Next Issue
Volume 15, August
Previous Issue
Volume 15, June
 
 

Micromachines, Volume 15, Issue 7 (July 2024) – 126 articles

Cover Story (view full-size image): This cover image captures a person who is equipped with wearable energy harvesting technologies to power sensors and electronics. This review article highlights the recent progress, potential, and technological challenges in energy harvesting technology and accompanying technologies to construct a practical powering module, including power management and energy storage devices for wearable device developments. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 8351 KiB  
Article
Impact of Impeller Speed Adjustment Interval on Hemolysis Performance of an Intravascular Micro-Axial Blood Pump
by Yuan Liu, Yuanfei Zhu, Shangting Wang, Hualin Fu, Zhexin Lu and Ming Yang
Micromachines 2024, 15(7), 934; https://doi.org/10.3390/mi15070934 - 22 Jul 2024
Viewed by 508
Abstract
Background: In recent years, intravascular micro-axial blood pumps have been increasingly used in the treatment of patients with cardiogenic shock. The flow rate of such blood pumps requires adjustment based on the patient’s physiological condition. Compared to a stable flow state with fixed [...] Read more.
Background: In recent years, intravascular micro-axial blood pumps have been increasingly used in the treatment of patients with cardiogenic shock. The flow rate of such blood pumps requires adjustment based on the patient’s physiological condition. Compared to a stable flow state with fixed rotation speed, adjusting the speed of blood pump impeller to alter flow rate may lead to additional hemolysis. This study aimed at elucidating the relationship between adjusting interval of a blood pump’s impeller speed and the hemolysis index. Methods: By comparing simulation results with P-Q characteristic curves of the blood pump measured by experiments, the accuracy of the blood pump flow field simulation model was confirmed. In this study, a drainage tube was employed as the device analogous to an intravascular micro-axial blood pump for achieving similar shear stress levels and residence times. The hemolysis finite element prediction method based on a power-law model was validated through hemolysis testing of porcine blood flow through the drainage tube. The validated models were subsequently utilized to investigate the impact of impeller speed adjusting intervals on hemolysis in the blood pump. Results: Compared to steady flow, the results demonstrate that the hemolysis index increased to 6.3% when changing the blood pump flow rate from 2 L/min to 2.5 L/min by adjusting the impeller speed within 0.072 s. Conclusions: An adjustment time of impeller speed longer than 0.072 s can avoid extra hemolysis when adjusting the intravascular micro-axial blood pump flow rate from 2 L/min to 2.5 L/min. Full article
Show Figures

Figure 1

13 pages, 5511 KiB  
Article
A Novel 4H-SiC SGT MOSFET with Improved P+ Shielding Region and Integrated Schottky Barrier Diode
by Xiaobo Cao, Jing Liu, Yingnan An, Xing Ren and Zhonggang Yin
Micromachines 2024, 15(7), 933; https://doi.org/10.3390/mi15070933 - 22 Jul 2024
Viewed by 594
Abstract
A silicon carbide (SiC) SGT MOSFET featuring a “一”-shaped P+ shielding region (PSR), named SPDT-MOS, is proposed in this article. The improved PSR is introduced as a replacement for the source trench to enhance the forward performance of the device. Its improvement consists [...] Read more.
A silicon carbide (SiC) SGT MOSFET featuring a “一”-shaped P+ shielding region (PSR), named SPDT-MOS, is proposed in this article. The improved PSR is introduced as a replacement for the source trench to enhance the forward performance of the device. Its improvement consists of two parts. One is to optimize the electric field distribution of the device, and the other is to expand the current conduction path. Based on the improved PSR and grounded split gate (SG), the device remarkably improves the conduction characteristics, gate oxide reliability, and frequency response. Moreover, the integrated sidewall Schottky barrier diode (SBD) prevents the inherent body diode from being activated and improves the reverse recovery characteristics. As a result, the gate-drain capacitance, gate charge, and reverse recovery charge (Qrr) of the SPDT-MOS are 81.2%, 41.2%, and 90.71% lower than those of the DTMOS, respectively. Compared to the double shielding (DS-MOS), the SPDT-MOS exhibits a 20% reduction in on-resistance and an 8.1% increase in breakdown voltage. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 3591 KiB  
Brief Report
Zweifach–Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO2 Laser-Ablated PMMA
by Cristian F. Rodríguez, Mateo Báez-Suárez, Carolina Muñoz-Camargo, Luis H. Reyes, Johann F. Osma and Juan C. Cruz
Micromachines 2024, 15(7), 932; https://doi.org/10.3390/mi15070932 - 22 Jul 2024
Cited by 2 | Viewed by 826
Abstract
Microfluidic separators play a pivotal role in the biomedical and chemical industries by enabling precise fluid manipulations. Traditional fabrication of these devices typically requires costly cleanroom facilities, which limits their broader application. This study introduces a novel microfluidic device that leverages the passive [...] Read more.
Microfluidic separators play a pivotal role in the biomedical and chemical industries by enabling precise fluid manipulations. Traditional fabrication of these devices typically requires costly cleanroom facilities, which limits their broader application. This study introduces a novel microfluidic device that leverages the passive Zweifach–Fung principle to overcome these financial barriers. Through Lagrangian computational simulations, we optimized an eleven-channel Zweifach–Fung configuration that achieved a perfect 100% recall rate for particles following a specified normal distribution. Experimental evaluations determined 2 mL/h as the optimal total flow rate (TFR), under which the device showcased exceptional performance enhancements in precision and recall for micrometer-sized particles, achieving an overall accuracy of 94% ± 3%. Fabricated using a cost-effective, non-cleanroom method, this approach represents a significant shift from conventional practices, dramatically reducing production costs while maintaining high operational efficacy. The cost of each chip is less than USD 0.90 cents and the manufacturing process takes only 15 min. The development of this device not only makes microfluidic technology more accessible but also sets a new standard for future advancements in the field. Full article
Show Figures

