A Review of Femtosecond Laser Processing of Silicon Carbide
Abstract
:1. Introduction
2. Processing Methods
2.1. Direct Processing
2.1.1. Conventional Processing Methods
- 1.
- Craters
- 2.
- Ripple Structures, Nanostructures, and Grooves
- 3.
- Large surface areas
2.1.2. Advanced Processing Methods
- 1.
- Processing Environment
- 2.
- Beam Shaping
2.1.3. Existing Problems and Development Trends
2.2. Composite Processing
2.2.1. Laser–Water Jet Composite Processing Technology
2.2.2. Underwater Laser Composite Processing Technology
2.2.3. Laser–Wet Etching Composite Processing Technology
2.2.4. Laser–Electrochemical Composite Processing Technology
2.2.5. Laser–Ultrasonic Vibration Composite Processing Technology
2.2.6. Laser–Chemical Mechanical Polishing Processing Technology
2.2.7. Laser–Inductively Coupled Plasma Etching
2.2.8. Existing Problems and Development Trends
3. Applications
3.1. Microelectromechanical Systems
3.2. Existing Problems and Development Trends
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Yang, G.; Liu, X.; Luo, H.; Xu, L.; Zhang, Y.; Cui, C.; Pi, X.; Yang, D.; Wang, R. Dislocations in 4H silicon carbide. J. Phys. D Appl. Phys. 2022, 55, 463001. [Google Scholar] [CrossRef]
- Tian, R.; Ma, C.; Wu, J.; Guo, Z.; Yang, X.; Fan, Z. A review of manufacturing technologies for silicon carbide super junction devices. J. Semicond. 2021, 42, 061801. [Google Scholar] [CrossRef]
- Sheng, K.; Ren, N.; Xu, H.Y. A recent review on silicon carbide power devices technologies. Proc. CSEE 2020, 40, 1741–1748. [Google Scholar]
- Palani, I.A.; Paul, C.P. A review on laser assisted deposition and micro-etching of silicon carbide (SiC) coating for MEMs device applications. Int. J. Des. Manuf. Technol. 2013, 7, 7–16. [Google Scholar]
- Sarro, P.M. Silicon carbide as a new MEMS technology. Sens. Actuators 2000, 82, 210–218. [Google Scholar] [CrossRef]
- Fisher, G.R.; Barnes, P. Towards a unified view of polytypism in silicon carbide. Philos. Mag. B 1990, 61, 217–236. [Google Scholar] [CrossRef]
- Casadt, J.B.; Johnson, R.W. Status of silicon carbide (SiC) as a wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Wu, J. When group-III nitrides go infrared: New properties and perspectives. J. Appl. Phys. 2009, 106, 011101. [Google Scholar] [CrossRef]
- Feng, S.C. Study on Near-Damage-Free Micromachining Mechanisms of Silicon Carbide Wafer Using Hybrid Laser-Waterjet. Ph.D. Thesis, Department of Electrical Engineering, Shandong University, Jinan, China, 2018. [Google Scholar]
- Wang, X.; Yu, X.; Song, J.; Huang, W.; Xiang, Y.; Dai, X.; Zhang, H. Two-dimensional semiconducting antimonene in nanophotonic applications—A review. Chem. Eng. J. 2021, 406, 126876. [Google Scholar] [CrossRef]
- Wang, M.; Pu, J.; Hu, Y.; Zi, Y.; Wu, Z.; Huang, W. Functional graphdiyne for emerging applications: Recent advances and future challenges. Adv. Funct. Mater. 2024, 34, 2308601. [Google Scholar] [CrossRef]
- Mohajeri, A.; Shahsavar, A. Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/sulfur dual doping versus oxygen containing functional groups. J. Mater. Sci. 2017, 52, 5366–5379. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, Z.C.; Wang, J.J.; Chen, X.D.; Yao, B.W.; Hou, Y.X.; Yu, M.X.; Li, Y.; Lu, T.B. Synthesis of wafer-scale molayer pyrenyl graphdiyne on ultrathin hexagonal boron nitride for multibit optoelectronic memory. ACS Appl. Mater. Interfaces 2020, 12, 33069–33075. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, M.; Hu, L.; Hu, Y.; Guo, J.; Xie, Z.; Wei, S.; Wang, Y.; Zi, Y.; Zhang, H.; et al. Recent advances in two-dimensional graphdiyne for nanophotonic applications. Chem. Eng. J. 2022, 450, 138228. [Google Scholar] [CrossRef]
- Huang, W.; Wang, M.; Hu, L.; Wang, C.; Xie, Z.; Zhang, H. Recent Advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Func. Mater. 2020, 30, 2003301. [Google Scholar] [CrossRef]
- Hu, H.; Shi, Z.; Khan, K.; Cao, R.; Liang, W.; Tareen, A.K.; Zhang, Y.; Huang, W.; Guo, Z.; Luo, X.; et al. Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 2020, 8, 5421–5441. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, J.; Zi, Y.; Wu, Z.-G.; Hu, H.; Xie, Z.; Zhang, Y.; Hu, L.; Huang, W. Functional two-dimensional black phosphorus nanostructures towards next-generation devices. J. Mater. Chem. A 2021, 9, 12433–12473. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, J.; Zi, Y.; Wu, Z.-G.; Hu, H.; Xie, Z.; Zhang, Y.; Hu, L.; Huang, W. Emerging mono-elemental bismuth nanostructures: Controlled synthesis and their versatile applications. Adv. Funct. Mater. 2020, 31, 2007584. [Google Scholar]
