Structural and Optical Characterization of Porous NiV2O6 Films Synthesized by Nebulizer Spray Pyrolysis for Photodetector Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural and Surface Morphology Study
3.2. Structural Investigation
3.3. Optical Study
3.4. Photodetector Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, D.; Chattopadhyay, K.K. Chapter 5—Hybrid Inorganic Organic Perovskites: A Low-Cost-Efficient Optoelectronic Material; Thomas, S., Thankappan, A.B.T.-P.P., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 123–162. ISBN 978-0-12-812915-9. [Google Scholar]
- Piels, M.; Bowers, J.E. 1—Photodetectors for Silicon Photonic Integrated Circuits; Nabet, B.B.T.-P., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 3–20. ISBN 978-1-78242-445-1. [Google Scholar]
- Guo, S.; Chen, X.; Wang, D.; Fang, X.; Fang, D.; Tang, J.; Liao, L.; Wei, Z. Fast Response GaAs Photodetector Based on Constructing Electron Transmission Channel. Crystals 2021, 11, 1160. [Google Scholar] [CrossRef]
- Kotbi, A.; Imran, M.; Kaja, K.; Rahaman, A.; Ressami, E.M.; Lejeune, M.; Lakssir, B.; Jouiad, M. Graphene and g-C3N4-Based Gas Sensors. J. Nanotechnol. 2022, 2022, 9671619. [Google Scholar] [CrossRef]
- Chen, X.; Shehzad, K.; Gao, L.; Long, M.; Guo, H.; Qin, S.; Wang, X.; Wang, F.; Shi, Y.; Hu, W.; et al. Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Adv. Mater. 2020, 32, 1902039. [Google Scholar] [CrossRef] [PubMed]
- Vicarelli, L.; Vitiello, M.S.; Coquillat, D.; Lombardo, A.; Ferrari, A.C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Schuler, S.; Muench, J.E.; Ruocco, A.; Balci, O.; van Thourhout, D.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I.; et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, W.; Nan, H.; Yu, Y.; Jiang, J.; Zhao, W.; Li, J.; Zafar, Z.; Xiang, N.; Ni, Z.; et al. High-performance graphene photodetector using interfacial gating. Optica 2016, 3, 1066–1070. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Li, S.; Sun, J.; Fang, Y.; Deng, T. Highly Sensitive Photodetectors Based on Monolayer MoS2 Field-Effect Transistors. ACS Omega 2022, 7, 13615–13621. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Wu, H.; Xue, J.; Ding, L.; Wang, R.; Wang, H. Fast hydrogen purification through graphitic carbon nitride nanosheet membranes. Nat. Commun. 2022, 13, 5852. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Ma, H.; Zheng, C.; Lennon, S.; Wu, W.; Wu, L.; Wang, H. A high-performance transparent photodetector via building hierarchical g-C3N4 nanosheets/CNTs van der Waals heterojunctions by a facile and scalable approach. Appl. Surf. Sci. 2020, 529, 147122. [Google Scholar] [CrossRef]
- Hu, Z.; Krisnanda, T.; Fieramosca, A.; Zhao, J.; Sun, Q.; Chen, Y.; Liu, H.; Luo, Y.; Su, R.; Wang, J.; et al. Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures. Nat. Commun. 2024, 15, 1747. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Chen, L.; Xie, B.; Li, G.; Kong, L.; Tao, Q.; Li, Z.; Yang, X.; Lu, Z.; et al. Ultrashort vertical-channel MoS2 transistor using a self-aligned contact. Nat. Commun. 2024, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Su, X.; Hai, K. Machinability of MoS2 after Oxygen Plasma Treatment under Mechanical Scanning Probe Lithography. Crystals 2024, 14, 280. [Google Scholar] [CrossRef]
- Rahman, M.A.; Akter, M.R.; Khatun, M.R.; Sultana, R.; Sarker, M.A.R. Synthesis and Characterization of High-Quality Polycrystalline Sample NiV2O6 by Solid-State Reaction Technique. Phys. Solid State 2020, 62, 1024–1032. [Google Scholar] [CrossRef]
- Dang, H.X.; Rettie, A.J.E.; Mullins, C.B. Visible-Light-Active NiV2O6 Films for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 2015, 119, 14524–14531. [Google Scholar] [CrossRef]