Figure 1

17 pages, 12847 KiB  
Article
Influence of Pd-Layer Thickness on Bonding Reliability of Pd-Coated Cu Wire
by Junling Fan, Donglin Yuan, Juan Du, Tao Hou, Furong Wang, Jun Cao, Xuemei Yang and Yuemin Zhang
Micromachines 2024, 15(7), 931; https://doi.org/10.3390/mi15070931 - 22 Jul 2024
Viewed by 523
Abstract
In this paper, three Pd-coated Cu (PCC) wires with different Pd-layer thicknesses were used to make bonding samples, and the influence of Pd-layer thickness on the reliability of bonded points before and after a high-temperature storage test was studied. The results show that [...] Read more.
In this paper, three Pd-coated Cu (PCC) wires with different Pd-layer thicknesses were used to make bonding samples, and the influence of Pd-layer thickness on the reliability of bonded points before and after a high-temperature storage test was studied. The results show that smaller bonding pressure and ultrasonic power lead to insufficient plastic deformation of the ball-bonded point, which also leads to small contact area with the pad and low bonding strength. Excessive bonding pressure and ultrasonic power will lead to ‘scratch’ on the surface of the pad and large-scale Ag spatter. The wedge-bonded point has a narrowed width when the bonding pressure and ultrasonic power are too small, and the tail edge will be cocked, resulting in false bonding and low strength. When the bonding pressure or ultrasonic power is too large, it will cause stress concentration, and the pad will appear as an ‘internal injury’, which will improve the failure probability; a high-temperature environment can make Cu-Ag intermetallic compounds (IMCs) grow and improve the bonding strength. With the extension of high-temperature storage time, the shear force of Pd100 gradually reaches the peak and then decreases, due to Kirkendall pores caused by excessive growth of IMCs, while the shear force of Pd120 continued to increase due to the slow growth rate of IMCs. In the high-temperature storage test, the thicker the Pd layer of the bonding wire, the higher the bonding strength; in the cold/hot cycle test, the sample with the largest Pd-layer thickness has the lowest failure rate. The thicker the Pd layer, the stronger its ability to resist changes in the external environment, and the higher its stability and reliability. Full article
(This article belongs to the Special Issue MEMS Packaging Technologies and 3D Integration, 3rd Edition)
Show Figures

Figure 1

15 pages, 3746 KiB  
Article
Ni3V2O8 Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance
by Manesh A. Yewale, Pritam J. Morankar, Vineet Kumar, Aviraj M. Teli., Sonali A. Beknalkar, Suprimkumar D. Dhas and Dong-Kil Shin
Micromachines 2024, 15(7), 930; https://doi.org/10.3390/mi15070930 - 20 Jul 2024
Viewed by 908
Abstract
In this work, Ni3V2O8 (NVO) and Ni3V2O8-reduced graphene oxide (NVO-rGO) are synthesized hydrothermally, and their extensive structural, morphological, and electrochemical characterizations follow subsequently. The synthetic materials’ crystalline structure was confirmed by X-ray [...] Read more.
In this work, Ni3V2O8 (NVO) and Ni3V2O8-reduced graphene oxide (NVO-rGO) are synthesized hydrothermally, and their extensive structural, morphological, and electrochemical characterizations follow subsequently. The synthetic materials’ crystalline structure was confirmed by X-ray diffraction (XRD), and its unique marigold-like morphology was observed by field emission scanning electron microscopy (FESEM). The chemical states of the elements were investigated via X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS), Galvanostatic charge–discharge (GCD), and cyclic voltammetry (CV) were used to assess the electrochemical performance. A specific capacitance of 132 F/g, an energy density of 5.04 Wh/kg, and a power density of 187 W/kg were demonstrated by Ni3V2O8-rGO. Key electrochemical characteristics were b = 0.67; a transfer coefficient of 0.52; a standard rate constant of 6.07 × 10−5 cm/S; a diffusion coefficient of 5.27 × 10−8 cm2/S; and a series resistance of 1.65 Ω. By employing Ni3V2O8-rGO and activated carbon, an asymmetric supercapacitor with a specific capacitance of 7.85 F/g, an energy density of 3.52 Wh/kg, and a power density of 225 W/kg was achieved. The series resistance increased from 4.27 Ω to 6.63 Ω during cyclic stability tests, which showed 99% columbic efficiency and 87% energy retention. The potential of Ni3V2O8-rGO as a high-performance electrode material for supercapacitors is highlighted by these findings. Full article
(This article belongs to the Special Issue Electrochemical Supercapacitors for Energy Harvesting and Storage)
Show Figures

Figure 1

21 pages, 19988 KiB  
Article
Study on Electrical and Mechanical Properties of Double-End Supported Elastic Substrate Prepared by Wet Etching Process
by Ding Song and Wenge Wu
Micromachines 2024, 15(7), 929; https://doi.org/10.3390/mi15070929 - 20 Jul 2024
Cited by 1 | Viewed by 678
Abstract
Preparing elastic substrates as a carrier for dual-end supported nickel chromium thin film strain sensors is crucial. Wet etching is a vital microfabrication process widely used in producing microelectronic components for various applications. This article combines lithography and wet etching methods to microprocess [...] Read more.
Preparing elastic substrates as a carrier for dual-end supported nickel chromium thin film strain sensors is crucial. Wet etching is a vital microfabrication process widely used in producing microelectronic components for various applications. This article combines lithography and wet etching methods to microprocess the external dimensions and rectangular grooves of 304 stainless steel substrates. The single-factor variable method was used to explore the influence mechanism of FeCl3, HCl, HNO3, and temperature on the etching rate, etching factor, and etching surface roughness. The optimal etching parameter combination was summarized: an FeCl3 concentration of 350 g/L, HCl concentration of 150 mL/L, HNO3 concentration of 100 mL/L, and temperature of 40 °C. In addition, by comparing the surface morphology, microstructure, and chemical and mechanical properties of a 304 stainless steel substrate before and after etching treatment, it can be seen that the height difference of the substrate surface before and after etching is between 160 μm and −70 μm, which is basically consistent with the initial design of 0.2 mm. The results of an XPS analysis and Raman spectroscopy analysis both indicate that the surface C content increases after etching, and the corrosion resistance of the surface after etching decreases. The nano-hardness after etching increased by 26.4% compared to before, and the ζ value decreased by 7%. The combined XPS and Raman results indicate that the changes in surface mechanical properties of 304 stainless steel substrates after etching are mainly caused by the formation of micro-nanostructures, grain boundary density, and dislocations after wet etching. Compared with the initial rectangular substrate, the strain of the I-shaped substrate after wet etching increased by 3.5–4 times. The results of this study provide the preliminary process parameters for the wet etching of a 304 stainless steel substrate of a strain measuring force sensor and have certain guiding significance for the realization of simple steps and low cost of 304 stainless steel substrate micro-nano-processing. Full article
Show Figures

