Classification of LED Packages for Quality Control by Discriminant Analysis, Neural Network and Decision Tree
Abstract
:1. Introduction
2. Methods
2.1. Experimental System
2.2. Electrical Test
2.3. Optical Test
2.4. Learning Data
2.5. Discriminant Analysis
2.6. Neural Network
2.7. Decision Tree
3. Results
3.1. Observation of Learning Data
3.2. Discriminant Analysis
3.3. Neural Network
3.4. Decision Trees
3.5. Computational Aspect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status and future of high-power light-emitting diodes for solid-state lighting. J. Display Technol. 2007, 3, 160–175. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, P.; Sher, C.W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263. [Google Scholar] [CrossRef]
- Zheludev, N. The life and times of the LED—A 100-year history. Nature Photon. 2007, 1, 189–192. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-color realization of micro-LED displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef] [PubMed]
- Wasisto, H.S.; Prades, J.D.; Gülink, J.; Waag, A. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs. Appl. Phys. Rev. 2019, 6, 041315. [Google Scholar] [CrossRef]
- Held, G. Introduction to Light Emitting Diode Technology and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Masui, H. Introduction to the Light-Emitting Diode: Real Applications for Industrial Engineers; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Perng, D.B.; Liu, H.W.; Chang, C.C. Automated SMD LED inspection using machine vision. Int. J. Adv. Manuf. Technol. 2011, 57, 1065–1077. [Google Scholar] [CrossRef]
- Kuo, C.F.J.; Hsu, C.T.M.; Liu, Z.X.; Wu, H.C. Automatic inspection system of LED chip using two-stages back-propagation neural network. J. Intell. Manuf. 2014, 25, 1235–1243. [Google Scholar] [CrossRef]
- Lin, H.; Li, B.; Wang, X.; Shu, Y.; Niu, S. Automated defect inspection of LED chip using deep convolutional neural network. J. Intell. Manuf. 2019, 30, 2525–2534. [Google Scholar] [CrossRef]
- Sheng, H.; Nisar, M.S. Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks. Micromachines 2024, 15, 50. [Google Scholar] [CrossRef]
- Devarajan, A.L.M.; San, T.K. An investigation on die crack detection using Temperature Sensitive Parameter for high speed LED mass production. Results Phys. 2017, 7, 3882–3891. [Google Scholar] [CrossRef]
- Zhang, M.; Tao, F.; Zuo, Y.; Xiang, F.; Wang, L.; Nee, A.Y.C. Top ten intelligent algorithms towards smart manufacturing. J. Manuf. Syst. 2023, 71, 158–171. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Leon, R.C.; Yang, J.; Shi, J.; van der Laan, T.; Usman, M. Improving Semiconductor Device Modeling for Electronic Design Automation by Machine Learning Techniques. IEEE Trans. Electron Devices 2024, 71, 263–271. [Google Scholar] [CrossRef]
- Wu, T.L.; Kutub, S.B. Machine Learning-Based Statistical Approach to Analyze Process Dependencies on Threshold Voltage in Recessed Gate AlGaN/GaN MIS-HEMTs. IEEE Trans. Electron Devices 2020, 67, 5448–5453. [Google Scholar] [CrossRef]
- Sheelvardhan, K.; Guglani, S.; Ehteshamuddin, M.; Roy, S.; Dasgupta, A. Machine Learning Augmented Compact Modeling for Simultaneous Improvement in Computational Speed and Accuracy. IEEE Trans. Electron Devices 2024, 71, 239–245. [Google Scholar] [CrossRef]
