A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Specimens, Virus Isolates, and Viral RNA Extraction
2.2. Preparation of CHIKV RNA Standards
2.3. RT-LAMP Reaction and Analysis of RT-LAMP Amplicons
2.4. Optimization of RT-LAMP
2.5. RT-qPCR Assay
2.6. AutoLAMP-Based CHIKV Detection
2.7. Sensitivity and Specificity
3. Results
3.1. Illustration of AutoLAMP-Based RT-LAMP-LFD CHIKV Detection
3.2. RT-LAMP Using LFD for CHIKV Detection
3.3. Optimization of RT-LAMP-LFD for the AutoLAMP
3.4. Specificity and Sensitivity of AutoLAMP-Based CHIKV Detection
3.5. Evaluation of AutoLAMP Assay with Clinical Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burt, F.J.; Chen, W.; Miner, J.J.; Lenschow, D.J.; Merits, A.; Schnettler, E.; Kohl, A.; Rudd, P.A.; Taylor, A.; Herrero, L.; et al. Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis. 2017, 17, e107–e117. [Google Scholar] [CrossRef] [PubMed]
- Graf, T.; Vazquez, C.; Giovanetti, M.; de Bruycker-Nogueira, F.; Fonseca, V.; Claro, I.M.; de Jesus, J.G.; Gomez, A.; Xavier, J.; de Mendonca, M.C.L.; et al. Epidemiologic History and Genetic Diversity Origins of Chikungunya and Dengue Viruses, Paraguay. Emerg. Infect. Dis. 2021, 27, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Rafe, M.R.; Ahmed, S.N.; Ahmed, Z. Origins, pathophysiology, diagnosis, vaccination and prevention of Chikungunya virus. Curr. Issues Pharm. Med. Sci. 2019, 32, 40–44. [Google Scholar] [CrossRef]
- Silva, J.V.J., Jr.; Ludwig-Begall, L.F.; de Oliveira-Filho, E.F.; Oliveira, R.A.S.; Durães-Carvalho, R.; Lopes, T.R.R.; Silva, D.E.A.; Gil, L.H.V.G. A scoping review of Chikungunya virus infection: Epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop. 2018, 188, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; A Beutler, N.; et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Patel, T.; Pashchenko, O.; Elliott, R.; Santra, S. Rapid Detection and One-Step Differentiation of Cross-Reactivity Between Zika and Dengue Virus Using Functional Magnetic Nanosensors. ACS Appl. Bio. Mater. 2021, 4, 3786–3795. [Google Scholar] [CrossRef] [PubMed]
- Falzone, L.; Gattuso, G.; Tsatsakis, A.; Spandidos, D.A.; Libra, M. Current and innovative methods for the diagnosis of COVID-19 infection (Review). Int. J. Mol. Med. 2021, 47, 100. [Google Scholar] [CrossRef]
- Álvarez-Díaz, D.A.; Valencia-Álvarez, E.; Rivera, J.A.; Rengifo, A.C.; Usme-Ciro, J.A.; Peláez-Carvajal, D.; Lozano-Jiménez, Y.Y.; Torres-Fernández, O. An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infect. Genet. Evol. 2021, 93, 104967. [Google Scholar] [CrossRef]
- Renzoni, A.; Perez, F.; Nsoga, M.T.N.; Yerly, S.; Boehm, E.; Gayet-Ageron, A.; Kaiser, L.; Schibler, M. Analytical Evaluation of Visby Medical RT-PCR Portable Device for Rapid Detection of SARS-CoV-2. Diagnostics 2021, 11, 813. [Google Scholar] [CrossRef]
- Lan, Z.; Guo, Y.; Wang, K.; Zhang, Y.; Chen, Y.; Zheng, D.; Xu, X.; Wu, W. Hundreds-Dollar-Level Multiplex Integrated RT-qPCR Quantitative System for Field Detection. Biosensors 2022, 12, 706. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef] [PubMed]
- Lillis, L.; Siverson, J.; Lee, A.; Cantera, J.; Parker, M.; Piepenburg, O.; Lehman, D.A.; Boyle, D.S. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol. Cell. Probes 2016, 30, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Lamb, L.E.; Bartolone, S.N.; Chancellor, M.B. Detection of Zika Virus Using Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP). Methods Mol. Biol. 2020, 2142, 137–146. [Google Scholar] [CrossRef]
- Gaber, M.; Ahmad, A.A.; El-Kady, A.M.; Tolba, M.; Suzuki, Y.; Mohammed, S.M.; Elossily, N.A. Dengue fever as a reemerging disease in upper Egypt: Diagnosis, vector surveillance and genetic diversity using RT-LAMP assay. PLoS ONE 2022, 17, e0265760. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Feng, Y.; Chen, Y.; Gao, J.; Lu, Y. Rapid detection of measles virus using reverse transcription loop-mediated isothermal amplification coupled with a disposable lateral flow device. Diagn. Microbiol. Infect. Dis. 2016, 85, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Chen, H.; Han, L.; Wang, L.; Chen, T.; Li, S.; Li, H.; Li, Y.; Li, Z.; et al. A Novel Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Detection Platform: Application to Diagnosis of COVID-19. Front. Bioeng. Biotechnol. 2021, 9, 748746. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jimena, B.; Wehner, S.; Harold, G.; Bakheit, M.; Frischmann, S.; Bekaert, M.; Faye, O.; Sall, A.A.; Weidmann, M. Development of a single-tube one-step RT-LAMP assay to detect the Chikungunya virus genome. PLoS Negl. Trop. Dis. 2018, 12, e0006448. [Google Scholar] [CrossRef] [PubMed]
- Atceken, N.; Alseed, M.M.; Dabbagh, S.R.; Yetisen, A.K.; Tasoglu, S. Point-of-Care Diagnostic Platforms for Loop-Mediated Isothermal Amplification. Adv. Eng. Mater. 2022, 25, 2201174. [Google Scholar] [CrossRef]
- Shirshikov, F.V.; Bespyatykh, J.A. Loop-Mediated Isothermal Amplification: From Theory to Practice. Russ. J. Bioorg. Chem. 2022, 48, 1159–1174. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, J.; Mao, H.; Zhang, L.; Lyu, Q.; Wu, Z.; Zheng, W.; Feng, C.; Zhang, Y. Characterization of the complete genome of chikungunya in Zhejiang, China, using a modified virus discovery method based on cDNA-AFLP. PLoS ONE 2013, 8, e83014. [Google Scholar] [CrossRef]
- Giovanetti, M.; Vazquez, C.; Lima, M.; Castro, E.; Rojas, A.; de la Fuente, A.G.; Aquino, C.; Cantero, C.; Fleitas, F.; Torales, J.; et al. Rapid Epidemic Expansion of Chikungunya Virus East/Central/South African Lineage, Paraguay. Emerg. Infect. Dis. 2023, 29, 1859–1863. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequences (5′ to 3′) |
---|---|
CHIKV-F3 | CTCTCCTCTCCACAGGTGTA |
CHIKV-B3 | CGCAGTCTATGGAGATGTGC |
CHIKV-FIP(F1c + F2) | CCGTCGAGTCCATRa GCTGTAAA- ACTCAGGARGGAAAGACAGG |
CHIKV-BIP (B1c + B2) | GCAGACGTGGTCATCTACTGCC- ACTTGRGTCCGCATCTGT |
CHIKV-LF | FITC-TGGTTCAGTGACTGGGTYAG |
CHIKV-LB | Biotin-ATGGGAGAAGAARATATCYGAGGC |
RNA Concentration (Copies mL−1) | No. Positive Tests/No. Reaction Replicates (%) | 95% Cl |
---|---|---|
2000 | 20/20 (100%) | 83.90–100% |
1000 | 20/20 (100%) | 83.90–100% |
500 | 16/20 (80%) | 58.40–91.93% |
250 | 8/20 (40%) | 21.88–61.34% |
125 | 0/20 (0%) | 0.00–16.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Chen, Y.; Zhu, G.; Wu, H.; Jiang, Q.; Zhang, R.; Yu, B.; Fang, L.; Wu, Z. A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection. Micromachines 2024, 15, 663. https://doi.org/10.3390/mi15050663
Xu C, Chen Y, Zhu G, Wu H, Jiang Q, Zhang R, Yu B, Fang L, Wu Z. A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection. Micromachines. 2024; 15(5):663. https://doi.org/10.3390/mi15050663
Chicago/Turabian StyleXu, Changping, Yalin Chen, Guiying Zhu, Huan Wu, Qi Jiang, Rui Zhang, Beibei Yu, Lei Fang, and Zhiwei Wu. 2024. "A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection" Micromachines 15, no. 5: 663. https://doi.org/10.3390/mi15050663
APA StyleXu, C., Chen, Y., Zhu, G., Wu, H., Jiang, Q., Zhang, R., Yu, B., Fang, L., & Wu, Z. (2024). A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection. Micromachines, 15(5), 663. https://doi.org/10.3390/mi15050663