Figure 1

12 pages, 3759 KiB  
Article
A Saturation Artifacts Inpainting Method Based on Two-Stage GAN for Fluorescence Microscope Images
by Jihong Liu, Fei Gao, Lvheng Zhang and Haixu Yang
Micromachines 2024, 15(7), 928; https://doi.org/10.3390/mi15070928 - 20 Jul 2024
Viewed by 643
Abstract
Fluorescence microscopic images of cells contain a large number of morphological features that are used as an unbiased source of quantitative information about cell status, through which researchers can extract quantitative information about cells and study the biological phenomena of cells through statistical [...] Read more.
Fluorescence microscopic images of cells contain a large number of morphological features that are used as an unbiased source of quantitative information about cell status, through which researchers can extract quantitative information about cells and study the biological phenomena of cells through statistical and analytical analysis. As an important research object of phenotypic analysis, images have a great influence on the research results. Saturation artifacts present in the image result in a loss of grayscale information that does not reveal the true value of fluorescence intensity. From the perspective of data post-processing, we propose a two-stage cell image recovery model based on a generative adversarial network to solve the problem of phenotypic feature loss caused by saturation artifacts. The model is capable of restoring large areas of missing phenotypic features. In the experiment, we adopt the strategy of progressive restoration to improve the robustness of the training effect and add the contextual attention structure to enhance the stability of the restoration effect. We hope to use deep learning methods to mitigate the effects of saturation artifacts to reveal how chemical, genetic, and environmental factors affect cell state, providing an effective tool for studying the field of biological variability and improving image quality in analysis. Full article
Show Figures

Figure 1

17 pages, 23837 KiB  
Article
The Influence of Laser Remelting Parameters on the Surface Quality of Copper
by Hengzheng Li, Yang Chen, Shuai Chen, Yan Liu and Conghu Liu
Micromachines 2024, 15(7), 927; https://doi.org/10.3390/mi15070927 - 20 Jul 2024
Viewed by 495
Abstract
In order to improve the surface quality of copper after laser remelting, this article took laser frequency, pulse width, and energy density as the research objects and used scanning electron microscopy (SEM), a laser confocal three-dimensional measurement instrument, hardness tester, and friction and [...] Read more.
In order to improve the surface quality of copper after laser remelting, this article took laser frequency, pulse width, and energy density as the research objects and used scanning electron microscopy (SEM), a laser confocal three-dimensional measurement instrument, hardness tester, and friction and wear measurement instrument to study the surface morphology, surface roughness, microhardness, and wear resistance of copper, respectively. The results indicate that the frequency, pulse width, and energy density of laser remelting could directly affect the surface quality of the sample, but the influence of frequency and pulse width was more significant. When the laser remelting frequency was 10 Hz, the pulse width was 10 ms, and the energy density was 132.69 J/mm2, the sample exhibited good surface morphology, roughness, and wear resistance. The relevant research in this article can provide a good reference for the laser surface treatment of copper-based materials. Full article
Show Figures

Figure 1

15 pages, 6611 KiB  
Article
An Experimental Study in Laser-Assisted Machining of AerMet100 Steel
by Yu Tang, Yugang Zhao, Shuo Meng, Yusheng Zhang, Qilong Fan, Shimin Yang, Guiguan Zhang and Jianbing Meng
Micromachines 2024, 15(7), 926; https://doi.org/10.3390/mi15070926 - 20 Jul 2024
Viewed by 680
Abstract
To solve the problems of poor surface quality and low tool life in conventional machining (CM) of AerMet100 steel, an experimental study was conducted in laser-assisted machining (LAM) of AerMet100 steel. The effects of laser power, cutting speed, feed rate, and depth of [...] Read more.
To solve the problems of poor surface quality and low tool life in conventional machining (CM) of AerMet100 steel, an experimental study was conducted in laser-assisted machining (LAM) of AerMet100 steel. The effects of laser power, cutting speed, feed rate, and depth of cut on the surface roughness of AerMet100 steel were studied based on a single-factor experiment. The degree of influence of each factor on the surface roughness was evaluated by analyses of variance and range in the orthogonal experiment, and the combination of process parameters for the optimal surface roughness was obtained. The order of influence was as follows: laser power > cutting speed > depth of cut > feed rate; the optimal combination of process parameters was laser power 200 W, cutting speed 56.5 m/min, feed rate 0.018 mm/rev, and depth of cut 0.3 mm. Compared to CM, the surface morphology of the workpiece under the optimization of LAM was relatively smooth and flat, the surface roughness Ra was 0.402 μm, which was reduced by 62.11%, the flank wear was reduced from 208.69 μm to 52.17 μm, there were no tipping or notches, and the tool life was significantly improved. The study shows that the LAM of AerMet100 steel has obvious advantages in improving surface quality and reducing tool wear. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

18 pages, 1623 KiB  
Article
Adaptive Internal Model Backstepping Control for a Class of Second-Order Electromagnetic Micromirror with Output Performance Constraints and Anomaly Control
by Huasen Gan, Yi Qin, Jinfeng Zhang, Cixing Lv, Zhonghua Chen and Yaohua Hu
Micromachines 2024, 15(7), 925; https://doi.org/10.3390/mi15070925 - 19 Jul 2024
Viewed by 498
Abstract
This paper investigates the asymptotic tracking problem for a class of second-order electromagnetic micromirror model with output performance constraints and anomaly control, which is subject to model parameter uncertainties and external disturbances. Specifically, this paper formulates the trajectory tracking control problem of an [...] Read more.
This paper investigates the asymptotic tracking problem for a class of second-order electromagnetic micromirror model with output performance constraints and anomaly control, which is subject to model parameter uncertainties and external disturbances. Specifically, this paper formulates the trajectory tracking control problem of an electromagnetic micromirror as a closed-loop control trajectory tracking problem based on the general solution framework of output regulation. Moreover, the extended internal model is introduced to reformulate the closed-loop control problem into a state stabilization problem of the augmented system. Based on the augmented system, an internal model backstepping controller is proposed by integrating the barrier Lyapunov Functions (BLF) and the Nussbaum gain function with the backstepping structure.This controller not only satisfies the output performance constraints of the micromirror, but also maintains the control performance in anomalous control situations. The final performance simulation demonstrates the efficacy of the proposed controller. Full article
Show Figures