- Shi, Y.; Ni, L.; Wang, Z.; Chen, M.; Feng, L. Ultrathin two-dimensional materials: New opportunities and challenges in ultra-sensitive gas sensing. Coord. Chem. Rev. 2024, 505, 215691. [Google Scholar] [CrossRef]
- Volfkovich, Y.M.; Sosenkin, V.E.; Rychagov, A.Y.; Melezhik, A.V.; Tkachev, A.G.; Kabachkov, E.N.; Korepanov, V.I.; Khodos, I.I.; Michtchenko, A.; Shulga, Y.M. Carbon material with high specific surface area and high pseudocapacitance: Possible application in supercapacitors. Microporous Mesoporous Mater. 2021, 319, 111063. [Google Scholar] [CrossRef]
- Park, S.Y.; Rho, S.H.; Lee, H.S.; Kim, K.M.; Lee, H.C. Fabrication of Highly Porous and Pure Zinc Oxide Films Using Modified DC Magnetron Sputtering and Post-Oxidation. Materials 2021, 14, 6112. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Long, L.; Yang, Z.; Tang, C.Y. Porous substrate affects fouling propensity of thin-film composite nanofiltration membranes. J. Membr. Sci. Lett. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Liu, P.S.; Chen, G.F. Porous Materials: Processing and Applications; Butterworth-Heinemann: Oxford, UK, 2014; pp. 493–532. [Google Scholar] [CrossRef]
- ARahim, F.A.; Ahmed, M.A.; Razali, N.S.M.; Radzali, R.; Mahmood, A.; Hamzah, I.H.; Noorsal, E. Investigation of Light Trapping from Porous Silicon Surface for the Enhancement of Silicon Solar Cell Performance. Acta Phys. Pol. A 2019, 135, 637–642. [Google Scholar]
- Fang, Y.; Hodgson, R.; Lee, W.C.; Le, H.; Chan, H.W.B.; Hassan, H.M.; Alsohaimi, I.H.; Canciani, G.E.; Qian, R.; Chen, Q. Light trapping by porous TiO2 hollow hemispheres for high efficiency photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2023, 25, 11253. [Google Scholar] [CrossRef] [PubMed]
- Pearce, P.M.; Halme, J.; Jiang, J.Y.; Ekins-Daukes, N.J. Efficiency limits and design principles for multi-junction coloured photovoltaics. Energy Environ. Sci. 2024, 17, 1189–1201. [Google Scholar] [CrossRef]
- Pereira, R.; Rodrigues, A.D.; Pereira, E.C.; Oliveira, A.J.A. De Sol-gel synthesis of triclinic CoV2O6 polycrystals. Ceram. Int. 2018, 44, 19397–19401. [Google Scholar] [CrossRef]
- Helal, A.; El-sheikh, S.M.; Yu, J. Novel synthesis of BiVO4 using homogeneous precipitation and its enhanced photocatalytic activity. J. Nanopart. Res. 2020, 22, 132. [Google Scholar] [CrossRef]
- Merupo, V.; Velumani, S.; Ordon, K.; Errien, N.; Szade, J.; Kassiba, A. Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4). CrystEngComm 2015, 17, 3366. [Google Scholar] [CrossRef]
- Properties, P. Aerosol-Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties. Chem. Vap. Depos. 2015, 21, 41–45. [Google Scholar] [CrossRef]
- Bhuvaneswari, M.S.; Selvasekarapandian, S.; Kamishima, O. Vibrational analysis of lithium nickel vanadate. J. Power Sources 2005, 139, 279–283. [Google Scholar] [CrossRef]
- Merupo, V.I.; Velumani, S. Structural and Optical properties of Molybdenum doped Bismuth vanadate powders. In Proceedings of the 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Ciudad del Carmen, Mexico, 29 September–3 October 2014. [Google Scholar] [CrossRef]
- El Radaf, I.M. Dispersion parameters, linear and nonlinear optical analysis of the SnSb2S4 thin films. Appl. Phys. A Mater. Sci. Process. 2020, 126, 357. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.Z.; Han, M.J.; Li, Y.W.; Hu, Z.G.; Chu, J.H. Temperature dependent near infrared ultraviolet range dielectric functions of nanocrystalline (Na0.5Bi0.5)1-xCex(Ti0.99Fe0.01)O3 films. Appl. Phys. Lett. 2014, 104, 041106. [Google Scholar] [CrossRef]
- Aksay, S.; Altokka, B. Effect of substrate temperature on some of the optical parameters of CuInS2 films. Phys. Status Solidi 2007, 4, 585–588. [Google Scholar] [CrossRef]
- The Materials Project. Available online: https://next-gen.materialsproject.org/materials/mp-756506?formula=NiV2O6 (accessed on 24 June 2024).
- Zhang, H.; Tang, Y.; Liu, Z.; Zhu, Z.; Tang, X.; Wang, Y. Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chem. Phys. Lett. 2020, 751, 137467. [Google Scholar] [CrossRef]
- Kotbi, A.; Hartiti, B.; Fadili, S.; Ridah, A.; Thevenin, P. Experimental and theoretical studies of CuInS2 thin films for photovoltaic applications. J. Mater. Sci. Mater. Electron. 2019, 30, 21096–21105. [Google Scholar] [CrossRef]
- Gupta, Y.; Arun, P. Suitability of SnS thin films for photovoltaic application due to the existence of persistent photocurrent. Phys. Status Solidi 2016, 253, 509–514. [Google Scholar] [CrossRef]
- Veeralingam, S.; Yadav, P.; Badhulika, S. An Fe-doped ZnO/BiVO4 heterostructure-based large area, flexible, high-performance broadband photodetector with an ultrahigh quantum yield. Nanoscale 2020, 12, 9152–9161. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, M.S.; Ibrahim, K.; Hmood, A.; Ahmed, N.M.; Mustafa, F.I.; Azzez, S.A. High performance near infrared photodetector based on cubic crystal structure SnS thin film on a glass substrate. Mater. Lett. 2017, 200, 10–13. [Google Scholar] [CrossRef]
- Wang, Z.; Safdar, M.; Mirza, M.; Xu, K.; Wang, Q.; Huang, Y.; Wang, F.; Zhan, X.; He, J. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale 2015, 7, 7252–7258. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Kim, S.M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y.K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector. Sci. Rep. 2015, 5, 15313. [Google Scholar] [CrossRef] [PubMed]
Materials | Assignment | Raman Shift (cm−1) |
---|---|---|
CoV2O6 | SV-O-V | 775 [25] |
asV-O | 851 [25] | |
asV-O | 913 [25] | |
SV-O | 946 [25] | |
Li0.8NiVO4 | δas (VO4) | 332 [29] |
νas (V-O) | 795 [29] | |
νs (V-O) | 825 [29] | |
Cu–BiVO4 | External modes | 210 [27] |
δas (VO4) | 327 [27] | |
δs (VO4) | 367 [27] | |
ν′as (V-O) | 637 [27] | |
νas (V-O) | 710 [27] | |
νs (V-O) | 819 [27] | |
BiVO4 | δas (VO4) | 324 [26] |
δs (VO4) | 367 [26] | |
νas (V-O) | 710 [26] | |
νs (V-O) | 811 [26] | |
Mo–BiVO4 | External modes | 213 [30] |
δas (VO4) | 327 [30] | |
δs (VO4) | 367 [30] | |
ν′as (V-O) | 642 [30] | |
νas (V-O) | 710 [30] | |
νs (V-O) | 831 [30] | |
BiVO4 | External modes | 27, 211 [28] |
δas (VO4) | 324 [28] | |
δs (VO4) | 368 [28] | |
νas (V-O) | 703 [28] | |
νs (V-O) | 828 [28] | |
NiV2O6 | External modes | 138, 205 (This work) |
δas (VO4) | 327 (This work) | |
δs (VO4) | 367 (This work) | |
ν′as (V-O) | 647 (This work) | |
νs (V-O) | 816 (This work) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotbi, A.; El Radaf, I.M.; Alaoui, I.H.; Cantaluppi, A.; Zeinert, A.; Lahmar, A. Structural and Optical Characterization of Porous NiV2O6 Films Synthesized by Nebulizer Spray Pyrolysis for Photodetector Applications. Micromachines 2024, 15, 839. https://doi.org/10.3390/mi15070839
Kotbi A, El Radaf IM, Alaoui IH, Cantaluppi A, Zeinert A, Lahmar A. Structural and Optical Characterization of Porous NiV2O6 Films Synthesized by Nebulizer Spray Pyrolysis for Photodetector Applications. Micromachines. 2024; 15(7):839. https://doi.org/10.3390/mi15070839
Chicago/Turabian StyleKotbi, Ahmed, Islam M. El Radaf, Ilham Hamdi Alaoui, Anna Cantaluppi, Andreas Zeinert, and Abdelilah Lahmar. 2024. "Structural and Optical Characterization of Porous NiV2O6 Films Synthesized by Nebulizer Spray Pyrolysis for Photodetector Applications" Micromachines 15, no. 7: 839. https://doi.org/10.3390/mi15070839
APA StyleKotbi, A., El Radaf, I. M., Alaoui, I. H., Cantaluppi, A., Zeinert, A., & Lahmar, A. (2024). Structural and Optical Characterization of Porous NiV2O6 Films Synthesized by Nebulizer Spray Pyrolysis for Photodetector Applications. Micromachines, 15(7), 839. https://doi.org/10.3390/mi15070839