enhanced absorption by artificial microstructures: The optical response range of photodetectors can be broadened via the design and preparation of metamaterials and artificial microstructures. This method involves the use of the special properties of microstructures, such as negative refraction, surface equipartition excitation resonance, etc., to achieve selective absorption of and enhancement in optical signals in different wavelength ranges. This enables the efficient detection of optical signals in a wider range of wavelengths.
- High-speed and low-power solutions: There is a need to further improve the response speed of photodetectors based on thermal effects so that they can operate in a higher frequency range and realize high-speed imaging and high-frequency signal detection [115]. At the same time, the focus should be on developing self-powered, reduce the size of the device to meet the need for low-power, high-speed communications, as well as portable equipment.
- Integration functions: Firstly, achieving the integration of multiple functions within an ultra-broadband photodetector, such as enhanced contrast polarimetric imaging [116], multiplexing optical communications [117,118], and dynamic encrypt technology [119], will lead to a high degree of device intelligence. Secondly, exploring the integration of a detector with other functions like signal processing and readout modules will enhance its application efficiency. Finally, 3D stacking techniques can be employed to achieve on-chip intelligence and the large-area integration of arrays.
- Low-cost fabrication techniques: After device specifications all meet the design requirements, the difficulty of the fabrication process needs to be considered. There is a need to develop lower-cost and higher-efficiency fabrication techniques to reduce the production cost of ultra-wideband photodetectors and to facilitate their promotion in large-scale applications. The silicon-based standard CMOS process is the mainstream process for modern IC fabrication, which is a highly mature technology and low in cost, so the device fabrication process should preferably match the silicon-based process [122,123].
- Cross-disciplinary research and diversified applications: Cross-disciplinary research with other fields (e.g., artificial intelligence, quantum technology, etc.) may bring innovations and breakthroughs to the field of broadband photodetection. Expanding the range of applications in biomedicine, environmental monitoring, security, and other fields will unleash the potential of broadband photodetection to address societal challenges and advance the frontiers of science.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.; Liang, Z.; Meng, D.; Xu, H.; Smith, D.R.; Liu, Y. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl. 2021, 10, 138. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Wu, Y.; Xu, W.; Lyu, J.; Wang, Y.; Zi, L.; Shao, L.; Sun, R.; Wang, N.; Liu, S.; et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci. Appl. 2022, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhao, F.; Du, L.; Lv, W.; Xu, K.; Peng, Y.; Wang, Y.; Lu, F. Ultrasensitive flexible broadband photodetectors achieving pA scale dark current. npj Flex. Electron. 2017, 1, 6. [Google Scholar] [CrossRef]
- Li, J.; Niu, L.; Zheng, Z.; Yan, F. Photosensitive graphene transistors. Adv. Mater. 2014, 26, 5239–5273. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ma, D. Development of organic semiconductor photodetectors: From mechanism to applications. Adv. Opt. Mater. 2019, 7, 1800522. [Google Scholar] [CrossRef]
- Edgar, M.P.; Gibson, G.M.; Padgett, M.J. Principles and prospects for single-pixel imaging. Nat. Photonics 2018, 13, 13–20. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Tang, L.B.; Liu, Y.F.; Seng, T.K.; Wu, G.; Hu, W.D.; Han, F.Z. The research progress and application of novel terahertz detectors. J. Infrared Millim. Waves 2020, 39, 191–210. [Google Scholar]
- Xie, L.; Yao, Y.; Ying, Y. The application of terahertz spectroscopy to protein detection: A review. Appl. Spectrosc. Rev. 2013, 49, 448–461. [Google Scholar] [CrossRef]
- Bhan, R.K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 2019, 27, 174–193. [Google Scholar] [CrossRef]
- Balestrieri, E.; Daponte, P.; De Vito, L.; Lamonaca, F. Sensors and measurements for unmanned systems: An overview. Sensors 2021, 21, 1518. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, Y.; Zhou, Y.; Zhang, M.; Lv, B.; Wu, J. Review on infrared imaging technology. Sustainability 2022, 14, 11161. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef] [PubMed]
- Gong, A.; Qiu, Y.; Chen, X.; Zhao, Z.; Xia, L.; Shao, Y. Biomedical applications of terahertz technology. Appl. Spectrosc. Rev. 2019, 55, 418–438. [Google Scholar] [CrossRef]
- Son, J.-H.; Oh, S.J.; Cheon, H. Potential clinical applications of terahertz radiation. J. Appl. Phys. 2019, 125, 190901. [Google Scholar] [CrossRef]
- Sizov, F. Terahertz radiation detectors: The state-of-the-art. Semicond. Sci. Technol. 2018, 33, 123001. [Google Scholar] [CrossRef]
- Peng, M.; Xie, R.; Wang, Z.; Wang, P.; Wang, F.; Ge, H.; Wang, Y.; Zhong, F.; Wu, P.; Ye, J.; et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 2021, 7, eabf7358. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X.; Ye, J.; Chen, Y.; Xie, R.; Zhou, Y.; et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363. [Google Scholar] [CrossRef]
- Gayduchenko, I.; Xu, S.G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A.K.; Fedorov, G.; et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat. Commun. 2021, 12, 543. [Google Scholar] [CrossRef]
- Michailow, W.; Spencer, P.; Almond, N.W.; Kindness, S.J.; Wallis, R.; Mitchell, T.A.; Degl’Innocenti, R.; Mikhailov, S.A.; Beere, H.E.; Ritchie, D.A. An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection. Sci. Adv. 2022, 8, eabi8398. [Google Scholar] [CrossRef]
- Dai, M.; Wang, C.; Qiang, B.; Wang, F.; Ye, M.; Han, S.; Luo, Y.; Wang, Q.J. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 2022, 13, 4560. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Folland, T.G.; Sun, F.; Zheng, Z.; Xu, N.; Xing, Q.; Jiang, J.; Chen, H.; Caldwell, J.D.; Yan, H.; et al. In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes. Nat. Commun. 2023, 14, 2716. [Google Scholar] [CrossRef] [PubMed]
- TYDEX Golay Detectors. Available online: https://www.tydexoptics.com/products/thz_devices/golay_cell/ (accessed on 5 March 2024).