Figure 1

12 pages, 3779 KiB  
Article
A Flexible Temperature Sensor Integrated at Needle Tip for In Situ Acupoint Temperature Monitoring
by Ci Song, Zheng Yu, Weiwen Feng, Ke Sun, Chuanbiao Wen, Shengyan Zhang, Shuguang Yu and Xinxin Li
Micromachines 2024, 15(7), 924; https://doi.org/10.3390/mi15070924 - 19 Jul 2024
Viewed by 2530
Abstract
Temperature can reflect vital activities, and researchers have attempted to guide Chinese medicine diagnosis and treatment by observing acupoint temperature changes. Integrating a temperature sensor at the needle tip enables in situ acupoint temperature measurement. However, the sensor needles for acupoint temperature monitoring [...] Read more.
Temperature can reflect vital activities, and researchers have attempted to guide Chinese medicine diagnosis and treatment by observing acupoint temperature changes. Integrating a temperature sensor at the needle tip enables in situ acupoint temperature measurement. However, the sensor needles for acupoint temperature monitoring designed in previous studies were fabricated by manually soldering thermistor beads and metal wires, making mass production difficult. In this work, using MEMS manufacturing technology, a flexible temperature sensor that can be integrated at the needle tip is proposed and can be mass-produced on silicon wafers. The sensor uses a Pt thermistor as the temperature-sensing element and has a slender flexible structure with dimensions of 125 μm width by 3.2 cm length. As the sensor is inserted into a hollow needle, the Pt thermistor is glued to the needle tip. In the temperature range of 30 °C to 50 °C, the fabricated temperature sensor has a sensitivity of 5.00 Ω∙°C−1, a nonlinearity of ±0.39%FS, and a repeatability error of ±2.62%FS. Additionally, the sensor has been applied to in vivo acupoint temperature monitoring experiments in rats and demonstrated good performance, suggesting its promise for future research on acupoint temperature. Full article
Show Figures

Figure 1

15 pages, 9009 KiB  
Article
Longitudinal Ultrasonic Vibration-Assisted Planing Method for Processing Micro-Pyramid Arrays
by Jiashun Gao, Zhilong Xu, Bicheng Guo, Yu Lei and Guang Yang
Micromachines 2024, 15(7), 923; https://doi.org/10.3390/mi15070923 - 19 Jul 2024
Viewed by 467
Abstract
Micro-pyramid copper molds are critical components in the preparation of high-precision optical elements, such as light-trapping films and reflective films. Their surfaces are composed of micro-pyramid arrays (MPAs). The surface roughness and edge burrs of MPAs seriously affect the optical properties of optical [...] Read more.
Micro-pyramid copper molds are critical components in the preparation of high-precision optical elements, such as light-trapping films and reflective films. Their surfaces are composed of micro-pyramid arrays (MPAs). The surface roughness and edge burrs of MPAs seriously affect the optical properties of optical elements. To reduce the surface roughness, as well as the sizes of the edge burrs, the longitudinal ultrasonic vibration-assisted planing (LUVP) method for processing MPAs was developed during this study. In addition, an experiment was conducted to compare the precision planing and LUVP methods of MPA generation. The results show that the tool nose amplitude of the LUVP experimental platform constructed during this study was 3.3 μm, and that the operating frequency was 19.85 kHz. An MPA processed by LUVP had a smaller surface roughness than that of an MPA produced by precision planing; it also had fewer and smaller edge burrs, and there was slightly less diamond tool wear. The MPA cut using the LUVP method had no corrugation on its surface. This research lays a foundation for developing higher-precision micro-pyramid plastic films. Full article
Show Figures

Figure 1

15 pages, 5710 KiB  
Article
The Stamping Method Utilizing a Double-Trough Die in Microforming to Enhance Formability
by Ming-Hung Hsu, Kuo-Ming Huang, Chuan-Hsaing Chang and Chung-Ping Liu
Micromachines 2024, 15(7), 922; https://doi.org/10.3390/mi15070922 - 18 Jul 2024
Viewed by 456
Abstract
Currently, the field of microgear manufacturing faces various processing challenges, particularly in terms of size reduction; these challenges increase the complexity and costs of manufacturing. In this study, a technique for microgear manufacturing is aimed at reducing subsequent processing steps and enhancing material [...] Read more.
Currently, the field of microgear manufacturing faces various processing challenges, particularly in terms of size reduction; these challenges increase the complexity and costs of manufacturing. In this study, a technique for microgear manufacturing is aimed at reducing subsequent processing steps and enhancing material utilization. This technique involves the use of trough dies with extrusion-cutting processing, which enables workpieces to undergo forming in a negative clearance state, thus reducing subsequent processing time for micro products. We conducted finite element simulations using microgear dies, measuring stress, velocity, and flow during the forming process of four types of dies-flat, internal-trough, external-trough, and double-trough dies. The results indicated that the buffering effect of the troughs reduced the rate of increase in the material’s internal stress. In the cavity, the material experiences a significant increase in hydrostatic pressure, leading to the formation of a “hydrostatic pressure wall”. This pressure barrier imposes substantial constraints on the flow of the material during dynamic processes, making it difficult for the material to move into the remaining areas. This effectively enhances the blockage of material flow, demonstrating the critical role of hydrostatic pressure in controlling material distribution and movement. In addition, combining the characteristics of both into a double-trough die enhances the overall stability of forming velocity, reduces forming load and energy consumption, and maximizes material utilization. Results further revealed that microgears manufactured using double-trough dies exhibited defect-free surfaces, with a dimensional error of less than 5 μm and tolerances ranging from IT5 to IT6. Overall, this study offers new insights into the traditional field of microgear manufacturing, highlighting potential solutions for the challenges encountered in current microstamping processes. Full article
Show Figures

Figure 1

27 pages, 8027 KiB  
Article
On the Design, Fabrication, and Characterization of a Novel Thin-Film Electrode Array for Use in Cochlear Implants
by Gülçin Şefiye Aşkın, Sercan Gökçeli and Bilsay Sümer
Micromachines 2024, 15(7), 921; https://doi.org/10.3390/mi15070921 - 17 Jul 2024
Viewed by 2679
Abstract
Thin-film electrode arrays (TFEAs) have been developed as an alternative to conventional electrode arrays (CEAs) used in cochlear implants. However, TFEAs produced by microfabrication techniques have not yet been used clinically because their structural and mechanical properties are far from those of CEAs. [...] Read more.
Thin-film electrode arrays (TFEAs) have been developed as an alternative to conventional electrode arrays (CEAs) used in cochlear implants. However, TFEAs produced by microfabrication techniques have not yet been used clinically because their structural and mechanical properties are far from those of CEAs. The aim of this study is to design, fabricate, and investigate the mechanical and tribological behavior and evaluate the performance of different TFEA designs. Finite Element Analysis (FEA) is performed to determine the elastic properties of several designs. A custom-build experimental setup is designed to observe the tribological behavior in different speeds and environments where frictional (lateral) and vertical force (normal force) are measured on a flat surface and within artificial cochlea. According to the FEA results, the maximum stiffness of the CEA is 37.93 mN/mm and 0.363 mN/mm and TFEA-4 has a maximum stiffness of 39.08 mN/mm and 0.306 mN/mm in the longitudinal and transverse axes, respectively. It is shown experimentally that adding a dummy wire to the carrier of the EA enhances both its longitudinal and transverse stiffness, thereby postponing the initiation of dynamic sliding due to the elevated buckling limit. It is also revealed that the type of TFEA support structure affects both normal and frictional forces, as well as the coefficient of friction. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