- Ba, F.; Peng, P.; Zhang, Y.; Zhao, Y. Classification and Identification of Contaminants in Recyclable Containers Based on a Recursive Feature Elimination-Light Gradient Boosting Machine Algorithm Using an Electronic Nose. Micromachines 2023, 14, 2047. [Google Scholar] [CrossRef] [PubMed]
- Ragai, I.; Abdalla, A.S.; Abdeltawab, H.; Qian, F.; Ma, J. Toward smart manufacturing: Analysis and classification of cutting parameters and energy consumption patterns in turning processes. J. Manuf. Syst. 2022, 64, 626–635. [Google Scholar] [CrossRef]
- Sun, L.; Tan, C.; Hu, S.J.; Dong, P.; Freiheit, T. Quality detection and classification for ultrasonic welding of carbon fiber composites using time-series data and neural network methods. J. Manuf. Syst. 2021, 61, 562–575. [Google Scholar] [CrossRef]
- Ambrosio, D.; Wagner, V.; Dessein, G.; Vivas, J.; Cahuc, O. Machine Learning Tools for Flow-Related Defects Detection in Friction Stir Welding. ASME J. Manuf. Sci. Eng. 2023, 145, 101005. [Google Scholar] [CrossRef]
- Pavnaskar, S.J.; Gershenson, J.K.; Jambekar, A.B. Classification scheme for lean manufacturing tools. Int. J. Prod. Res. 2003, 41, 3075–3090. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.D.; Hu, K.X.; Liang, Y.C.; Lv, Y.Q. Deep ensemble learning with non-equivalent costs of fault severities for rolling bearing diagnostics. J. Manuf. Syst. 2021, 61, 249–264. [Google Scholar] [CrossRef]
- Essid, O.; Laga, H.; Samir, C. Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks. PLoS ONE 2018, 13, e020319. [Google Scholar] [CrossRef]
- Samie Tootooni, M.; Dsouza, A.; Donovan, R.; Rao, P.K.; Kong, Z.; Borgesen, P. Classifying the Dimensional Variation in Additive Manufactured Parts from Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches. ASME J. Manuf. Sci. Eng. 2017, 139, 091005. [Google Scholar] [CrossRef]
- Duarte, L.; Neto, P. Classification of primitive manufacturing tasks from filtered event data. J. Manuf. Syst. 2023, 68, 12–24. [Google Scholar] [CrossRef]
- Shi, X.; Sun, Y.; Tian, H.; Abhilash, P.M.; Luo, X.; Liu, H. Material Extrusion Filament Width and Height Prediction via Design of Experiment and Machine Learning. Micromachines 2023, 14, 2091. [Google Scholar] [CrossRef] [PubMed]
- Lopez, F.; Saez, M.; Shao, Y.; Balta, E.C.; Moyne, J.; Mao, Z.M.; Barton, K.; Tilbury, D. Categorization of anomalies in smart manufacturing systems to support the selection of detection mechanisms. IEEE Robot. Autom. Lett. 2017, 2, 1885–1892. [Google Scholar] [CrossRef]
- Ghahramani, M.; Qiao, Y.; Zhou, M.C.; O’Hagan, A.; Sweeney, J. AI-based modeling and data-driven evaluation for smart manufacturing processes. IEEE/CAA J. Autom. Sin. 2020, 7, 1026–1037. [Google Scholar] [CrossRef]
- Guidelines for Principal Component Reliability Testing for LED Light Sources and LED Luminaires, IEC TS 62861. 2017. Available online: https://webstore.iec.ch/publication/30563 (accessed on 17 March 2024).
- Fung, R.F.; Yang, C.Y.; Lai, C.T. Graphic supervisory control of an automatic optical inspection for LED properties. Measurement 2011, 44, 1349–1360. [Google Scholar] [CrossRef]
- Yasuda, T.; Kobayashi, K.; Yamamoto, Y.; Hamori, H.; Cheng, W.; Ge, R.; Sugawa, S. High Resolution and High Speed Inspection Equipment for Mini-LED Substrates. In SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2022; Volume 53, pp. 363–366. [Google Scholar]
- IEC 60081:1997/AMD6:2017; Amendment 6—Double-Capped Fluorescent Lamps—Performance Specifications. IEC: Geneva, Switzerland, 2017.