- Bolometer Systems: IR Detection across a Wide Spectral Range. Available online: https://www.irlabs.com/products/bolometers/bolometer-systems/ (accessed on 5 March 2024).
- an_ 201924 thz_ r1.pdf. Available online: https://downloads.gentec-eo.com/prod/c2f71a5f/an_201924_thz_r1.pdf (accessed on 5 March 2024).
- ALPHALAS-Ultrafast Photodetectors: UPD Series. Available online: https://www.alphalas.com/products/laser-diagnostic-tools/ultrafast-photodetectors-upd-series.html (accessed on 5 March 2024).
- MICROXCAM-384i-THz Terahertz Camera. Available online: https://www.ino.ca/en/solutions/thz/microxcam-384i-thz/ (accessed on 5 March 2024).
- Laser Components UK LCDT-5000 Datasheet. Available online: https://www.electronicspecifier.com/attachment/view/5447823be34e24aa554acc8d/Laser%20Components%20UK%20LCDT-5000%20datasheet (accessed on 5 March 2024).
- Dhanabalan, S.C.; Ponraj, J.S.; Zhang, H.; Bao, Q. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 2016, 8, 6410–6434. [Google Scholar] [CrossRef] [PubMed]
- Nalwa, H.S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef] [PubMed]
- Roberge, A.; Moustakas, L.A. The large ultraviolet/optical/infrared surveyor. Nat. Astron. 2018, 2, 605–607. [Google Scholar] [CrossRef]
- Mao, Q.; Qiu, Y.; Zhang, Y.; Cordier, B.; Jouret, M.; Chen, K.; Li, D.; Su, R. Strategy of visible telescope on-board data processing during GRB localization in SVOM mission. In Proceedings of the Conference on Space Telescopes and Instrumentation 2022, Montreal, QC, Canada, 17–22 July 2022. [Google Scholar]
- Fan, X.; Zou, G.; Wei, J.; Qiu, Y.; Gao, W.; Wang, W.; Yang, W.; Zhang, J.; Li, C.; Zhao, H.; et al. The visible telescope onboard the Chinese-French SVOM satellite. In Proceedings of the Conference on Space Telescopes and Instrumentation 2020, Online, 14–22 December 2020. [Google Scholar]
- Schultz, J.A.; Hartmann, M.; Heinemann, S.; Janke, J.; Jürgens, C.; Oertel, D.; Rücker, G.; Thonfeld, F.; Rienow, A. DIEGO: A multispectral thermal mission for earth observation on the international space station. Eur. J. Remote Sens. 2019, 53, 28–38. [Google Scholar] [CrossRef]
- Sood, A.K.; Zeller, J.W.; Richwine, R.A.; Puri, Y.R.; Efstathiadis, H.; Haldar, P.; Dhar, N.K.; Polla, D.L. SiGe based visible-NIR photodetector technology for optoelectronic applications. In Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications; IntechOpen: London, UK, 2015. [Google Scholar]
- Song, H.; Toet, A.; Hogervorst, M.A.; Pinkus, A.R. The TRICLOBS dynamic multi-band image data set for the development and evaluation of image fusion methods. PLoS ONE 2016, 11, e0165016. [Google Scholar]
- Chen, H.; Liu, H.; Zhang, Z.; Hu, K.; Fang, X. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433. [Google Scholar] [CrossRef]
- Torres-Company, V.; Weiner, A.M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev. 2014, 8, 368–393. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband metamaterial absorbers. Adv. Opt. Mater. 2018, 7, 1800995. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, C.; Niu, L.; Zhang, X.; Zhang, F. Recent progress on broadband organic photodetectors and their applications. Laser Photonics Rev. 2020, 14, 2000262. [Google Scholar] [CrossRef]
- Rogalski, A.; Kopytko, M.; Martyniuk, P. Two-dimensional infrared and terahertz detectors: Outlook and status. Appl. Phys. Rev. 2019, 6, 021316. [Google Scholar] [CrossRef]
- Mittendorff, M.; Winnerl, S.; Murphy, T.E. 2D THz optoelectronics. Adv. Opt. Mater. 2020, 9, 2001500. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.C.; Wang, P.F.; Huang, F.; Sun, J.L. Research progress of ultra-broadband photodetectors. J. Infrared Millim. Waves 2023, 42, 169–187. [Google Scholar]