13 pages, 7772 KiB  
Article
Conformal 3D Printing Algorithm for Surfaces and Its In Situ Repair Applications
by Jundong Tang, Yongli Dong, Lixiang Cai, Qian Zhu and Jianping Shi
Micromachines 2024, 15(7), 920; https://doi.org/10.3390/mi15070920 - 17 Jul 2024
Cited by 1 | Viewed by 609
Abstract
Conformal 3D printing can construct specific three-dimensional structures on the free-form surfaces of target objects, achieving in situ additive manufacturing and repair, making it one of the cutting-edge technologies in the current field of 3D printing. To further improve the repair efficacy in [...] Read more.
Conformal 3D printing can construct specific three-dimensional structures on the free-form surfaces of target objects, achieving in situ additive manufacturing and repair, making it one of the cutting-edge technologies in the current field of 3D printing. To further improve the repair efficacy in tissue engineering, this study proposes a conformal path planning algorithm for in situ printing in specific areas of the target object. By designing the conformal 3D printing algorithm and utilizing vector projection and other methods, coordinate transformation of the printing trajectory was achieved. The algorithm was validated, showing good adherence of the printing material to the target surface. In situ repair experiments were also conducted on human hands and pig tibia defect models, verifying the feasibility of this method and laying a foundation for further research in personalized medicine and tissue repair. Full article
(This article belongs to the Special Issue Advances in 3D Printing for Biomedical Applications)
Show Figures

Figure 1

15 pages, 2770 KiB  
Article
Prediction of Geometric Characteristics of Laser Cladding Layer Based on Least Squares Support Vector Regression and Crested Porcupine Optimization
by Xiangpan Li, Junfei Xu, Junhua Wang, Yan Lu, Jianhai Han, Bingjing Guo and Tancheng Xie
Micromachines 2024, 15(7), 919; https://doi.org/10.3390/mi15070919 - 16 Jul 2024
Viewed by 593
Abstract
The morphology size of laser cladding is a crucial parameter that significantly impacts the quality and performance of the cladding layer. This study proposes a predictive model for the cladding morphology size based on the Least Squares Support Vector Regression (LSSVR) and the [...] Read more.
The morphology size of laser cladding is a crucial parameter that significantly impacts the quality and performance of the cladding layer. This study proposes a predictive model for the cladding morphology size based on the Least Squares Support Vector Regression (LSSVR) and the Crowned Porcupine Optimization (CPO) algorithm. Specifically, the proposed model takes three key parameters as inputs: laser power, scanning speed, and powder feeding rate, with the width and height of the cladding layer as outputs. To further enhance the predictive accuracy of the LSSVR model, a CPO-based optimization strategy is applied to adjust the penalty factor and kernel parameters. Consequently, the CPO-LSSVR model is established and evaluated against the LSSVR model and the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP) model in terms of relative error metrics. The experimental results demonstrate that the CPO-LSSVR model can achieve a significantly improved relative error of no more than 2.5%, indicating a substantial enhancement in predictive accuracy compared to other methods and showcasing its superior predictive performance. The high accuracy of the CPO-LSSVR model can effectively guide the selection of laser cladding process parameters and thereby enhance the quality and efficiency of the cladding process. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing)
Show Figures

Figure 1

18 pages, 5076 KiB  
Article
Gesture-Controlled Robotic Arm for Agricultural Harvesting Using a Data Glove with Bending Sensor and OptiTrack Systems
by Zeping Yu, Chenghong Lu, Yunhao Zhang and Lei Jing
Micromachines 2024, 15(7), 918; https://doi.org/10.3390/mi15070918 - 16 Jul 2024
Cited by 1 | Viewed by 661
Abstract
This paper presents a gesture-controlled robotic arm system designed for agricultural harvesting, utilizing a data glove equipped with bending sensors and OptiTrack systems. The system aims to address the challenges of labor-intensive fruit harvesting by providing a user-friendly and efficient solution. The data [...] Read more.
This paper presents a gesture-controlled robotic arm system designed for agricultural harvesting, utilizing a data glove equipped with bending sensors and OptiTrack systems. The system aims to address the challenges of labor-intensive fruit harvesting by providing a user-friendly and efficient solution. The data glove captures hand gestures and movements using bending sensors and reflective markers, while the OptiTrack system ensures high-precision spatial tracking. Machine learning algorithms, specifically a CNN+BiLSTM model, are employed to accurately recognize hand gestures and control the robotic arm. Experimental results demonstrate the system’s high precision in replicating hand movements, with a Euclidean Distance of 0.0131 m and a Root Mean Square Error (RMSE) of 0.0095 m, in addition to robust gesture recognition accuracy, with an overall accuracy of 96.43%. This hybrid approach combines the adaptability and speed of semi-automated systems with the precision and usability of fully automated systems, offering a promising solution for sustainable and labor-efficient agricultural practices. Full article
Show Figures

Figure 1

15 pages, 1675 KiB  
Article
Derivation of Equivalent Material Coefficients of 2-2 Piezoelectric Single Crystal Composite
by Minseop Sim, Yub Je, Yohan Cho, Hee-Seon Seo and Moo-Joon Kim
Micromachines 2024, 15(7), 917; https://doi.org/10.3390/mi15070917 - 16 Jul 2024
Viewed by 525
Abstract
Piezoelectric composites, which consist of piezoelectric materials and polymers, are widely employed in various applications such as underwater sonar transducers and medical diagnostic ultrasonic transducers. Acoustic transducers based on piezoelectric composites can have high sensitivity with broad bandwidth. In recent studies, it is [...] Read more.
Piezoelectric composites, which consist of piezoelectric materials and polymers, are widely employed in various applications such as underwater sonar transducers and medical diagnostic ultrasonic transducers. Acoustic transducers based on piezoelectric composites can have high sensitivity with broad bandwidth. In recent studies, it is demonstrated that 2-2 composites based on single crystals provide further increased sensitivity and wide bandwidth. In order to utilize a 2-2 composite in acoustic sensors, it is required to demonstrate the full material coefficients of the 2-2 composite. In this study, we investigated an analytic solution for determining equivalent material coefficients of a 2-2 composite. Impedance spectrums of the single-phase resonators with equivalent material coefficients and 2-2 composite resonators were compared by the finite element method in order to verify the analytic solutions. Furthermore, the equivalent material coefficients derived from the analytic solution were also verified by comparing the measured and the simulated impedance spectrums. The difference in resonance and anti-resonance frequencies between the measured and simulated impedance spectrums was around 0.5% and 1.2%. By utilizing the analytic solutions in this study, it is possible to accurately derive full equivalent material coefficients of a 2-2 composite, which are essential for the development of acoustic sensors. Full article
(This article belongs to the Special Issue Piezoelectric Materials, Devices and Systems)
Show Figures

