Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Microelectrodes
2.1.1. Preparation of Photomasks
2.1.2. Preparation of Template Molds for the Electrodes
2.1.3. Fabrication of the Organic Microelectrode Utilizing the Template Molds
2.1.4. Fabrication of the Insulation Layer with Locally Exposed Apertures
2.2. Microscopic Evaluation of the Microelectrodes
2.3. Cell Culture and Biocompatibility Test
2.3.1. Cell Culture
2.3.2. Biocompatibility Test
2.4. Characterization for Neural Stimulation
2.5. Characterization for Neural Recording
3. Results and Discussion
3.1. Fabrication and Microscopic Observation of the All-Organic Microelectrodes
3.2. Cell Culture and Biocompatibility Test on the Microelectrodes
3.3. Characterization for Neural Stimulation
3.4. Characterization for Neural Recording
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoon Lee, J.; Min Lee, S.; Jin Byeon, H.; Sook Hong, J.; Suk Park, K.; Lee, S. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. J. Neural Eng. 2014, 11, 046014. [Google Scholar] [CrossRef]
- Nimbalkar, S.; Samejima, S.; Dang, V.; Hunt, T.; Nunez, O.; Moritz, C.; Kassegne, S. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation. J. Neural Eng. 2021, 18, 056035. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Kim, K.; Lee, E.; An, T.; Choi, W.; Lim, G.; Shin, J.H. Recent Progress on Microelectrodes in Neural Interfaces. Materials 2018, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Ping, J.; Xiong, J.; Ying, Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. Adv. Sci. 2022, 9, 2200560. [Google Scholar] [CrossRef]
- Yin, X.; Sarkar, S.; Shi, S.; Huang, Q.H.; Zhao, H.; Yan, L.; Zhao, Y.; Zhang, J. Recent Progress in Advanced Organic Electrode Materials for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Adv. Funct. Mater. 2020, 30, 1908445. [Google Scholar] [CrossRef]
- Eslamian, M.; Mirab, F.; Raghunathan, V.K.; Majd, S.; Abidian, M.R. Organic Semiconductor Nanotubes for Electrochemical Devices. Adv. Funct. Mater. 2021, 31, 2105358. [Google Scholar] [CrossRef]
- Wu, N.; Wan, S.; Su, S.; Huang, H.; Dou, G.; Sun, L. Electrode materials for brain–machine interface: A review. InfoMat 2021, 3, 1174–1194. [Google Scholar] [CrossRef]
- Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A Review of Organic and Inorganic Biomaterials for Neural Interfaces. Adv. Mater. 2014, 26, 1846–1885. [Google Scholar] [CrossRef]
- Elbadawi, M.; Ong, J.J.; Pollard, T.D.; Gaisford, S.; Basit, A.W. Additive Manufacturable Materials for Electrochemical Biosensor Electrodes. Adv. Funct. Mater. 2020, 31, 2006407. [Google Scholar] [CrossRef]
- Ogihara, H.; Kibayashi, H.; Saji, T. Microcontact Printing for Patterning Carbon Nanotube/Polymer Composite Films with Electrical Conductivity. ACS Appl. Mater. Interfaces 2012, 4, 4891–4897. [Google Scholar] [CrossRef]
- Joo, S.; Lee, C.; Kang, J.; Seo, S.; Song, Y.; Kim, J. Intaglio Contact Printing of Versatile Carbon Nanotube Composites and Its Applications for Miniaturizing High-Performance Devices. Small 2021, 18, 2106174. [Google Scholar] [CrossRef] [PubMed]
- Abu-Saude, M.J.; Morshed, B.I. Patterned Vertical Carbon Nanotube Dry Electrodes for Impedimetric Sensing and Stimulation. IEEE Sensors J. 2015, 15, 5851–5858. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, G.B.; Lee, E.J.; An, T.; Shin, K.; Lee, S.E.; Choi, W.G.; Lee, S.E.; Latchoumane, C.; Shin, H.; et al. Carbon-Nanotube-Modified Electrodes for Highly Efficient Acute Neural Recording. Adv. Healthc. Mater. 2013, 3, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, A.; Castagnola, E.; Maggiolini, E.; Fadiga, L.; Ricci, D. Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes. ACS Nano 2011, 5, 2206–2214. [Google Scholar] [CrossRef] [PubMed]