- Keppens, A.; Ryckaert, W.R.; Deconinck, G.; Hanselaer, P. High power light-emitting diode junction temperature determination from current-voltage characteristics. J. Appl. Phys. 2008, 104, 093104. [Google Scholar] [CrossRef]
- Cho, J.; Schubert, E.F.; Kim, J.K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev. 2013, 7, 408–421. [Google Scholar] [CrossRef]
- Chen, N.C.; Wang, Y.N.; Wang, Y.S.; Lien, W.C.; Chen, Y.C. Damage of light-emitting diodes induced by high reverse-bias stress. J. Cryst. Growth 2009, 311, 994–997. [Google Scholar] [CrossRef]
- Lyu, Q.; Jiang, H.; Lau, K.M. Monolithic integration of ultraviolet light emitting diodes and photodetectors on a p-GaN/AlGaN/GaN/Si platform. Opt. Express 2021, 29, 8358–8364. [Google Scholar] [CrossRef]
- Rykowski, R.; Kostal, H. Novel approach for LED luminous intensity measurement. Light-Emit. Diodes Res. Manuf. Appl. XII 2008, 6910, 67–78. [Google Scholar] [CrossRef]
- Zhao, Y.; Yun, F.; Feng, L.; Wang, S.; Li, Y.; Su, X.; Zhang, Y. Improving peak-wavelength method to measure junction temperature by dual-wavelength LEDs. IEEE Access 2017, 5, 11712–11716. [Google Scholar] [CrossRef]
- Sugiarto, I.T. Quantitative Analysis of Color Combination from LED and Laser Light Sources Using Modified CIE 1931 Color Space Coordinates. J. Math. Fundam. Sci. 2017, 49, 51–65. [Google Scholar]
- Khanzadeh, M.; Chowdhury, S.; Marufuzzaman, M.; Tschopp, M.A.; Bian, L. Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 2018, 47, 69–82. [Google Scholar] [CrossRef]
- Yu, J.; Lu, X. Wafer Map Defect Detection and Recognition Using Joint Local and Nonlocal Linear Discriminant Analysis. IEEE Trans. Semicond. Manuf. 2016, 29, 33–43. [Google Scholar] [CrossRef]
- Opperer, J.G.; Kim, S.K.; Daniel, I.M. Characterization of local preform defects in resin transfer molding by the gas flow method and statistical analysis. Compos. Sci. Technol. 2004, 64, 1921–1935. [Google Scholar] [CrossRef]
- Friedman, J.H. Regularized Discriminant Analysis. J. Am. Stat. Assoc. 1989, 84, 165–175. [Google Scholar] [CrossRef]
- Dixon, S.J.; Brereton, R.G. Comparison of performance of five common classifiers represented as boundary methods. Chemom. Intell. Lab. Syst. 2009, 95, 1–17. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar] [CrossRef]
- Memisevic, R.; Zach, C.; Pollefeys, M.; Hinton, G.E. Gated softmax classification. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2010; Volume 23. [Google Scholar]
- McDonnell, M.D.; Tissera, M.D.; Vladusich, T.; van Schaik, A.; Tapson, J. Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the ‘extreme learning machine’algorithm. PLoS ONE, 2015; 10, e0134254. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Van der Aalst, W. Process Mining, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Kim, A.; Oh, K.; Jung, J.Y.; Kim, B. Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles. Int. J. Comput. Integr. Manuf. 2018, 31, 701–717. [Google Scholar] [CrossRef]
- Lolli, F.; Ishizaka, A.; Gamberini, R.; Balugani, E.; Rimini, B. Decision Trees for Supervised Multi-criteria Inventory Classification. Procedia Manuf. 2017, 11, 1871–1881. [Google Scholar] [CrossRef]
- Evans, L.; Lohse, N.; Summers, M. A fuzzy-decision-tree approach for manufacturing technology selection exploiting experience-based information. Expert Syst. Appl. 2013, 40, 6412–6642. [Google Scholar] [CrossRef]
- Wang, G.; Shang, X.; Yan, Y.; Allen, J.K.; Mistree, F. A tree-based decision method for the configuration design of reconfigurable machine tools. J. Manuf. Syst. 2018, 49, 143–162. [Google Scholar] [CrossRef]
- Deradjat, D.; Minshall, T. Decision trees for implementing rapid manufacturing for mass customization. CIRP J. Manuf. Sci. Technol. 2018, 23, 156–171. [Google Scholar] [CrossRef]
- Bramer, M. Principles of Data Mining; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall: London, UK, 1984. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Li, S.; Li, T.; Sun, C.; Yan, R.; Chen, X. Multilayer Grad-CAM: An effective tool towards explainable deep neural networks for intelligent fault diagnosis. J. Manuf. Syst. 2023, 69, 20–30. [Google Scholar] [CrossRef]
- Castro, A.; Baptista, J.; Silva, F.; Santos, V. Classification of handover interaction primitives in a COBOT–human context with a deep neural network. J. Manuf. Syst. 2023, 68, 289–302. [Google Scholar] [CrossRef]
- Du, W.; Shen, H.; Fu, J.; Zhang, G.; He, Q. Approaches for improvement of the X-ray image defect detection of automobile casting aluminum parts based on deep learning. Ndt E Int. 2019, 107, 102144. [Google Scholar] [CrossRef]
- Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated defect inspection system for metal surfaces based on deep learning and data augmentation. J. Manuf. Syst. 2020, 55, 317–324. [Google Scholar] [CrossRef]
- Trunk, G.V. A problem of dimensionality: A simple example. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 3, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gould, S.; Ajanthan, T. Bidirectionally self-normalizing neural networks. Neural Netw. 2023, 167, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, J.D. Deep Learning; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Wu, D.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S. A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests. ASME J. Manuf. Sci. Eng. 2017, 139, 071018. [Google Scholar] [CrossRef]
u | Canonical Variable 1 | Canonical Variable 2 | Canonical Variable 3 |
---|---|---|---|
Constant | −19.30198 | 16.4686 | 1.5625 |
VR | 1.44599 | −0.93851 | 1.5458 |
VF1 | 0.51609 | −1.2343 | 8.01005 |
VF2 | 2.69957 | −4.0174 | −2.38663 |
VF3 | −6.56315 | 8.56547 | −1.57562 |
VF4 | 7.84453 | −7.20327 | −1.99377 |
VF5 | 5.58177 | −3.22984 | 0.14349 |
Iv | 1.3556 | −135.89407 | −114.01634 |
x | 45.32186 | 135.81131 | 67.99315 |
y | −1.26239 | −0.51891 | −0.99715 |
λp | −0.03245 | 0.03286 | 0.03923 |
Predicted Group | |||||
---|---|---|---|---|---|
D1 | D2 | D3 | Normal | ||
Validation data | D1 | 91.0% * | 0.9% | 7.1% | 0.9% |
D2 | 4.7% | 41.3% * | 35.9% | 18.1% | |
D3 | 1.4% | 1.0% | 93.4% * | 4.1% | |
Normal | 0.0% | 4.5% | 17.5% | 77.9% * |
Predicted Group | |||||
---|---|---|---|---|---|
D1 | D2 | D3 | Normal | ||
Validation data | D1 | 52.0% * | 1.9% | 29.2% | 17.0% |
D2 | 0.7% | 38.2% * | 27.8% | 33.4% | |
D3 | 1.1% | 0.2% | 94.5% * | 4.1% | |
Normal | 0.2% | 0.8% | 5.1% | 94.0% * |
Predicted Group | |||||
---|---|---|---|---|---|
D1 | D2 | D3 | Normal | ||
Validation data | D1 | 99.8% * | 0.1% | 0.1% | 0.0% |
D2 | 0.4% | 94.8% * | 2.0% | 2.8% | |
D3 | 0.3% | 0.9% | 98.4% * | 0.3% | |
Normal | 0.0% | 1.5% | 0.6% | 97.8% * |
Predicted Group | |||||
---|---|---|---|---|---|
D1 | D2 | D3 | Normal | ||
Validation data | D1 | 100.0% * | 0.0% | 0.0% | 0.0% |
D2 | 0.0% | 98.3% * | 1.3% | 0.4% | |
D3 | 0.0% | 0.4% | 99.1% * | 0.5% | |
Normal | 0.0% | 0.2% | 0.5% | 99.4% * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, H.; Kim, S.K. Classification of LED Packages for Quality Control by Discriminant Analysis, Neural Network and Decision Tree. Micromachines 2024, 15, 457. https://doi.org/10.3390/mi15040457
Shim H, Kim SK. Classification of LED Packages for Quality Control by Discriminant Analysis, Neural Network and Decision Tree. Micromachines. 2024; 15(4):457. https://doi.org/10.3390/mi15040457
Chicago/Turabian StyleShim, Heesoo, and Sun Kyoung Kim. 2024. "Classification of LED Packages for Quality Control by Discriminant Analysis, Neural Network and Decision Tree" Micromachines 15, no. 4: 457. https://doi.org/10.3390/mi15040457
APA StyleShim, H., & Kim, S. K. (2024). Classification of LED Packages for Quality Control by Discriminant Analysis, Neural Network and Decision Tree. Micromachines, 15(4), 457. https://doi.org/10.3390/mi15040457