Figure 1

8 pages, 4241 KiB  
Article
Design of X-Band Circulator and Isolator for High-Peak-Power Applications
by Tao Tang, Xiexun Zhang, Maged A. Aldhaeebi and Thamer S. Almoneef
Micromachines 2024, 15(7), 916; https://doi.org/10.3390/mi15070916 - 16 Jul 2024
Viewed by 643
Abstract
This paper presents a design of a X-band circulator–isolator for handling high-peak-power applications. The device consists of two cascade-connected ferrite circulators, with one dedicated to transmission and the other to small-signal reception coupled with high-power signal isolation. To improve the power capacity, a [...] Read more.
This paper presents a design of a X-band circulator–isolator for handling high-peak-power applications. The device consists of two cascade-connected ferrite circulators, with one dedicated to transmission and the other to small-signal reception coupled with high-power signal isolation. To improve the power capacity, a layer of poly-tetra fluoroethylene (PTFE) film is placed above and below the circulator’s and the isolator’s center conductors. Measurement results show that the device is capable of withstanding a peak power of 7000 W, with an insertion loss of <0.3 dB at the transmitting port. Similarly, it sustains a peak power of 6000 W with an insertion loss of <0.5 dB at the reception port. Moreover, the proposed design achieved isolation between the transmitting and receiving ends of >20 dB with a VSWR < 1.2 at each port. Thermal analysis shows that the maximum relative ambient temperature rise is 15.11  C. These findings show that the proposed device achieves low-loss transmission of high-peak-power signals in the transmit channel and reverse isolation of high-peak-power signals in the receive channel. Full article
Show Figures

Figure 1

18 pages, 36956 KiB  
Article
Multi-Step Two-Dimensional Ultrasonic-Assisted Grinding of Silicon Carbide: An Experimental Study on Surface Topography and Roughness
by Hongbo Li, Tao Chen, Wenbo Bie, Fan Chen, Yuhao Suo and Zhenyan Duan
Micromachines 2024, 15(7), 915; https://doi.org/10.3390/mi15070915 - 15 Jul 2024
Viewed by 517
Abstract
Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of [...] Read more.
Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of silicon carbide are conducted to investigate the effects of machining parameters on surface quality. The experimental results demonstrate that the tool amplitude and the workpiece amplitude have similar effects on surface roughness. In the rough grinding stage, the surface roughness decreases continuously with increasing ultrasonic amplitudes and the material is mainly removed by brittle fracture with different surface defects. Under semi-finishing and finishing grinding steps, the surface roughness first declines and then increases as the tool amplitude or workpiece amplitude grows from 0 μm to 8 μm and the inflection point appears around 4 μm. The surface damage contains small-sized pits with band-like distribution and localized grooves. Furthermore, the influences of cutting parameters on surface quality are similar to those in conventional grinding. Discussions of the underlying mechanisms for the experimental phenomena are also provided based on kinematic analysis. The conclusions gained in this study can provide references for the optimization of machining parameters in 2D-UAG of hard and brittle materials. Full article
Show Figures

Figure 1

15 pages, 6691 KiB  
Article
Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam
by Shuyang Ran, Kefan Wen, Lingbo Xie, Xingyu Zhou, Ye Tian, Shuo Qiao, Feng Shi and Xing Peng
Micromachines 2024, 15(7), 914; https://doi.org/10.3390/mi15070914 - 15 Jul 2024
Viewed by 671
Abstract
The high-efficiency preparation of large-area microstructures of optical materials and precision graphic etching technology is one of the most important application directions in the atomic and near-atomic-scale manufacturing industry. Traditional focused ion beam (FIB) and reactive ion etching (RIE) methods have limitations in [...] Read more.
The high-efficiency preparation of large-area microstructures of optical materials and precision graphic etching technology is one of the most important application directions in the atomic and near-atomic-scale manufacturing industry. Traditional focused ion beam (FIB) and reactive ion etching (RIE) methods have limitations in precision and efficiency, hindering their application in automated mass production. The pulsed ion beam (PIB) method addresses these issues by enhancing ion beam deflection to achieve high-resolution material removal on a macro scale, which can reach the equivalent removal resolution of 6.4 × 10−4 nm. Experiments were conducted on a quartz sample (10 × 10 × 1 mm) with a specific pattern mask using the custom PIB processing device. The surface morphology, etching depth, and roughness were measured post-process. The results demonstrated that precise control over cumulative sputtering time yielded well-defined patterns with expected average etching depths and surface roughness. This confirms the PIB technique’s potential for precise atomic depth image transfer and its suitability for industrial automation, offering a significant advancement in microfabrication technology. Full article
(This article belongs to the Special Issue Precision Optical Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 8399 KiB  
Article
A Low Mismatch Current Charge Pump Applied to Phase-Locked Loops
by Min Guo, Lixin Wang, Shixin Wang, Jiacheng Lu and Mengyao Cui
Micromachines 2024, 15(7), 913; https://doi.org/10.3390/mi15070913 - 14 Jul 2024
Viewed by 717
Abstract
This paper presents a charge pump circuit with a wide output range and low current mismatch applied to phase-locked loops. In this designed structure, T-shaped analog switches are adopted to suppress the non-ideal effects of clock feedthrough, switching time mismatch, and charge injection. [...] Read more.
This paper presents a charge pump circuit with a wide output range and low current mismatch applied to phase-locked loops. In this designed structure, T-shaped analog switches are adopted to suppress the non-ideal effects of clock feedthrough, switching time mismatch, and charge injection. A source follower and current splitting circuits are proposed to improve the matching accuracy of the charging and discharging currents and reduce the current mismatch rate. A rail-to-rail high-gain amplifier with a negative feedback connection is introduced to suppress the charge-sharing effect of the charge pump. A cascode current mirror with a high output impedance is used to provide the charge and discharge currents for the charge pump, which not only improves the current accuracy of the charge pump but also increases the output voltage range. The proposed charge pump is designed and simulated based on a 65 nm CMOS process. The results show that when the power supply voltage is 1.2 V, the output current of the charge pump is 100 μA, the output voltage is in the range of 0.2~1 V, and the maximum current mismatch rate and current variation rate are only 0.21% and 1.4%, respectively. Full article
Show Figures