- Ahmad, W.; Wu, J.; Zhuang, Q.; Neogi, A.; Wang, Z. Research process on photodetectors based on group-10 transition metal dichalcogenides. Small 2023, 19, e2207641. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wang, H.; Chen, T.; Zhang, T.; Chu, J.; Du, A. Intrinsic negative TCR of superblack carbon aerogel films and their ultrabroad band response from UV to microwave. Carbon 2020, 161, 590–598. [Google Scholar] [CrossRef]
- Mittendorff, M.; Winnerl, S.; Kamann, J.; Eroms, J.; Weiss, D.; Schneider, H.; Helm, M. Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 2013, 103, 021113. [Google Scholar] [CrossRef]
- Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J.-L.; Wang, Y.; Zhao, Z. Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon 2017, 115, 561–570. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, J.; Wang, P.; Hu, Q.; Wang, Y.; Xie, Y.; Zhao, Z.; Dong, Z.; Zhu, J.L.; Chu, W.; et al. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl. Mater. Interfaces 2018, 10, 36304–36311. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhou, Y.; Lai, H.; Liu, P.; Chen, H.; Wang, X.; Xie, W. Highly sensitive and ultra-broadband VO2(B) photodetector dominated by bolometric effect. Nano Lett. 2022, 22, 485–493. [Google Scholar] [CrossRef]
- Cai, X.; Sushkov, A.B.; Suess, R.J.; Jadidi, M.M.; Jenkins, G.S.; Nyakiti, L.O.; Myers-Ward, R.L.; Li, S.; Yan, J.; Gaskill, D.K.; et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 2014, 9, 814–819. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yu, Y.; Chen, Z.; Li, Q.; Li, T.; Li, J.; Zhao, H.; Sheng, Q.; Yan, F.; et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams. Photonics Res. 2020, 8, 368. [Google Scholar] [CrossRef]
- Suzuki, D.; Okamoto, T.; Li, J.; Ito, Y.; Fujita, T.; Kawano, Y. Terahertz and infrared response assisted by heat localization in nanoporous graphene. Carbon 2021, 173, 403–409. [Google Scholar] [CrossRef]
- Wen, J.; Niu, Y.; Wang, P.; Chen, M.; Wu, W.; Cao, Y.; Sun, J.-L.; Zhao, M.; Zhuang, D.; Wang, Y. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity. Carbon 2019, 153, 274–284. [Google Scholar] [CrossRef]
- Hu, Q.; Cao, Y.; Liu, Y.; Wang, Y.; Wang, C.; Zhu, J.L.; Yang, N.; Chu, W.; Ma, W.; Sun, J.L. Ultra-wideband self-powered photodetector based on suspended reduced graphene oxide with asymmetric metal contacts. RSC Adv. 2021, 11, 19482–19491. [Google Scholar] [CrossRef] [PubMed]
- Zubair, A.; Wang, X.; Mirri, F.; Tsentalovich, D.E.; Fujimura, N.; Suzuki, D.; Soundarapandian, K.P.; Kawano, Y.; Pasquali, M.; Kono, J. Carbon nanotube woven textile photodetector. Phys. Rev. Mater. 2018, 2, 015201. [Google Scholar] [CrossRef]
- Zhang, M.; Ban, D.; Xu, C.; Yeow, J.T.W. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber. ACS Nano 2019, 13, 13285–13292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Q.; Cao, Y.; Wang, P.; Wei, J.; Wu, W.; Wang, J.; Huang, F.; Sun, J.L. High-performance ultrabroadband photodetector based on photothermoelectric effect. ACS Appl. Mater. Interfaces 2022, 14, 29077–29086. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Liu, Y.; Wu, W.; Xie, Y.; Zhu, J.L.; Cao, Y.; Ma, W.; Yang, N.; Chu, W.; Jia, Y.; et al. Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure. Nat. Commun. 2022, 13, 1835. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Guo, W.; Xu, H.; Zhang, L.; Chen, G.; D’Olimpio, G.; Kuo, C.-N.; Lue, C.S.; Wang, L.; Politano, A.; et al. Ultrasensitive ambient-stable SnSe2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging. 2D Mater. 