- Wang, M.; Hu, Y.; Zi, Y.; Huang, W. Functionalized hybridization of bismuth nanostructures for highly improved nanophotonics. APL Mater. 2022, 104, 050901. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, R.; Khan, K.; Tareen, A.K.; Liu, X.; Liang, W.; Zhang, Y.; Ma, C.; Guo, Z.; Luo, X.; et al. Two-Dimensional Tellurium: Progress. Challenges, and Prospects. Nano Micro Lett. 2020, 12, 99. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Mo, F.; Li, N.; Liang, G.; Li, X.; Huang, Z.; Wang, D.; Huang, W.; Fan, J.; et al. Aqueous zinc–tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater. 2020, 32, 20014699. [Google Scholar] [CrossRef]
- Wang, P.Z. Study on the Surface Layer Crack Damage in Diamond Wire Sawing of Single Crystal Silicon Carbide. Ph.D. Thesis, Department of Electrical Engineering, Shandong University, Jinan, China, 2020. [Google Scholar]
- Wang, P.; Ge, P.; Ge, M.; Bi, W.; Meng, J. Material removal mechanism and crack propagation in single scratch and double scratch tests of single-crystal silicon carbide by abrasives on wire saw. Ceram. Int. 2019, 45, 384–393. [Google Scholar] [CrossRef]
- Ge, M.; Zhang, C.; Wang, P.; Li, Z.; Ge, P. Modeling of electroplated diamond wire and its application towards precision slicing of semiconductors. J. Manuf. Process. 2023, 87, 141–149. [Google Scholar] [CrossRef]
- Zhang, P. Research on the Key Technologies of Ultra-Precision Polishing of Silicon Carbide Single Crystal Substrate. Ph.D. Thesis, Mechatronics Engineering, Shandong University, Jinan, China, 2017. [Google Scholar]
- Xu, H.M.; Wang, J.B.; Li, Q.A. Research progress in chemical mechanical polishing technology for silicon carbide wafers. Mod. Manuf. Eng. 2022, 6, 153–159. [Google Scholar]
- Zhang, X.; Wang, R.; Zhang, X.; Yang, D.; Pi, X. Research status and development trend of silicon carbide single crystal substrate machining technology. J. MUC (Nat. Sci. Ed.) 2021, 30, 5–12. [Google Scholar]
- Yang, X.; Yang, X.; Gu, H.; Kawai, K.; Arima, K.; Yamamura, K. Efficient and slurry less ultrasonic vibration assisted electrochemical mechanical polishing for 4H–SiC wafers. Ceram. Int. 2022, 48, 7570–7583. [Google Scholar] [CrossRef]
- Dinh, T.; Nguyen, N.T.; Dao, D.V.; Dinh, T.; Nguyen, N.T.; Dao, D.V. Fabrication of SiC MEMS Sensors. In Thermoelectrically Effect in SiC for High-Temperature MEMS Sensors; Springer: Singapore, 2018; pp. 55–74. [Google Scholar]
- Racka-Szmidt, K.; Stonio, B.; Żelazko, J.; Filipiak, M.; Sochacki, M. A review: Inductively coupled plasma reactive ion etching of silicon carbide. Materials 2021, 15, 123. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, B.; Ding, W.; Xin, L.; Nian, Z.; Peng, J.; He, N.; Xu, J. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: A comparative analysis. Int. J. Extrem. Manuf. 2024, 6, 022007. [Google Scholar] [CrossRef]
- Kishawy, H.A.; Hosseini, A. Machining Difficult-to-Cut Materials: Basic Principles and Challenges; Springer: Cham, Switzerland, 2019. [Google Scholar]
- An, Q.; Chen, J.; Ming, W.; Chen, M. Machining of SiC ceramic matrix composites: A review. Chin. J. Aeronaut. 2021, 34, 540–567. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, M.; Yan, R.; Zhai, Q.; Liu, J.; Dai, X.; Lei, C.; Wang, D. Surface roughness and micro hardness improvement of laser cladding stainless-steel 316 by laser polishing based on multiple remelting. Opt. Laser Technol. 2024, 176, 110903. [Google Scholar] [CrossRef]
- Feng, S.; Huang, C.; Wang, J.; Jia, Z. Surface quality evaluation of single crystal 4H-SiC wafer machined by hybrid laser-waterjet: Comparing with laser machining. Mater. Sci. Semicond. Process. 2019, 93, 238–251. [Google Scholar] [CrossRef]
- Zhao, G.; Xin, L.; Li, L.; Zhang, Y.; He, N.; Hansen, H.N. Cutting force model and damage formation mechanism in milling of 70wt% Si/Al composite. Chin. J. Aeronaut. 2023, 36, 114–128. [Google Scholar] [CrossRef]
- Zhao, G.; Nian, Z.; Zhang, Z.; Li, L.; He, N. Enhancing the machinability of Cf/SiC composite with the assistance of laser-induced oxidation during milling. J. Mater. Res. Technol. 2023, 22, 1651–1663. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Wang, J.; Zhu, H.; Yao, P.; Feng, S. Micromachining of 4H-SiC using femtosecond laser. Ceram. Int. 2018, 44, 17775–17783. [Google Scholar] [CrossRef]
- Lu, Y.C.; Jia, J.C. A Precision Micro Hole Machining System Based on Femtosecond Laser. CN202011627090.9, 16 April 2021. [Google Scholar]
- Lu, Y.C.; Jia, J.C. A Femtosecond Laser Processing System. CN214518289U, 29 October 2021. [Google Scholar]
- Zhang, R.; Wang, Q.; Huang, C.; Wang, J.; Tang, A.; Zhao, W. Energy transfer between femtosecond laser and silicon carbide. JOM 2023, 75, 4047–4058. [Google Scholar] [CrossRef]
- Xia, B. Mechanism and Online Observation of High-Aspect-Ratio, High-Quality Micro Holes Drilling with Femtosecond Laser. Ph.D. Thesis, Department of Electrical Engineering, Beijing Institute of Technology, Beijing, China, 2016. [Google Scholar]
- Zhang, R. Study on the Machining Performance and Material Removal Mechanism of Single-Crystal Silicon Carbide Substrate by Femtosecond Lasers. Ph.D. Thesis, Department of Electrical Engineering, Shandong University, Jinan, China, 2021. [Google Scholar]
- Li, W.B. Research on Femtosecond Laser Purse Polishing of Silicon Carbide Ceramic Material. Ph.D. Thesis, Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
- Xia, B.; Jiang, L.; Li, X.; Yan, X.; Lu, Y. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling. Opt. Express 2015, 21, 27853. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Jiang, L.; Wang, S.; Yan, X.; Liu, P. Femtosecond laser drilling of micro-holes. Chin. J. Lasers 2013, 40, 0201001. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Gao, L.; Jiang, X.; Li, C.; Yang, T. Feasibility of micro-hole machining in fiber laser trepan drilling of 2.5D C/SiC composite: Experimental investigation and optimization. Opt. Int. J. Light. Electron. Opt. 2021, 242, 167186. [Google Scholar] [CrossRef]
- Wang, Q.W. Generation and Application of Micro Structures on Monocrystalline Silicon Fabricated by Femtosecond Laser Irradiation and Wet Etching. Master’s Thesis, Department of Electrical Engineering, Shandong University, Jinan, China, 2021. [Google Scholar]
- Wei, H.L. Study on Femtosecond Laser Machining Mechanism and Surface Integrity of Single-Crystal Gallium Nitride. Master’s Thesis, Department of Electrical Engineering, Shandong University, Jinan, China, 2023. [Google Scholar]
- Rehman, Z.U.; Janulewicz, K.A. Structural transformations in femtosecond laser-processed n-type 4H-SiC. Appl. Surf. Sci. 2016, 385, 1–8. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Wang, J.; Wang, Q.; Feng, S.; Zhao, W.; Tang, A. Analysis of the microscopic characteristics of periodic structure arrays on silicon carbide fabricated by femtosecond laser. Ceram. Int. 2024, 50, 1193–1204. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.; Feng, Q.; Zheng, J.; Liu, X.; Tang, B.; Li, J.; Xue, J.; Peng, S. Irradiation effects in 6H-SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis. J. Nucal Mater. 2016, 478, 215–221. [Google Scholar] [CrossRef]
- Gokus, T.; Albert, J.; Danilov, A.; Paul, S.; Huber, A.J. Time-resolved THz-TDS nanoscopy for probing carrier dynamics with femtosecond temporal and nanometer spatial resolution. In Proceedings of the International Conference on Infrared Millimeter and Terahertz Waves, Montreal, QC, Canada, 17–22 September 2023; pp. 1–2. [Google Scholar]
- Li, L. An Investigation into the Micro/Nano Machining Process for Germanium Substrates Using Femtosecond Lasers. Ph.D. Thesis, Department of Electrical Engineering, The University of New South Wales, Sydney, Australia, 2019. [Google Scholar]
- Shugaev, M.V.; He, M.; Levy, Y. Handbook of Laser Micro-and Nano-Engineering; Springer: Berlin, Germany, 2021; pp. 83–149. [Google Scholar]
- Bonse, J.; Baudach, S.; Krüger, J.; Kautek, W.; Lenzner, M. Femtosecond laser ablation of silicon modification thresholds and morphology. Appl. Phys. A 2002, 74, 19–25. [Google Scholar] [CrossRef]
- Wan, D.P.; Wang, J.; Mathew, P. Energy deposition and non-thermal ablation in femtosecond laser grooving of silicon. Mach. Sci. Technol. 2011, 15, 263–283. [Google Scholar] [CrossRef]
- Tsibidis, G.D.; Stratakis, E.; Loukakos, P.A.; Fotakis, C. Controlled ultrashort-pulse laser-induced ripple formation on semiconductors. Appl. Phys. A 2014, 114, 57–68. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Wang, J.; Feng, S.; Zhu, H. Evolution of micro/nano-structural arrays on crystalline silicon carbide by femtosecond laser ablation. Mater. Sci. Semicond. Process. 2021, 121, 105299. [Google Scholar] [CrossRef]
- Gai, X.C. Research on Experimental System and Technique of Femtosecond Laser Micromachining. Master’s Thesis, Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China, 2013. [Google Scholar]
- Zhang, R.; Huang, C.; Wang, J.; Chu, D.; Liu, D.; Feng, S. Experimental investigation and optimization of femtosecond laser processing parameters of silicon carbide–based on response surface methodology. Ceram. Int. 2022, 48, 14507–14517. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Wang, J.; Zhu, H.; Liu, H. Fabrication of high-aspect-ratio grooves with high surface quality by using femtosecond laser. Ind. Lubr. Tribol. 2021, 73, 718–726. [Google Scholar] [CrossRef]
- Li, L.; Wang, J. Direct writing of large-area micro/nano-structural arrays on single crystalline germanium substrates using femtosecond lasers. Appl. Phys. Lett. 2017, 110, 251901. [Google Scholar] [CrossRef]
- Gemini, L.; Hashida, M.; Shimizu, M.; Miyasaka, Y.; Inoue, S.; Tokita, S.; Limpouch, J.; Mocek, T.; Sakabe, S. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses. J. Appl. Phys. 2013, 114, 194903. [Google Scholar] [CrossRef]
- Tan, B.; Venkatakrishnan, K. A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 2006, 16, 1080. [Google Scholar] [CrossRef]
- Varlamova, O.; Reif, J.; Varlamov, S.; Bestehorn, M. The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results. Appl. Surf. Sci. 2011, 257, 5465–5469. [Google Scholar] [CrossRef]
- Hernández, A.; Kudriavtsev, Y.; Gallardo, S.; Avendaño, M.; Asomoza, R. Formation of self-organized nano-surfaces on III–V semiconductors by low energy oxygen ion bombardment. Mater. Sci. Semicond. Process. 2015, 37, 190–198. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; Van Driel, H.M. Laser-induced periodic surface structure. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Ji, X. Geometrical Morphologies Adjustment of Micro/Nanostructures on the Silicon Surface Induced by Femtosecond Laser. Ph.D. Thesis, Department of Electrical Engineering, Beijing Institute of Technology, Beijing, China, 2015. [Google Scholar]
- Tangwarodomnukun, V.; Eng, B.; Eng, M. Towards Damage-Free Micro-Fabrication of Silicon Substrates Using a Hybrid Laser-Water Jet Technology. Ph.D. Thesis, Department of Electrical Engineering, The University of New South Wales, Sydney, Australia, 2012. [Google Scholar]
- Roma, G. Linear response calculation of first-order Raman spectra of point defects in silicon carbide. Phys. Status Solidi A 2016, 213, 2995–2999. [Google Scholar] [CrossRef]
- Xie, X.; Hu, X.; Chen, X.; Liu, F.; Yang, X.; Xu, X.; Wang, H.; Li, J.; Yu, P.; Wang, R. Characterization of the three-dimensional residual stress distribution in SiC bulk crystals by neutron diffraction. CrystEngComm 2017, 19, 6527–6532. [Google Scholar] [CrossRef]
- Menzel, R.; Gärtner, K.; Wesch, W.; Hobert, H. Damage production in semiconductor materials by a focused Ga+ ion beam. J. Appl. Phys. 2000, 88, 5658–5661. [Google Scholar] [CrossRef]
- Zheng, Q.; Mei, X.; Jiang, G.; Yan, Z.; Fan, Z.; Wang, W.; Pan, A.; Cui, J. Influence of surface morphology and processing parameters on polishing of silicon carbide ceramics using femtosecond laser pulses. Surf. Interfaces 2023, 36, 102528. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Zhang, X.; Zhang, W. Effect of laser incidence angle on the femtosecond laser ablation characteristics of silicon carbide ceramics. Opt. Laser Eng. 2024, 36, 107849. [Google Scholar] [CrossRef]
- Qi, L.; Nishii, K.; Yasui, M.; Aoki, H.; Namba, Y. Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation. Opt. Laser Eng. 2010, 48, 1000–1007. [Google Scholar] [CrossRef]
- Manickam, S.; Wang, J.; Huang, C. Laser-material interaction and grooving performance in ultrafast laser ablation of crystalline germanium under ambient conditions. J. Eng. Manuf. 2013, 227, 1714–1723. [Google Scholar] [CrossRef]
- Qi, Y. Experimental Studies on Femtosecond Laser Ablation of Semiconductor and Metals. Ph.D. Thesis, Department of Electrical Engineering, Jilin University, Changchun, China, 2014. [Google Scholar]
- Yang, M. Femtosecond Laser Induced Microstructures and Nanostructures on Silicon Surface. Ph.D. Thesis, Department of Electrical Engineering, Nankai University, Tianjin, China, 2014. [Google Scholar]
- Karkantonis, T.; Gaddam, A.; Tao, X.; See, T.L.; Dimov, S. The influence of processing environment on laser-induced periodic surface structures generated with green nanosecond laser. Surf. Interfaces 2022, 31, 102096. [Google Scholar] [CrossRef]
- Mačernytė, L.; Skruibis, J.; Vaičaitis, V.; Sirutkaitis, R.; Balachninaitė, O. Femtosecond laser micromachining of soda–lime glass in ambient air and under various aqueous solutions. Micromachines 2019, 10, 354. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, L.; Luan, Q.; Cai, Y.; Song, Q.; Wang, B.; Liu, Z. Investigation of mechanism and surface morphology on the femtosecond laser ablation of silicon nitride under different auxiliary processing environments. Ceram. Int. 2023, 49, 13425–13434. [Google Scholar] [CrossRef]
- Li, Y.; Chen, T.; Pan, A.; Li, C.; Tang, L. Parallel fabrication of high-aspect-ratio all-silicon grooves using femtosecond laser irradiation and wet etching. J. Micromech. Microeng. 2015, 25, 115001. [Google Scholar] [CrossRef]
- Liu, C.; Wang, R. A Device and Measurement Method for Measuring Femtosecond Laser Contrast. 202010193927.7, 1 May 2020. [Google Scholar]
- Zhang, J.Y.; Yan, Z.; Gao, J.C. A Device and Method for Reducing the Time Required for Introducing Femtosecond Lasers into Structures. 202010962160.X, 14 September 2020. [Google Scholar]
- Wang, W.; Qi, D.; Lei, P.; Shi, W.; Li, Z.; Zhang, J.; Ho, W.; Zheng, H. Chemical etching-assisted femtosecond laser multi-beam rapid preparation of As2Se3 microlens arrays. J. Manuf. Process. 2024, 120, 460–466. [Google Scholar] [CrossRef]
- Roberts, D.; du Plessis, A.; Botha, L. Femtosecond laser ablation of silver foil with single and double pulses. Appl. Surf. Sci. 2010, 256, 1784–1792. [Google Scholar] [CrossRef]
- Le Harzic, R.; Breitling, D.; Sommer, S.; Föhl, C.; König, K.; Dausinger, F.; Audouard, E. Processing of metals by double pulses with short laser pulses. Appl. Phys. A 2005, 81, 1121–1125. [Google Scholar] [CrossRef]
- Du, G.; Yu, F.; Waqas, A.; Chen, F. Ultrafast thermalization dynamics in silicon wafer excited by femtosecond laser double-pulse vortex beam. Opt. Laser Technol. 2024, 174, 110619. [Google Scholar] [CrossRef]
- Du, G.; Yu, F.; Lu, Y.; Kai, L.; Yang, Q.; Hou, X.; Chen, F. Ultrafast thermalization dynamics in Au/Ni film excited by femtosecond laser double-pulse vortex beam. Int. J. Therm. Sci. 2023, 187, 108208. [Google Scholar] [CrossRef]
- Zhao, L.L.; Wang, F.; Xie, J.; Zhao, W.W. Fabrication of high-aspect-ratio structural change microregions in silicon carbide by femtosecond Bessel beams. Adv. Mater. Res. 2015, 1102, 143–147. [Google Scholar] [CrossRef]
- Zhou, K.; Yuan, Y.; Wang, C.; Zhang, K.; Chen, J.; He, H. Rapid fabrication of antireflective structures on ZnS surface by spatial shaping femtosecond laser. Opt. Laser Technol. 2024, 171, 110393. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Bao, W.; Wang, R.; Qiao, X. Beam-shaping device-free femtosecond laser plane-by-plane inscription of high-quality FBGs. Opt. Laser Technol. 2023, 161, 109226. [Google Scholar] [CrossRef]
- Zhu, H. An Investigation into The Micro Grooving Process for Germanium Substrates Using a Hybrid Laser-Waterjet Technology. Ph.D. Thesis, Department of Electrical Engineering, The University of New South Wales, Sydney, Australia, 2016. [Google Scholar]
- Hu, T.; Yuan, S.; Wei, J.; Zhou, N.; Zhang, Z.; Zhang, J.; Li, X. Water jet guided laser grooving of SiCf/SiC ceramic matrix composites. Opt. Laser Technol. 2024, 168, 109991. [Google Scholar] [CrossRef]
- Li, Z.; Duan, L.; Zhao, R.; Zhang, Y.; Wang, X. Experimental investigation and optimization of modification during coaxial waterjet-assisted femtosecond laser drilling. Opt. Laser Technol. 2024, 177, 111072. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Si, J.; Chen, T.; Chen, F.; Liang, S.; Wu, Z.; Hou, X. Alcohol-assisted photoetching of silicon carbide with a femtosecond laser. Opt. Commun. 2009, 282, 78–80. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, H.; Si, J.; Ren, H.; Chen, T.; Chen, F.; Hou, X. High-aspect-ratio grooves fabricated in silicon by a single pass of femtosecond laser pulses. J. Appl. Phys. 2012, 111, 093102. [Google Scholar] [CrossRef]
- Zheng, Q.; Fan, Z.; Jiang, G.; Pan, A.; Yan, Z.; Lin, Q.; Cui, J.; Wang, W.; Mei, X. Mechanism and morphology control of underwater femtosecond laser micro grooving of silicon carbide ceramics. Opt. Express 2019, 27, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Charee, W.; Tangwarodomnukun, V.; Dumkum, C. Laser ablation of silicon in water under different flow rates. Int. J. Adv. Manuf. Technol. 2015, 78, 19–29. [Google Scholar] [CrossRef]
- Wang, W.; Song, H.; Liao, K.; Mei, X. Water-assisted femtosecond laser drilling of 4H-SiC to eliminate cracks and surface material shedding. Int. J. Adv. Manuf. Technol. 2020, 112, 553–562. [Google Scholar] [CrossRef]
- Ren, N.; Gao, F.; Wang, H.; Xia, K.; Song, S.; Yang, H. Water-induced effect on femtosecond laser layered ring trepanning in silicon carbide ceramic sheets using low-to-high pulse repetition rate. Opt. Commun. 2021, 496, 127040. [Google Scholar] [CrossRef]
- Liu, B.; Fan, P.; Song, H.; Liao, K.; Wang, W. Fabrication of 4H–SiC microvias using a femtosecond laser assisted by a protective layer. Opt. Mater. 2022, 123, 111695. [Google Scholar] [CrossRef]
- Wei, J.; Yuan, S.; Zhang, J.; Zhou, N.; Zhang, W.; Li, J.; An, W.; Gao, M.; Fu, Y. Femtosecond laser ablation behavior of SiC/SiC composites in air and water environment. Corros. Sci. 2022, 208, 110671. [Google Scholar] [CrossRef]
- Wu, C.; Fang, X.; Kang, Q.; Sun, H.; Zhao, L.; Tian, B.; Fang, Z.; Pan, M.; Maeda, R.; Jiang, Z. Crystal cleavage, periodic nanostructure and surface modification of SiC ablated by femtosecond laser in different media. Surf. Coat. Technol. 2021, 424, 127652. [Google Scholar] [CrossRef]
- Khuat, V.; Ma, Y.; Si, J.; Chen, T.; Chen, F.; Hou, X. Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching. Appl. Surf. Sci. 2014, 289, 529–532. [Google Scholar] [CrossRef]
- Gao, B.G.B.; Chen, T.C.T.; Khuat, V.K.V.; Si, J.S.J.; Hou, X.H.A.X. Fabrication of grating structures on silicon carbide by femtosecond laser irradiation and wet etching. Chin. Opt. Lett. 2016, 14, 021407. [Google Scholar] [CrossRef]
- Ma, Y.; Khuat, V.; Pan, A. A simple method for well-defined and clean all-SiC nano-ripples in ambient air. Opt. Lasers Eng. 2016, 82, 141–147. [Google Scholar] [CrossRef]
- Liang, Y.C.; Li, Y.E.; Liu, Y.H.; Kuo, J.F.; Cheng, C.W.; Lee, A.C. High-quality structures on 4H-SiC fabricated by femtosecond laser LIPSS and chemical etching. Opt. Laser Technol. 2023, 163, 109437. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, P.; Chu, D.; Qu, S.; He, W.; Xu, X.; Zhu, H.; Zou, B.; Liu, H.; Huang, C. Array structure of monocrystalline silicon surface processed by femtosecond laser machining assisted with anisotropic chemical etching. Opt. Laser Technol. 2024, 169, 110165. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, P.; Li, Y.; Jiang, L.; Xu, J.; Liang, S.; Chu, D.; He, W.; Huang, C.; Zhu, H.; et al. Inverted pyramid structure on monocrystalline silicon processed by wet etching after femtosecond laser machining in air and deionized water. Opt. Laser Technol. 2023, 157, 108647. [Google Scholar] [CrossRef]
- Song, Y.; Xu, J.; Liu, Z.; Zhang, A.; Yu, J.; Qi, J.; Chen, W.; Cheng, Y. Fabrication of high-aspect-ratio fused silica microstructures with large depths using Bessel-beam femtosecond laser-assisted etching. Opt. Laser Technol. 2024, 170, 110305. [Google Scholar] [CrossRef]
- Li, X.; Yuan, S.; Zhou, N.; Wei, J.; Gao, M.; Hu, T.; Shi, X. Investigation on femtosecond laser combined with dynamic wet etching machining of SiC/SiC. J. Eur. Ceram. Soc. 2024, 1–15. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, G.; Lv, J.; Guo, Z.; Wang, F.; Zhang, Y.; Xu, J.; Cheng, G. High-efficiency localized electrochemical deposition based on ultrafast laser surface modification. Surf. Coat. Technol. 2023, 471, 129923. [Google Scholar] [CrossRef]
- Mao, W.P.; Ding, W.; Zhang, C.Y. Detection and experiment of impact cavitation in laser electrochemical composite processing. Laser Technol. 2014, 38, 753–758. [Google Scholar]
- Yao, Y.H. Study on the friction reduction effect of laser electrochemical composite micromachining groove texture. Wirel. Internet Technol. 2020, 38, 130–133. [Google Scholar]
- Chang, Y.B.; He, L.; Song, Y.Z. Research on electrolyte circulation control system for laser electrolytic composite processing. Group Technol. Prod. Modif. 2016, 33, 55–59. [Google Scholar]
- Wang, Y.F.; Yang, Y.; Zhang, W.W. Research status and prospects of laser and electrolytic composite processing technology. Electr. Mach. Molds 2022, 4, 1–13. [Google Scholar]
- Wu, X.L. Research on the Mechanism of Micro-Hole Processing by Ultrasonic Vibration Compounded with Femtosecond Laser. Master’s Thesis, Department of Electrical Engineering, Anhui Jianzhu University, Hefei, China, 2022. [Google Scholar]
- Zheng, Q.; Mei, X.; Jiang, G.; Cui, J.; Fan, Z.; Wang, W.; Yan, Z.; Guo, H.; Pan, A. Investigation on ultrasonic vibration-assisted femtosecond laser polishing of C/SiC composites. J. Eur. Ceram. Soc. 2023, 43, 4656–4672. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S.; Asundi, A.; Xu, Y. Experimental characterization of laser trepanning performance enhanced by water-based ultrasonic assistance. Opt. Laser Technol. 2019, 109, 547–560. [Google Scholar] [CrossRef]
- Yuan, Z.Z. Design of Ultrasonic Vibration and Jet-Assisted Laser Composite Machining System. Master’s Thesis, Department of Electrical Engineering, Anhui Jianzhu University, Hefei, China, 2018. [Google Scholar]
- Wang, C.; Kurokawa, S.; Doi, T.; Yuan, J.; Sano, Y.; Aida, H.; Zhang, K.; Deng, Q. The polishing effect of SiC substrates in femtosecond laser irradiation assisted chemical mechanical polishing (CMP). ECS J. Solid State Sci. Technol. 2017, 6, 105–112. [Google Scholar] [CrossRef]
- Xie, X.; Peng, Q.; Chen, G.; Li, J.; Long, J.; Pan, G. Femtosecond laser modification of silicon carbide substrates and its influence on CMP process. Ceram. Int. 2021, 47, 13322–13330. [Google Scholar] [CrossRef]
- Chen, Y.D.; Liu, H.Y.; Cheng, C.Y.; Chen, C. Comparison of C face (000-1) and Si face (0001) of silicon carbide wafers in femtosecond laser irradiation assisted chemical–mechanical polishing process. Appl. Phys. A 2022, 128, 1094. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Long, J.; Luo, H.; Zhou, Y.; Xie, X.; Pan, G. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face. Appl. Surf. Sci. 2021, 536, 147963. [Google Scholar] [CrossRef]
- Wang, H.; Guan, Y.; Zheng, H. Smooth polishing of femtosecond laser induced craters on cemented carbide by ultrasonic vibration method. Appl. Surf. Sci. 2017, 426, 399–405. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, F.; Guo, Z.; Wang, X. Accelerated ICP etching of 6H-SiC by femtosecond laser modification. Appl. Surf. Sci. 2019, 488, 853–864. [Google Scholar] [CrossRef]
- Wu, C.; Fang, X.; Liu, F.; Guo, X.; Maeda, R.; Jiang, Z. High speed and low roughness micromachining of silicon carbide by plasma etching aided femtosecond laser processing. Ceram. Int. 2020, 46, 17896–17902. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chung, C.-J.; Wu, B.-H.; Li, W.-L.; Chien, C.-W.; Wu, P.-H.; Cheng, C.-W. Microstructure and lubricating property of ultra-fast laser pulse textured silicon carbide seals. Appl. Phys. A 2012, 107, 345–350. [Google Scholar] [CrossRef]
- Murzin, S.P.; Balyakin, V.B. Micro structuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings. Opt. Laser Technol. 2017, 88, 96–98. [Google Scholar] [CrossRef]
- Huang, L.; Maerkl, S.J.; Martin, O.J. Integration of plasmonic trapping in a microfluidic environment. Opt. Express 2009, 17, 6018–6024. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.-L.; Kee, J.-S.; Ajay, A.; Ranganathan, N.; Tang, K.-C.; Yobas, L. Buried microfluidic channel for integrated patch-clamping assay. Appl. Phys. Lett. 2006, 89, 093902. [Google Scholar] [CrossRef]
- Jugessur, A.S.; Dou, J.; Aitchison, J.S.; De La Rue, R.M.; Gnan, M. A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications. Microelectron. Eng. 2009, 86, 1488–1490. [Google Scholar] [CrossRef]
- Zhao, G.; Xia, H.; Zhang, Y.; Li, L.; He, N.; Hansen, H.N. Laser-induced oxidation assisted micro milling of high aspect ratio micro-groove on WC-Co cemented carbide. Chin. J. Aeronaut. 2020, 34, 465–475. [Google Scholar] [CrossRef]
- Liu, N.; Sun, Y.; Wang, H.; Liang, C. Femtosecond laser-induced nanostructures on Fe-30Mn surfaces for biomedical applications. Opt. Laser Technol. 2021, 139, 106986. [Google Scholar] [CrossRef]
- Kodama, S.; Suzuki, S.; Hayashibe, K.; Shimada, K.; Mizutani, M.; Kuriyagawa, T. Control of short-pulsed laser induced periodic surface structures with machining picosecond laser micro/nanotexturing with ultraprecision cutting. Precis. Eng. 2019, 55, 433–438. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys. 2015, 117, 033103. [Google Scholar] [CrossRef]
- Yin, K.; Duan, J.; Sun, X.; Wang, C.; Luo, Z. Formation of superwetting surface with line-patterned nanostructure on sapphire induced by femtosecond laser. Appl. Phys. A 2015, 119, 69–74. [Google Scholar] [CrossRef]
- Song, Y.M.; Xie, Y.; Malyarchuk, V.; Xiao, J.; Jung, I.; Choi, K.-J.; Liu, Z.; Park, H.; Lu, C.; Kim, R.-H.; et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Yuan, D.; Zheng, J.; Xu, S. Molecular dynamics study on femtosecond laser aided machining of monocrystalline silicon carbide. Mater. Sci. Semicond. Process. 2019, 101, 1–9. [Google Scholar] [CrossRef]
- Sánchez, M.I.; Delaporte, P.; Spiegel, Y.; Franta, B.; Mazur, E.; Sarnet, T. A laser-processed silicon solar cell with photovoltaic efficiency in the infrared. Phys. Status Solidi (A) 2021, 218, 2000550. [Google Scholar] [CrossRef]
- Deki, M.; Yamamoto, M.; Ito, T.; Tomita, T.; Matsuo, S.; Hashimoto, S.; Kitada, T.; Isu, T.; Onoda, S.; Ohshima, T.; et al. Femtosecond laser modification aiming at the enhancement of local electric conductivities in SiC. AIP Conf. Proc. 2011, 1399, 119–120. [Google Scholar]
- Zhao, Q.Z.; Ciobanu, F.; Malzer, S.; Wang, L.J. Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring. Appl. Phys. Lett. 2007, 91, 121107. [Google Scholar] [CrossRef]
- Pecholt, B.; Vendan, M.; Dong, Y.; Molian, P. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication. Int. J. Adv. Manuf. Technol. 2008, 39, 239–250. [Google Scholar] [CrossRef]
- Fang, R.; Zhang, H.; Zheng, J.; Li, R.; Wang, X.; Luo, C.; Yang, S.; Li, S.; Li, C.; Chen, Y.; et al. High-temperature silicon carbide material with wicking and evaporative cooling functionalities fabricated by femtosecond laser surface nano/microstructuring. Ceram. Int. 2023, 49, 20138–20147. [Google Scholar] [CrossRef]
- Papanasam, E.; Kumar, P.; Chanthini, B.; Manikandan, E.; Agarwal, L. A Comprehensive Review of Recent Progress, Prospect and Challenges of Silicon Carbide and its Applications. Silicon 2022, 14, 12887–12900. [Google Scholar]
- Monica, V.; Paul, M. Femtosecond pulsed laser microfabrication of SiC MEMS micro gripper. J. Laser Appl. 2007, 19, 149–154. [Google Scholar]
- Marsi, N.; Majlis, B.Y.; Hamzah, A.A.; Mohd-Yasin, F. High Reliability of MEMS Packaged Capacitive Pressure Sensor Employing 3C-SiC for High Temperature. Energy Procedia 2015, 68, 471–479. [Google Scholar] [CrossRef]
- Suster, M.; Ko, W.; Young, D. An optically powered wireless telemetry module for high-temperature MEMS sensing and communication. IEEE J. Microelectromech. Syst. 2004, 13, 536–541. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.L.; Wang, L.K. Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor. Sens. Actuators A Phys. 2020, 309, 112017. [Google Scholar] [CrossRef]
- Zheng, J.X.; Tian, K.S.; Qi, J.Y.; Guo, M.R.; Liu, X.Q. Advances in fabrication of micro-optical components by femtosecond laser with etching technology. Opt. Laser Technol. 2023, 167, 109793. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Phan, H.P.; Dinh, T.; Dowling, K.M.; Foisal, A.R.; Senesky, D.G.; Nguyen, N.T.; Dao, D.V. Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures. Mater. Des. 2018, 156, 441–445. [Google Scholar] [CrossRef]
- Gupta, S.; Molian, P. Design of laser micro machined single crystal 6H–Sic diaphragms for high-temperature micro-electro-mechanical-system pressure sensors. Mater. Des. 2011, 32, 127–132. [Google Scholar] [CrossRef]
- Zehetner, J.; Vanko, G.; Dzuba, J.; Ryger, I.; Lalinsky, T.; Benkler, M.; Lucki, M. Laser ablation for membrane processing of AlGaN/GaN- and micro structured ferroelectric thin film MEMS and SiC pressure sensors for extreme conditions, Barcelona, Spain. Proc. SPIE 2015, 9517, 951721. [Google Scholar]
- Zehetner, J.; Kraus, S.; Lucki, M.; Vanko, G.; Dzuba, J.; Lalinsky, T. Manufacturing of membranes by laser ablation in SiC, sapphire, glass and ceramic for GaN/ferroelectric thin film MEMS and pressure sensors. Microsyst. Technol. Micro Nano Syst. Inf. Storage Process. Syst. 2016, 22, 1883–1892. [Google Scholar] [CrossRef]
- Dong, Y.; Nair, R.; Molian, R.; Molian, P. Femtosecond-pulsed laser micromachining of a 4H–SiC wafer for MEMS pressure sensor diaphragms and via holes. J. Micromech. Microeng. 2008, 18, 035022. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, Y.; Zhao, Y. Two-step femtosecond laser etching for bulk micromachining of 4H–SiC membrane applied in pressure sensing. Ceram. Int. 2022, 48, 12359–12367. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Zhao, Y.; Yang, Y.; Li, B.; Gong, T. Mass fabrication of 4H-SiC high temperature pressure sensors by femtosecond laser etching. In Proceedings of the 16th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 25–29 April 2021; pp. 1478–1481. [Google Scholar]
- Wang, L.; Zhao, Y.; Yang, Y.; Pang, X.; Hao, L.; Zhao, Y. Piezoresistive 4H-SiC pressure sensor with diaphragm realized by femtosecond laser. IEEE Sens. J. 2022, 22, 11535–11542. [Google Scholar] [CrossRef]
- Osipov, A.A.; Iankevich, G.A.; Osipov, A.A.; Speshilova, A.B.; Karakchieva, A.A.; Endiiarova, E.V.; Levina, S.N.; Karakchiev, S.V.; Alexandrov, S.E. Silicon carbide dry etching technique for pressure sensors design. J. Manuf. Process. 2022, 73, 316–325. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, Y.; Pang, X.; Hao, L.; Zhao, Y.; Liu, J. Development of laser-micromachined 4H-SiC MEMS piezoresistive pressure sensors for corrosive environments. IEEE Trans. Electron Devices 2022, 69, 2009–2014. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Wang, L.; Zhao, Y. Application of femtosecond laser etching in the fabrication of bulk SiC accelerometer. J. Mater. Res. Technol. 2022, 17, 2577–2586. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, Z.; Zhao, Y.; Yang, X.; Gong, T.; Li, C. Femtosecond laser micromachining in combination with ICP etching for 4H–SiC pressure sensor membranes. Ceram. Int. 2021, 47, 6397–6408. [Google Scholar] [CrossRef]
- Wu, C.; Fang, X.; Fang, Z.; Sun, H.; Li, S.; Zhao, L.; Tian, B.; Zhong, M.; Maeda, R.; Jiang, Z. Fabrication of 4H-SiC piezoresistive pressure sensor for high temperature using an integrated femtosecond laser-assisted plasma etching method. Ceram. Int. 2023, 49, 29467–29476. [Google Scholar] [CrossRef]
Processing Environments | Advantage | Disadvantage |
---|---|---|
Air | Partial loss of laser energy | |
Vacuum | Weakens the ionization effect of air and reduce laser energy loss | |
Nitrogen | Rough surface quality | |
Argon | Small surface defects and high ripple heights | |
KOH aqueous solutions | Deep grooves | |
Low-temperature | Increases ablation depth, improves surface quality, and mitigates thermal accumulation effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, R.; Chen, Q.; Duan, R. A Review of Femtosecond Laser Processing of Silicon Carbide. Micromachines 2024, 15, 639. https://doi.org/10.3390/mi15050639
Wang Q, Zhang R, Chen Q, Duan R. A Review of Femtosecond Laser Processing of Silicon Carbide. Micromachines. 2024; 15(5):639. https://doi.org/10.3390/mi15050639
Chicago/Turabian StyleWang, Quanjing, Ru Zhang, Qingkui Chen, and Ran Duan. 2024. "A Review of Femtosecond Laser Processing of Silicon Carbide" Micromachines 15, no. 5: 639. https://doi.org/10.3390/mi15050639
APA StyleWang, Q., Zhang, R., Chen, Q., & Duan, R. (2024). A Review of Femtosecond Laser Processing of Silicon Carbide. Micromachines, 15(5), 639. https://doi.org/10.3390/mi15050639