Figure 1

4 pages, 180 KiB  
Editorial
Editorial for the Special Issue on Soft Actuators: Design, Fabrication and Applications
by Chongjing Cao, Bo Li and Xing Gao
Micromachines 2024, 15(7), 912; https://doi.org/10.3390/mi15070912 - 14 Jul 2024
Viewed by 666
Abstract
The topic of soft robotics combines robotics, biology, and material sciences to develop the next generation of robots that are better suited to complex uncertain natural environments and human-centered operations with strict safety requirements [...] Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications)
9 pages, 623 KiB  
Article
Suppressing Thermal Noise to Sub-Millikelvin Level in a Single-Spin Quantum System Using Realtime Frequency Tracking
by Zhiyi Hu, Jingyan He, Runchuan Ye, Xue Lin, Feifei Zhou and Nanyang Xu
Micromachines 2024, 15(7), 911; https://doi.org/10.3390/mi15070911 - 13 Jul 2024
Viewed by 828
Abstract
A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin [...] Read more.
A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains. Full article
(This article belongs to the Special Issue Emerging Quantum Optical Devices and Their Applications)
Show Figures

Figure 1

11 pages, 3456 KiB  
Article
Experimental Research on the Supply of Working Fluid for Fixed Diamond Wire Slicing Based on Ultrasonic Capillary Effect
by Junying Zhao, Luqi Shen, Chunwei Zhang and Yanqing Wang
Micromachines 2024, 15(7), 910; https://doi.org/10.3390/mi15070910 - 13 Jul 2024
Viewed by 713
Abstract
Thin wafers and thin wires are beneficial to the photovoltaic industry for reducing costs, increasing efficiency, and reducing the cost of electricity generation. It is a development trend in solar silicon wafer cutting. Thin wire cutting reduces the kerf between silicon wafers to [...] Read more.
Thin wafers and thin wires are beneficial to the photovoltaic industry for reducing costs, increasing efficiency, and reducing the cost of electricity generation. It is a development trend in solar silicon wafer cutting. Thin wire cutting reduces the kerf between silicon wafers to less than 50 μm. Therefore, it is extremely difficult to supply cutting fluid to the cutting area. And this affects cutting performance. This paper proposes the use of the capillary effect produced by ultrasonic waves in fixed diamond wire slicing to improve the cutting fluid supply and reduce wafer adsorption. To explore the rules of ultrasonic capillary action between two plates and guide the industrial applications, the effects of the distance between parallel plates, the distance from the bottom of the parallel plates to the ultrasonic radiation surface, the non-parallelism between the plates, the temperature of the working fluid, the ultrasonic action time, and the type of working fluid on the liquid level rise height were studied. The conclusions can be used to guide the improvement of the supply of working fluid in fixed diamond wire slicing. Full article
Show Figures

Figure 1

10 pages, 6156 KiB  
Article
Accurate Detection and Analysis of Pore Defects in Laser Powder Bed Fusion WE43 Magnesium Alloys
by Zhengxing Men, Liang Wang, Xi Gao, Wen Chen, Chen Ji, Ziche Li and Kun Li
Micromachines 2024, 15(7), 909; https://doi.org/10.3390/mi15070909 - 12 Jul 2024
Viewed by 626
Abstract
To explore the size, morphology, and distribution patterns of internal pore defects in WE43 magnesium alloy formed by laser powder bed fusion (LPBF), as well as their impact on its mechanical properties, computer tomography (CT), metallographic microscopy, and scanning electron microscopy were used [...] Read more.
To explore the size, morphology, and distribution patterns of internal pore defects in WE43 magnesium alloy formed by laser powder bed fusion (LPBF), as well as their impact on its mechanical properties, computer tomography (CT), metallographic microscopy, and scanning electron microscopy were used to observe the material’s microstructure and the morphology of tensile test fractures. The study revealed that a large number of randomly distributed non-circular pore defects exist internally in the LPBF-formed WE43 magnesium alloy, with a defect volume fraction of 0.16%. Approximately 80% of the defects had equivalent diameters concentrated in the range of 10∼40 μm, and 56.2% of the defects had sphericity values between 0.65∼0.7 μm, with the maximum defect equivalent diameter being 122 μm. There were a few spherical pores around 20 μm in diameter in the specimens, and unfused powder particles were found in pore defects near the edges of the parts. Under the test conditions, the fusion pool structure of LPBF-formed WE43 magnesium alloy resembled a semi-elliptical shape with a height of around 66 μm, capable of fusion three layers of powder material in a single pass. Columnar grains formed at the edge of individual fusion pools, while the central area exhibited equiaxed grains. The “scale-like pattern” formed by overlapping fusion pool structures resulted in the microstructure of LPBF-formed WE43 magnesium alloy mainly consisting of fine equiaxed grains with a size of 2.5 μm and columnar grains distributed in a band-like manner. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing)
Show Figures