2020, 7, 035026. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Niu, Y.; Wang, P.; Chen, M.; Sun, J.; Wang, N.; Wu, D.; Zhao, Z. Thermal localization enhanced fast photothermoelectric response in a quasi-one-dimensional flexible NbS3 photodetector. ACS Appl. Mater. Interfaces 2020, 12, 14165–14173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niu, Y.; Chen, M.; Wen, J.; Wu, W.; Jin, Y.; Wu, D.; Zhao, Z. Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal. ACS Photonics 2019, 6, 895–903. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, Y.; Wu, W.; Wang, P.; Sun, J.; Wen, J.; Lu, X.; Jiang, P.; Zhang, S.; Wang, N.; et al. Ultrabroadband, fast, and flexible photodetector based on HfTe5 crystal. Adv. Opt. Mater. 2020, 8, 2000833. [Google Scholar] [CrossRef]
- Gu, Y.; Yao, X.; Geng, H.; Long, M.; Guan, G.; Hu, M.; Han, M. Large-area, flexible, and dual-source co-evaporated Cs3CuI5 nanolayer to construct ultra-broadband photothermoelectric detector from visible to terahertz. ACS Appl. Electron. Mater. 2022, 4, 663–671. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, Z.; Li, Q.; Li, T.; Li, M.; Zhao, H.; Sheng, Q.; Shi, W.; Yao, J. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite. Photonics Res. 2020, 8, 1301. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Li, T.; Tang, X.; Li, M.; Chen, Z.; Li, Q.; Sheng, Q.; Shi, W.; Yao, J. A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPbI3/PEDOT:PSS composite. J. Mater. Chem. C 2020, 8, 12148–12154. [Google Scholar] [CrossRef]
- Ting, D.Z.Y.; Chang, Y.-C.; Bandara, S.V.; Gunapala, S.D. Quantum well intrasubband photodetector for far infared and terahertz radiation detection. Appl. Phys. Lett. 2007, 91, 073510. [Google Scholar] [CrossRef]
- Dai, J.-H.; Lee, J.-H.; Lin, Y.-L.; Lee, S.-C. In(Ga)As quantum rings for terahertz detectors. Jpn. J. Appl. Phys. 2008, 47, 2924–2926. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Performance analysis of GeSn/SiGeSn quantum well infrared photodetector in terahertz wavelength region. Phys. E 2020, 115, 113692. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, Y.; Wang, Z.; Wang, Y.; Li, L.; Yang, N.; Duan, S.; Wang, Y.; Zhao, Z.; Sun, J.; et al. Strongly enhanced local electromagnetic field in mid-infrared and terahertz photodetectors employing a hybrid antenna. AIP Adv. 2020, 10, 015048. [Google Scholar] [CrossRef]
- Tong, J.C.; Luo, H.; Suo, F.; Zhang, T.N.; Zhang, D.W.; Zhang, D.H. Epitaxial indium antimonide for multiband photodetection from IR to millimeter/terahertz wave. Photonics Res. 2022, 10, 1194–1201. [Google Scholar] [CrossRef]
- Rogalski, A.; Sizov, F. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 2011, 19, 346–404. [Google Scholar] [CrossRef]
- Bai, P.; Zhang, Y.H.; Guo, X.G.; Fu, Z.L.; Cao, J.C.; Shen, W.Z. Realization of the high-performance THz GaAs homojunction detector below the frequency of Reststrahlen band. Appl. Phys. Lett. 2018, 113, 241102. [Google Scholar] [CrossRef]
- Bai, P.; Zhang, Y.; Wang, T.; Fu, Z.; Shao, D.; Li, Z.; Wan, W.; Li, H.; Cao, J.; Guo, X.; et al. Broadband THz to NIR up-converter for photon-type THz imaging. Nat. Commun. 2019, 10, 3513. [Google Scholar] [CrossRef]
- Lian, X.R.; Wang, K.; Bai, X.Q.; Bai, P.; Li, X.H.; Huang, S.H.; Song, W.J.; Shen, W.Z.; Xu, G.Y.; Zhang, Y.H. E-shaped patch antenna for GaAs-based broadband THz detectors. J. Phys. D: Appl. Phys. 2022, 55, 475101. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Zhu, H.; Liu, M.J.; Wang, Y.; Xu, H.L.; Ali, N.S.R.; Deng, H.Y.; Tan, Z.Y.; Cao, J.C.; Dai, N.; et al. Ultrabroadband and multiband infrared/terahertz photodetectors with high sensitivity. Photonics Res. 2021, 9, 2167–2175. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Wu, D.; Su, Y.Q.; Zhu, H.; Wang, B.; Wang, Y.X.; Zhao, Z.R.; Zheng, P.; Niu, J.S.; Zhou, H.B.; et al. Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies. 2D Mater. 2017, 5, 011008. [Google Scholar] [CrossRef]
- Wu, D.; Ma, Y.; Niu, Y.; Liu, Q.; Dong, T.; Zhang, S.; Niu, J.; Zhou, H.; Wei, J.; Wang, Y.; et al. Ultrabroadband photosensitivity from visible to terahertz at room temperature. Sci. Adv. 2018, 4, eaao3057. [Google Scholar] [CrossRef]
- Wehmeier, L.; Liu, M.; Park, S.; Jang, H.; Basov, D.N.; Homes, C.C.; Carr, G.L. Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detector. ACS Photonics 2023, 10, 4329–4339. [Google Scholar] [CrossRef]
- Lao, Y.F.; Perera, A.G.U.; Li, L.H.; Khanna, S.P.; Linfield, E.H.; Liu, H.C. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nat. Photonics 2014, 8, 412–418. [Google Scholar] [CrossRef]
- Bai, P.; Li, X.; Yang, N.; Chu, W.; Bai, X.; Huang, S.; Zhang, Y.; Shen, W.; Fu, Z.; Shao, D.; et al. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector. Sci. Adv. 2022, 8, eabn2031. [Google Scholar] [CrossRef]
- Bai, P.; Yang, N.; Chu, W.; Zhang, Y.; Shen, W.; Fu, Z.; Shao, D.; Zhou, K.; Tan, Z.; Li, H.; et al. Ultra-broadband THz/IR upconversion and photovoltaic response in semiconductor ratchet-based upconverter. Appl. Phys. Lett. 2021, 119, 241104. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, J.; Xu, J.; He, J.; Sun, J.L.; Wang, Y.; Zhao, Z. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 2014, 10, 2345–2351. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Shao, J.; Wang, Y.; Zhao, Z.; Yang, G. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541. [Google Scholar] [CrossRef] [PubMed]
- Island, J.O.; Blanter, S.I.; Buscema, M.; van der Zant, H.S.J.; Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853–7858. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, S.; Shimatani, M.; Okuda, S.; Ogawa, S.; Kanai, Y.; Ono, T.; Matsumoto, K. High responsivity middle-wavelength infrared graphene photodetectors using photo-gating. Appl. Phys. Lett. 2018, 113, 061102. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, M.; Tan, Y.; Sun, H.; Luo, W.; Peng, G.; Zhu, Z.; Zhang, X.-A.; Qin, S. High responsivity graphene photodetectors from visible to near-infrared by photogating effect. AIP Adv. 2018, 8, 115106. [Google Scholar] [CrossRef]
- Shin, J.; Yoo, H. Photogating effect-driven photodetectors and their emerging applications. Nanomaterials 2023, 13, 882. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, Y.C.; Norris, T.B.; Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273–278. [Google Scholar] [CrossRef]
- Gao, K.; Ran, S.; Han, Q.; Yang, Q.; Jiang, H.; Fu, J.; Leng, C.; Feng, S.; Zhou, D.; Li, Z.; et al. High zero-bias responsivity induced by photogating effect in asymmetric device structure. Opt. Mater. 2022, 124, 112013. [Google Scholar] [CrossRef]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhang, S.S.L.; Zhu, D.; Shi, S.; Heinonen, O.G.; Vignale, G.; Yang, H. Nonlinear planar Hall effect. Phys. Rev. Lett. 2019, 123, 016801. [Google Scholar] [CrossRef]
- Pacchioni, G. The Hall effect goes nonlinear. Nat. Rev. Mater. 2019, 4, 514. [Google Scholar] [CrossRef]
- Isobe, H.; Xu, S.-Y.; Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 2020, 6, eaay2497. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Hsu, C.-H.; Sharma, R.; Chang, T.-R.; Yu, P.; Wang, J.; Eda, G.; Liang, G.; Yang, H. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 2021, 16, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, L.; Chakraborty, A.; D’Olimpio, G.; Fujii, J.; Ge, A.; Zhou, Y.; Liu, C.; Agarwal, A.; Vobornik, I.; et al. Terahertz nonlinear Hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2. Adv. Mater. 2023, 35, 2209557. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, L.; Hu, Z.; Zhang, L.; Pan, X.; Wei, Y.; Guo, S.; Lv, X.; Jiang, M.; Han, L.; et al. Selective growth of type-II Weyl-semimetal and van der Waals stacking for sensitive terahertz photodetection. Adv. Funct. Mater. 2023. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl. Acad. Sci. USA 2021, 118, e2100736118. [Google Scholar] [CrossRef] [PubMed]
- Osterhoudt, G.B.; Diebel, L.K.; Gray, M.J.; Yang, X.; Stanco, J.; Huang, X.; Shen, B.; Ni, N.; Moll, P.J.W.; Ran, Y.; et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 2019, 18, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Liu, Y.; Ma, J.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J.; Sun, D. Broadband anisotropic photoresponse of the “hydrogen atom” version type-II Weyl semimetal candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Gu, Q.; Liu, Y.; Lai, J.; Yu, P.; Zhuo, X.; Liu, Z.; Chen, J.-H.; Feng, J.; Sun, D. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 2019, 18, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Li, T.; Li, M.; Chen, Z.; Li, Q.; Zhao, H.; Sheng, Q.; Shi, W.; Yao, J. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors. Nano Lett. 2020, 20, 5646–5654. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Zhang, Z.; Liu, Y.; Wang, Y.; Su, F.; Li, S.; Zhang, Y.; Li, H.; Chen, H.; Zhao, Z.; et al. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett. 2019, 19, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Xu, C.; Ding, J.; Li, Q.; Sun, J.L.; Dai, J.Y.; Ren, T.L.; Yan, Q. Self-powered ultrabroadband photodetector monolithically integrated on a PMN-PT ferroelectric single crystal. ACS Appl. Mater. Interfaces 2016, 8, 32934–32939. [Google Scholar] [CrossRef]
- Ma, W.; Gao, Y.; Shang, L.; Zhou, W.; Yao, N.; Jiang, L.; Qiu, Q.; Li, J.; Shi, Y.; Hu, Z.; et al. Ultrabroadband tellurium photoelectric detector from visible to millimeter wave. Adv. Sci. 2022, 9, 2103873. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, W.; Tan, C.; Luo, M.; Zhou, W.; Yao, N.; Wang, H.; Zhang, L.; Xu, T.; Tong, T.; et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 2021, 31, 2009554. [Google Scholar] [CrossRef]
- Li, J.; Jiang, L.; Ma, W.; Wu, T.; Qiu, Q.; Shi, Y.; Zhou, W.; Yao, N.; Huang, Z. VSe2 nanosheets for broadband photodetection from visible to terahertz. ACS Appl. Nano Mater. 2022, 5, 5158–5167. [Google Scholar] [CrossRef]
- Qiu, Q.X.; Li, J.B.; Wu, T.T.; Jiang, L.; Li, Y.Z.; Ma, W.L.; Yao, N.J.; Huang, Z.M. High performance of a broadband room-temperature Si detector beyond the cut-off wavelength. J. Mater. Chem. C 2022, 10, 6374–6379. [Google Scholar] [CrossRef]
- Wadhwa, R.; Thapa, S.; Deswal, S.; Kumar, P.; Kumar, M. Wafer-scale controlled growth of MoS2 by magnetron sputtering: From in-plane to inter-connected vertically-aligned flakes. J. Phys. Condens. Matter 2023, 35, 124002. [Google Scholar] [CrossRef]
- Lu, J.; He, Y.; Ma, C.; Ye, Q.; Yi, H.; Zheng, Z.; Yao, J.; Yang, G. Ultrabroadband imaging based on wafer-scale tellurene. Adv. Mater. 2023, 35, e2211562. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, J.; Bahrami, A.; Nasiri, N.; Lehmann, S.; Cichocka, M.O.; Mukherjee, S.; Nielsch, K. Wafer-scale growth of Sb2Te3 films via low-temperature atomic layer deposition for self-powered photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 54034–54043. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X.J.; Shan, C.-X.; et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, H.; Wang, F.; Li, T.; Xu, M.; Wang, H.; Wang, Z.; Zhan, X.; Hu, W.; Shen, L. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 2020, 9, 31. [Google Scholar] [CrossRef]
- Feng, B.; Chen, Y.; Sun, D.; Yang, Z.; Yang, B.; Li, X.; Li, T. Precision integration of grating-based polarizers onto focal plane arrays of near-infrared photovoltaic detectors for enhanced contrast polarimetric imaging. Int. J. Extrem. Manuf. 2021, 3, 035201. [Google Scholar] [CrossRef]
- Wang, X.; Wen, B.; Gao, S.; Li, X.; Lin, Z.; Du, L.; Zhang, X. Strong anisotropy of multilayer γ-InSe-enabled polarization division multiplexing photodetection. Adv. Photonics Res. 2022, 3, 2200119. [Google Scholar] [CrossRef]
- Yi, H.; Ma, C.; Wang, W.; Liang, H.; Cui, R.; Cao, W.; Yang, H.; Ma, Y.; Huang, W.; Zheng, Z.; et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications. Mater. Horiz. 2023, 10, 3369–3381. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ye, Q.; Ma, C.; Zheng, Z.; Yao, J.; Yang, G. Dielectric contrast tailoring for polarized photosensitivity toward multiplexing optical communications and dynamic encrypt technology. ACS Nano 2022, 16, 12852–12865. [Google Scholar] [CrossRef]
- Vashishtha, P.; Prajapat, P.; Sharma, A.; Singh, P.; Walia, S.; Gupta, G. Self-driven UVC–NIR broadband photodetector with high-temperature reliability based on a coco palm-like MoS2/GaN heterostructure. ACS Appl. Electron. Mater. 2023, 5, 1891–1902. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Yang, L.; Yao, J.; Chen, J.; Zhang, J.; Wei, W.; Guo, Y.; Tang, W. High-temperature reliability of all-oxide self-powered deep UV photodetector based on ε-Ga2O3/ZnO heterojunction. J. Phys. D Appl. Phys. 2022, 55, 375106. [Google Scholar] [CrossRef]
- Yu, W.; Dong, Z.; Mu, H.; Ren, G.; He, X.; Li, X.; Lin, S.; Zhang, K.; Bao, Q.; Mokkapati, S. Wafer-scale synthesis of 2D Dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 2022, 16, 12922–12929. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Mishra, P.; Sunny. CMOS compatible novel integration solution for broad range tunable photodetection using phase-change material based heterostructures. Sci. Rep. 2020, 10, 11131. [Google Scholar] [CrossRef]
Mechanism | Material | Spectral Range | Maximum Responsivity (A W−1) | Maximum D* (Jones) or Minimum NEP | Response Time | Operating Temperature | Bias (V) | Ref. |
---|---|---|---|---|---|---|---|---|
PBE | Golay | 15–8000 μm | 1 × 105 V W−1 | 7 × 109 | ~30 ms | RT * | - | [25] |
PBE | Si | 15–2000 μm | 2.4 × 105 V W−1 | 0.25 pW Hz−1/2 | - | 4.2K | - | [26] |
Pyroelectric | LiTaO3 | 0.1–3000 μm | 1.5 × 105 V W−1 | 4 × 108 | ~μs to ms | RT | - | [27] |
Pyroelectric | DLaTGS | 0.1–>1000 μm | 4.1 × 106 | 2.2 × 109 | <100 ms | RT | - | [30] |
PBE | CNT | 375 nm–118.8 μm | UV−NIR: 0.024 MIR: 0.01 THz: 0.012 | UV−NIR: 3.52 × 107 MIR: 1.81 × 107 THz: 2.31 × 107 | 150 μs | RT | 0.2 | [50] |
PBE | VO2(B) | 405 nm–880 μm | VIS−NIR: 42.5 MIR: 1.98 THz: 0.038 | VIS-NIR: 6.02 × 109 MIR: 1.9 × 108 THz: 1.59 × 106 | 83 ms | RT | 0.2 | [51] |
PTE | Graphene | 1.54 μm–119 μm | IR: 10 V W−1 THz: 715V W−1 | IR: 1100 pW Hz−1/2 THz: 16 pW Hz−1/2 | ~30 ps | RT | 0.2 | [52] |
PTE | 3D GF | 300 nm–1360 μm | 103 | 1 × 109 | 43 ms | RT | 0.05 | [53] |
PTE | rGO films | 375 nm–118.8 μm | NIR: 2.4 × 10−2 V W−1 MIR: 1.1 × 10−2 V W−1 THz: 2.8 × 10−3 V W−1 | NIR: 6.5 × 105 MIR: 3 × 105 THz: 7 × 104 | 34.4 ms | RT | 0 | [55] |
PTE | rGO | 375 nm–118.8 μm | 1.42 × 10−1 V W−1 | 1.58 × 107 | 100–200 ms | RT | 0 | [56] |
PTE | Ti-CNT-Pd | 375 nm–118.8 μm | MIR: 0.35 V W−1 THz: 1.27 V W−1 | MIR: 2.5 × 106 THz: 9 × 106 | 7 ms | RT | 0 | [59] |
PTE | NbS3 | 375 nm–118.8 μm | UV: 6.9 V W−1 VIS: 3.25 V W−1 NIR: 1.59 V W−1 THz: 1.64 V W−1 | UV: 1.76 × 106 VIS: 8.3 × 105 NIR: 4.1 × 105 THz: 4.2 × 105 | ~7 ms | RT | 0 | [62] |
PTE | EuBiSe3 crystal | 405 nm–118 μm | VIS-NIR: 1.69 V W−1 THz: 0.69 V W−1 | VIS-NIR: 2.9 × 108 THz: 1.2 × 108 | 207 ms | RT | 0 | [63] |
PTE | HfTe5 Crystal | 375 nm–118.8 μm | UV: 17 V W−1 VIS: 7.6 V W−1 NIR: 5.5 V W−1 MIR: 1.25 V W−1 THz: 1.1 V W−1 | UV: 2.7 × 108 VIS: 9.3 × 107 NIR: 7.1 × 107 MIR: 1.9 × 107 THz: 1.2 × 107 | ~1 ms | RT | 0 | [64] |
PTE | Cs3Cu2I5 | 532 nm–119 μm | VIS: 4.92 × 10−2 NIR: 1.1 × 10−3 THz: 3.7 × 10−3 | VIS: 8.2 × 107 NIR: 6.5 × 106 THz: 6.4 × 106 | - | RT | 0 | [65] |
PTE | LSG/CsPbBr3 | 405 nm–118 μm | UV: 1.35 × 10−1 THz: 1 × 10−2 | 532 nm: 1.6 × 1010 | 18 ms | RT | 0 | [66] |
PTE | MAPbI3/ PEDOT: PSS | 1064 nm–118 μm | 1.6 × 10−6 | 1.2 × 107 | 28 μs | RT | 0 | [67] |
PCE | GaAs–InSb ** | 3–6.85 μm and 909–9375 μm | MIR: 5.4 × 103 V W−1 THz: 5.6 × 104 V W−1 | MIR: 1.8 × 109 THz: 0.1 pW Hz−1/2 | 800 ns | RT | 1 | [72] |
PCE | p-GaAs | 15 μm–71.4 μm | 0.5 | 29.1 pW Hz−1/2 | - | 3.5K | 1.9 | [75] |
PCE | Ge:P ** | 3–28 μm and 40–165 μm | MIR: 5 THz: 7.2 | MIR: 6.8 × 1012 THz: 9.9 × 1012 | - | 4.5K | 0.15 | [77] |
PCE | EuSbTe3 | 532 nm-119 μm | VIS: 8 THz: 1 | VIS: 150 pW Hz−1/2 THz: 0.9 nW Hz−1/2 | ~8 ms | RT | 1.2 | [78] |
PCE | 1T-TaS2 | 532 nm–119 μm | VIS: 3.92 THz: 0.76 | VIS: 80 pW Hz−1/2 THz: 0.4 nW Hz−1/2 | ~1.5 ns | RT | 0.71 | [79] |
PVE | GaAs/AlxGa1−xAs | 1–75 μm | 7.3 | 2.9 × 1010 | - | 4.2K | 0 | [82] |
PVE | rGO-SiNW | 532 nm–118.8 μm | MIR: 9 × 10−3 | - | 10 s | RT | 1 | [84] |
PVE | Bi2Te3–Si | 370 nm–118 μm | 635 nm:1 | 635 nm: 2.5 × 1011 | <100 ms | RT | 5 | [85] |
PCE, PBE | CH3NH3PbI3 | 405 nm–118 μm | VIS: 6.8 × 102 MIR: 0.483 THz: 0.271 | VIS: 1.2 × 109 MIR: 2.6 × 107 THz: 1.9 × 107 | 126 ns | RT | 1 | [104] |
PTE, PVE | 3D graphene FET | 375 nm–119 μm | UV-VIS: >1 THz: 0.23 | THz: 2.8 × 1010 | ~265 ns | RT | 0 | [105] |
Optothermal and pyroelectric | PMN–PT | 375 nm–118.8 μm | IR: 8.8 × 10−8 | ~ms | RT | 0 | [106] | |
PCE, EIWs | Bi2O2Se | 940 nm–15,000 μm | VIS-IR:58 THz: 2.7 × 104 V W−1 | THz: 0.2 pW Hz−1/2 | 476 ns | RT | 0.2 | [108] |
PBE, PCE, EIWs | VSe2 ** | 635–1550 nm and 0.02−0.04 and 0.22−0.33 THz | 635 nm:1.57 1550 nm:1.18 THz:1.25 × 104 | THz: 2.7 × 1010 | ~3 μs | RT | 0.2 | [109] |
PBE, PCE, EIWs | Si ** | 1550 nm and 909–1364 μm | 1550 nm:0.69 THz: 4.95 × 103 | THz: 0.058 pW Hz−1/2 | 917 ns | RT | 0.5 | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, W.; Zhou, W.; Liu, X.; Wang, K.; Liao, Y.; Yan, F.; Ji, X. Recent Advances in Broadband Photodetectors from Infrared to Terahertz. Micromachines 2024, 15, 427. https://doi.org/10.3390/mi15040427
Si W, Zhou W, Liu X, Wang K, Liao Y, Yan F, Ji X. Recent Advances in Broadband Photodetectors from Infrared to Terahertz. Micromachines. 2024; 15(4):427. https://doi.org/10.3390/mi15040427
Chicago/Turabian StyleSi, Wei, Wenbin Zhou, Xiangze Liu, Ke Wang, Yiming Liao, Feng Yan, and Xiaoli Ji. 2024. "Recent Advances in Broadband Photodetectors from Infrared to Terahertz" Micromachines 15, no. 4: 427. https://doi.org/10.3390/mi15040427
APA StyleSi, W., Zhou, W., Liu, X., Wang, K., Liao, Y., Yan, F., & Ji, X. (2024). Recent Advances in Broadband Photodetectors from Infrared to Terahertz. Micromachines, 15(4), 427. https://doi.org/10.3390/mi15040427