- Kolarcik, C.L.; Catt, K.; Rost, E.; Albrecht, I.N.; Bourbeau, D.; Du, Z.; Kozai, T.D.Y.; Luo, X.; Weber, D.J.; Tracy Cui, X. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J. Neural Eng. 2014, 12, 016008. [Google Scholar] [CrossRef] [PubMed]
- Samejima, S.; Hanna, R.; Cariappa, B.K.; Arvizu, R.; Nimbalkar, S.; Montgomery-Walsh, R.; Galindo, S.L.; Henderson, R.; Khorasani, A.; Moritz, C.T.; et al. Glassy Carbon Neural Interface for Chronic Epidural Stimulation in Rats With Cervical Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.M.; Rodríguez-Meana, B.; Bonisoli, A.; Cutrone, A.; Micera, S.; Navarro, X.; Greco, F.; Del Valle, J. All-Polymer Printed Low-Cost Regenerative Nerve Cuff Electrodes. Front. Bioeng. Biotechnol. 2021, 9, 615218. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Linares, A.; Zhang, X.; Lee, H.H.; Risner, M.L.; Weiss, S.M.; Xu, Y.; Levine, E.; Li, D. Graphene-based microfluidic perforated microelectrode arrays for retinal electrophysiological studies. Lab Chip 2023, 23, 2193–2205. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.K.; Bliley, J.; Shiwarski, D.J.; Raghavan, G.; Feinberg, A.W.; Cohen-Karni, T. Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes. Cel. Mol. Bioeng. 2018, 11, 407–418. [Google Scholar] [CrossRef]
- Ji, B.; Xie, Z.; Hong, W.; Jiang, C.; Guo, Z.; Wang, L.; Wang, X.; Yang, B.; Liu, J. Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J. Mater. 2019, 6, 330–338. [Google Scholar] [CrossRef]
- Castagnola, E.; Maiolo, L.; Maggiolini, E.; Minotti, A.; Marrani, M.; Maita, F.; Pecora, A.; Angotzi, G.N.; Ansaldo, A.; Boffini, M.; et al. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, Y.; Xiao, G.; He, E.; Xie, J.; Dai, Y.; Xing, Y.; Wang, Y.; Wang, Y.; Xu, S.; et al. PDMS–Parylene Hybrid, Flexible Micro-ECoG Electrode Array for Spatiotemporal Mapping of Epileptic Electrophysiological Activity from Multicortical Brain Regions. ACS Appl. Bio Mater. 2021, 4, 8013–8022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhu, M.; Tian, G.; Liang, C.; Liu, Z.; Huang, J.; Yu, Q.Y.; Tang, S.; Chen, J.; Zhao, X.; et al. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Adv. Healthc. Mater. 2023, 12, 2203344. [Google Scholar] [CrossRef]
- Oribe, S.; Yoshida, S.; Kusama, S.; Osawa, S.; Nakagawa, A.; Iwasaki, M.; Tominaga, T.; Nishizawa, M. Hydrogel-Based Organic Subdural Electrode with High Conformability to Brain Surface. Sci Rep 2019, 9, 13379. [Google Scholar] [CrossRef]
- Hu, J.; Hossain, R.F.; Navabi, Z.S.; Tillery, A.; Laroque, M.; Donaldson, P.D.; Swisher, S.L.; Kodandaramaiah, S.B. Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays. J. Neural Eng. 2023, 20, 016019. [Google Scholar] [CrossRef] [PubMed]
- Bakhshaee Babaroud, N.; Palmar, M.; Velea, A.I.; Coletti, C.; Weingärtner, S.; Vos, F.; Serdijn, W.A.; Vollebregt, S.; Giagka, V. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces. Microsyst. Nanoeng. 2022, 8, 107. [Google Scholar] [CrossRef]
- Kilias, A.; Lee, Y.; Froriep, U.P.; Sielaff, C.; Moser, D.; Holzhammer, T.; Egert, U.; Fang, W.; Paul, O.; Ruther, P. Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings in vivo. J. Neural Eng. 2021, 18, 066026. [Google Scholar] [CrossRef]
- Kozai, T.D.Y.; Catt, K.; Du, Z.; Na, K.; Srivannavit, O.; Haque, R.M.; Seymour, J.; Wise, K.D.; Yoon, E.; Cui, X.T. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans. Biomed. Eng. 2016, 63, 111–119. [Google Scholar] [CrossRef]
- Vajrala, V.S.; Saunier, V.; Nowak, L.G.; Flahaut, E.; Bergaud, C.; Maziz, A. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing. Front. Bioeng. Biotechnol. 2021, 9, 780197. [Google Scholar] [CrossRef]
- Goshi, N.; Castagnola, E.; Vomero, M.; Gueli, C.; Cea, C.; Zucchini, E.; Bjanes, D.; Maggiolini, E.; Moritz, C.; Kassegne, S.; et al. Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. J. Micromech. Microeng. 2018, 28, 065009. [Google Scholar] [CrossRef]
- Dadras-Toussi, O.; Khorrami, M.; Louis Sam Titus, A.S.C.; Majd, S.; Mohan, C.; Abidian, M.R. Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics. Adv. Mater. 2022, 34, 2200512. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yang, G.; Madduri, N.; Abidian, M.R.; Majd, S. Hydrogel-Mediated Direct Patterning of Conducting Polymer Films with Multiple Surface Chemistries. Adv. Mater. 2014, 26, 2782–2787. [Google Scholar] [CrossRef] [PubMed]
- Vafaiee, M.; Mohammadpour, R.; Vossoughi, M.; Asadian, E.; Janahmadi, M.; Sasanpour, P. Carbon Nanotube Modified Microelectrode Array for Neural Interface. Front. Bioeng. Biotechnol. 2021, 8, 582713. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Su, H.; Chuang, S.; Yen, S.; Chen, Y.; Lee, Y.; Chen, H.; Yew, T.; Chang, Y.; Yeh, S.; et al. Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes. Nanotechnology 2010, 21, 485501. [Google Scholar] [CrossRef] [PubMed]
- Ostrovsky, S.; Hahnewald, S.; Kiran, R.; Mistrik, P.; Hessler, R.; Tscherter, A.; Senn, P.; Kang, J.; Kim, J.; Roccio, M.; et al. Conductive hybrid carbon nanotube (CNT)–polythiophene coatings for innovative auditory neuron-multi-electrode array interfacing. RSC Adv. 2016, 6, 41714–41723. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Huang, N.; Zhao, L.; Su, Y.; Li, L.; Bian, S.; Sawan, M. Single neurons on microelectrode array chip: Manipulation and analyses. Front. Bioeng. Biotechnol. 2023, 11, 1258626. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Deng, Y.; Luo, J.; Liu, Y.; He, E.; Yang, Y.; Zhang, K.; Sha, L.; Dai, Y.; Ming, T.; et al. A Neural Sensor with a Nanocomposite Interface for the Study of Spike Characteristics of Hippocampal Neurons under Learning Training. Biosensors 2022, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Saunier, V.; Flahaut, E.; Blatché, M.; Bergaud, C.; Maziz, A. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosens. Bioelectron. 2020, 165, 112413. [Google Scholar] [CrossRef] [PubMed]
- Cools, J.G.; Copic, D.; Luo, Z.; Callewaert, G.; Braeken, D.; De Volder, M. 3D Microstructured Carbon Nanotube Electrodes for Trapping and Recording Electrogenic Cells. Adv. Funct. Mater. 2017, 27, 1701083. [Google Scholar] [CrossRef]
- Garma, L.D.; Ferrari, L.M.; Scognamiglio, P.; Greco, F.; Santoro, F. Inkjet-printed PEDOT:PSS multi-electrode arrays for low-cost in vitro electrophysiology. Lab Chip 2019, 19, 3776–3786. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murakami, T.; Yada, N.; Yoshida, S. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording. Micromachines 2024, 15, 650. https://doi.org/10.3390/mi15050650
Murakami T, Yada N, Yoshida S. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording. Micromachines. 2024; 15(5):650. https://doi.org/10.3390/mi15050650
Chicago/Turabian StyleMurakami, Tatsuya, Naoki Yada, and Shotaro Yoshida. 2024. "Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording" Micromachines 15, no. 5: 650. https://doi.org/10.3390/mi15050650
APA StyleMurakami, T., Yada, N., & Yoshida, S. (2024). Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording. Micromachines, 15(5), 650. https://doi.org/10.3390/mi15050650