Figure 1

14 pages, 6061 KiB  
Article
Upscaled Production of Satellite-Free Droplets: Step Emulsification with Deterministic Lateral Displacement
by Guangchong Ji, Shuzo Masui, Yusuke Kanno and Takasi Nisisako
Micromachines 2024, 15(7), 908; https://doi.org/10.3390/mi15070908 - 12 Jul 2024
Viewed by 652
Abstract
Step emulsification is a key technique for achieving scalable production of monodisperse emulsion droplets owing to its resilience to flow fluctuations. However, the persistent issue of satellite droplets, an inherent byproduct of main droplets, poses challenges for achieving truly uniform product sizes. In [...] Read more.
Step emulsification is a key technique for achieving scalable production of monodisperse emulsion droplets owing to its resilience to flow fluctuations. However, the persistent issue of satellite droplets, an inherent byproduct of main droplets, poses challenges for achieving truly uniform product sizes. In a previous study, we introduced a module with step-emulsifier nozzles upstream and deterministic lateral displacement (DLD) micropillar arrays downstream to generate satellite-free droplets at a low throughput. In this study, we demonstrate an upscaled parallelized setup with ten modules that were designed to produce satellite-free droplets. Each module integrated 100 step-emulsification nozzles in the upstream region with DLD micropillar arrays downstream. We conducted 3D flow simulations to ensure homogeneous distribution of the input fluids. Uniformly supplying an aqueous polyvinyl alcohol solution and an acrylate monomer as continuous and dispersed phases into the ten modules, the nozzles in each module exhibited a production rate of 539.5 ± 28.6 drop/s (n = 10). We successfully isolated the main droplets with a mean diameter of 66 μm and a coefficient of variation of 3.1% from satellite droplets with a mean diameter of 3 μm. The total throughput was 3.0 mL/h. The high yield and contamination-free features of our approach are promising for diverse industrial applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 4035 KiB  
Article
Minimization of Parasitic Capacitance between Skin and Ag/AgCl Dry Electrodes
by Sungcheol Hong and Gerard Coté
Micromachines 2024, 15(7), 907; https://doi.org/10.3390/mi15070907 - 12 Jul 2024
Viewed by 618
Abstract
Conventional dry electrodes often yield unstable results due to the presence of parasitic capacitance between the flat electrode surface and the non-uniform skin interface. To address this issue, a gel is typically placed between the electrodes to minimize parasitic capacitance. However, this approach [...] Read more.
Conventional dry electrodes often yield unstable results due to the presence of parasitic capacitance between the flat electrode surface and the non-uniform skin interface. To address this issue, a gel is typically placed between the electrodes to minimize parasitic capacitance. However, this approach has the drawbacks of being unsuitable for repeated use, limited lifetime due to gel evaporation, and the possibility of developing skin irritation. This is particularly problematic in underserved areas since, due to the cost of disposable wet electrodes, they often sterilize and reuse dry electrodes. In this study, we propose a method to neutralize the effects of parasitic capacitance by attaching high-value capacitors to the electrodes in parallel, specifically when applied to pulse wave monitoring through bioimpedance. Skin capacitance can also be mitigated due to the serial connection, enabling stable reception of arterial pulse signals through bioimpedance circuits. A high-frequency structure simulator (HFSS) was first used to simulate the capacitance when injection currents flow into the arteries through the bioimpedance circuits. We also used the simulation to investigate the effects of add-on capacitors. Lastly, we conducted preliminary comparative analyses between wet electrodes and dry electrodes in vivo with added capacitance values ranging from 100 pF to 1 μF, altering capacitance magnitudes by factors of 100. As a result, we obtained a signal-to-noise ratio (SNR) that was 8.2 dB higher than that of dry electrodes. Performance was also shown to be comparable to wet electrodes, with a reduction of only 0.4 dB using 1 μF. The comparative results demonstrate that the addition of capacitors to the electrodes has the potential to allow for performance similar to that of wet electrodes for bioimpedance pulse rate monitoring and could potentially be used for other applications of dry electrodes. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

13 pages, 3098 KiB  
Article
Dynamics of a 3D Piezo-Magneto-Elastic Energy Harvester with Axisymmetric Multi-Stability
by Grzegorz Litak, Mariusz Klimek, Abhijeet M. Giri and Piotr Wolszczak
Micromachines 2024, 15(7), 906; https://doi.org/10.3390/mi15070906 - 12 Jul 2024
Viewed by 531
Abstract
In this investigation, a three-dimensional (3D) axisymmetric potential well-based nonlinear piezoelectric energy harvester is proposed to increase the broadband frequency response under low-strength planar external excitation. Here, a two-dimensional (2D) planar bi-stable Duffing potential is generalized into three dimensions by utilizing axial symmetry. [...] Read more.
In this investigation, a three-dimensional (3D) axisymmetric potential well-based nonlinear piezoelectric energy harvester is proposed to increase the broadband frequency response under low-strength planar external excitation. Here, a two-dimensional (2D) planar bi-stable Duffing potential is generalized into three dimensions by utilizing axial symmetry. The resulting axisymmetric potential well has infinitely many stable equilibria and one unstable equilibria at the highest point of the potential barrier for this cantilevered oscillator. Dynamics of such a 3D piezoelectric harvester with axisymmetric multi-stability are studied under planar circular excitation motion. Bifurcations of average power harvested from the two pairs of piezoelectric patches are presented against the frequency variation. The results show the presence of several branches of large-amplitude cross-well type period-1 and subharmonic solutions. Subharmonics involved in such responses are verified from the Fourier spectra of the solutions. The identified subharmonic solutions perform interesting patterns of curvilinear oscillations, which do not cross the potential barrier through its highest point. These solutions can completely or partially avoid the climbing of the potential barrier, thereby requiring low input excitation energy for barrier crossing. The influence of excitation amplitude on the bifurcations of normalized power is also investigated. Through multiple solution branches of subharmonic solutions, producing comparable power to the period-1 branch, broadband frequency response characteristics of such a 3D axisymmetically multi-stable harvester are highlighted. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

13 pages, 18194 KiB  
Article
An Alternative Micro-Milling Fabrication Process for Rapid and Low-Cost Microfluidics
by Martin Christopher Allen, Simon Lookmire and Ebubekir Avci
Micromachines 2024, 15(7), 905; https://doi.org/10.3390/mi15070905 - 11 Jul 2024
Viewed by 788
Abstract
Microfluidics is an important technology for the biomedical industry and is often utilised in our daily lives. Recent advances in micro-milling technology have allowed for rapid fabrication of smaller and more complex structures, at lower costs, making it a viable alternative to other [...] Read more.
Microfluidics is an important technology for the biomedical industry and is often utilised in our daily lives. Recent advances in micro-milling technology have allowed for rapid fabrication of smaller and more complex structures, at lower costs, making it a viable alternative to other fabrication methods. The microfluidic chip fabrication developed in this research is a step-by-step process with a self-contained wet milling chamber. Additionally, ethanol solvent bonding is used to allow microfluidic chips to be fully fabricated within approximately an hour. The effect of using this process is tested with quantitative contact profileometery data to determine the expected surface roughness in the microchannels. The effect of surface roughness on the controllability of microparticles is tested in functional microfluidic chips using image processing to calculate particle velocity. This process can produce high-quality channels when compared with similar studies in the literature and surface roughness affects the control of microparticles. Lastly, we discuss how the outcomes of this research can produce rapid and higher-quality microfluidic devices, leading to improvement in the research and development process within the fields of science that utilise microfluidic technology. Such as medicine, biology, chemistry, ecology, and aerospace. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop