Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems
Abstract
:1. Introduction
2. Noble Metal Nanoparticle Synthesis
2.1. Chemical Methods
Type of Metal | Precursor | Reductant | Conditions | Shape [40] | Size, nm | Ref. |
---|---|---|---|---|---|---|
Ag | AgNO3 | sodium borohydride | pH: 2–10; solvent: water | non-uniform | 8.25 | [41] |
solvent: water | nanoprisms | 3.8 | [42] | |||
ethylene glycol | solvent: ethylene glycol; 148 °C | truncated cube/ tetrahedron | 60–80 | [43] | ||
oleic acid | solvent: 1-octanol; 180 °C | non-uniform | 2–22 | [44] | ||
dihydrated trisodium citrate | solvent: water; 60 °C | quasi-spherical | 20–50 | [45] | ||
Daucus Carota (carrot extracts served as reducing and closing agents) | pH: 5.5–8; solvent: water; 24 °C | triangular, cubic, polygons or rods | 10–35 | [46] | ||
Fungus Aspergillus niger (after growing the fungus in nutrient medium (potato dextrose broth), the biomass was filtered. The filtrate contains extracellular bioactive compounds that act as reducing and stabilizing agents) | solvent: water; 25 °C | spherical | 1–20 | [47] | ||
carboxymethylated chitosan (CMCTS) | pH: 0.7, 2.2, 9.6, 12.4; solvent: water | - | 2–10 | [48] | ||
hydrazine hydrate, ascorbic acid | solvent: formaline; 22–25 °C | spherical | 20< | [49] | ||
UV irradiation | solvent: water; 25 °C | cubes, rods and spheres | 11.7- 77.8 | [50] | ||
sodium borohydride, ascorbic acid and sodium citrate | solvent: water; 5, 20, 30, 40, 50, 85 °C | non-uniform | 8< | [51] | ||
extract from the fruits of Santalum album (crushed fruits were mixed with ethanol, exposed to microwave irradiation, then combined with an aqueous AgNO3) | solvent: water; 25 °C | - | 24–40 | [52] | ||
ethylene glycol monoalkyl ether | solvent: ethylene glycol monoalkyl ether; 120 °C | prisms, plates | 45–129 | [53] | ||
ethylene glycol | poly(vinylpyrrolidone); 70–90 °C | nearly spherical | 97–113 | [54] | ||
Bacillus Strain CS 11 (bacterial strain (CS 11), obtained from soil polluted with heavy metals, was identified as a strain of Bacillus sp. The bacterial strain was treated with 1 mM AgNO3, resulting in the formation of AgNPs) | 0.8% NaCl; 25 °C | spherical | 42–94 | [55] | ||
leaf extracts from Eucalyptus macrocarpa (the cleaned leaves were cut into small strips and immersed in 100 mL of water; the mixture was homogenized. The solution was filtered to obtain a clear leaf extract) | solvent: water; 24 °C | cubic | 10–50 | [56] | ||
Lactobacillus strains (growing in MRS medium, cells were collected by centrifugation. Isolation of capsular exopolysaccharides by treatment of bacterial cells with phenol, precipitation with ethanol and dialysis. Acted as reducing agents) | solvent: water; 37 °C | spherical | 10–40 | [57] | ||
bacteria Shewaneila oneidensis MR-1 (the bacterium was grown on Luria–Bertani agar at 30 °C. Single colony was inoculated for 24 h with shaking. Bacteria were collected by centrifugation and washed with distilled water and 3–5 g of wet biomass was incubated in 1 mM AgNO3 solution) | bacterial biomass; 30 °C | spherical | 4–11 | [58] | ||
N,N-dimethylformamide | solvent: N,N-dimethylformamide; 156 °C | nanoprisms | 30–200 | [59] | ||
Silver rods 2 mm | electrical arc discharge | solvent: water | spheres, triangles and polygons | 10–120 | [60] | |
Au | HAuCl4 | sodium citrate | pH: 2.45; solvent: water; | shell | 1.8, 15, | [61] |
pH: 7; solvent: water; 25 °C | spherical | 18.8, 28.2 | [62] | |||
sodium borohydride | solvent: methanol; 25 °C | spherical | 1.3 | [63] | ||
black phosphorus | solvent: water; 25 °C | spherical | 28 | [64] | ||
glutathione/cysteamine | pH: 4.8–8; solvent: water; 37 °C | - | 2.7, 3.1 | [65] | ||
tannic acid/citrate mixtures | pH: 8; K2CO3 | quasi-spherical | 3.5–10 | [66] | ||
ascorbic acid | solvent: water; 25 °C | spherical, star shape | about 20 | [67] | ||
tetrakis (hydroxymethyl) phosphonium chloride/citrate mixtures | solvent: water; 25 °C | nanoshell | 1–20 | [68] | ||
AuCl3 | trisodium citrate dihydrate | pH: 3, 4, 5, 7; solvent: water; 25 °C | non-uniform | 11.7 | [69] | |
Au(I) Thiolate Precursor | sodium borohydride | pH: 5.5–8; solvent: water; 25 °C | core−shell | 2–6 | [70] | |
H3AuCl4O | CTAB/ DPPC liposomes | pH: 4–11, 13; solvent: water | nanowire | 50–70, 25 | [65] | |
Pd | PdCl2 | hydrochloric acid | pH: 4, 6, 9, 11; solvent: water; 25–85 °C. | non-uniform | 3.14 | [71] |
guar gum (1 g of guar gum powder was dissolved in 50 mL of ethanol (EtOH) at room temperature, then 10 mg of PdCl2 was added) | solvent: ethanol; T: 25 °C | cubic | 70–80 | [72] | ||
perchloric acid | perchloric acid | rods | 100 | [73] | ||
anodization | CuCl2 · 2H2O, 0.1 M HCl | spring | 60, 70, 250 | [74] | ||
root extract of Salvadora persica L. (Miswak) (fresh roots were cut into small pieces and soaked in deionized water, boiled for 4 h and filtered, and the extract dried under vacuum. Reduced with PdCl2 at 90 °C) | solvent: water; 90 °C. | spherical | 2.2–15 | [75] | ||
Pd(NH3)4Cl2 | anodization | pH: 8.5; Na2EDTA; T: 25 °C. | wire | 80 | [76] | |
Na2PdCl4 | ethylene glycol | solvent: ethylene glycol; 85 °C. | triangular plates | 28 | [77] | |
solvent: ethylene glycol; 160 °C. | spherical | 6, 24.38 | [78] | |||
l-ascorbic acid, citric acid | solvent: water; 100 °C. | truncated octahedral | 9.1 | [40] | ||
formic acid | solvent: water; 60 °C | cubic | 14–37 | [79] | ||
Pt | H2PtCl6 | sodium borohydride | pH: −1–15; solvent: ethanol; 90 °C | spherical | 1.76–3.26 | [80] |
polyethylenimine | pH: 1–12; solvent: water; 60 °C | 10 | [81] | |||
Ajwa and Barni date extracts (extracts were prepared by heating them in the dark at 100 °C, filtered and mixed with a solution of H2PtCl6) | pH: 1.5–8.5; solvent: water; 90 °C | 2.3–13.8 | [82] | |||
roots of Ononidis radix (extract was prepared by adding 3 g of O. radix powder to 100 mL of distilled water, boiled and stirred for 1 h at T = 85 °C) | solvent: water; 85 °C | spherical and hexagonal | 4 | [83] | ||
leaves of Doipyros Kaki (leaves were collected, washed thoroughly, dried for two days at room temperature and finely cut. Then, 5 g of these dried leaves was boiled in 100 mL in distilled water for 5 min and the solution was decanted and stored at 4 °C) | solvent: water; 25–90 °C | spheres and plates | 2–12 | [84] | ||
tea polyphenol | solvent: tea polyphenol; 25 °C | flower | 30–60 | [85] | ||
K2PtCl4 | formic acid | solvent: water | dendrites | 20–50 | [86] | |
sodium borohydride | solvent: water; 50 °C | cubic | 11.55 | [87] | ||
ascorbic acid | solvent: ethylene glycol; 50 °C | spherical | 1.5–4.5 | [88] | ||
PtCl4 | sodium borohydride | solvent: ethanol; 25 °C | spherical | 2.2–3.3 | [89] |
2.2. Physical Methods
2.3. Mechanism of Nanoparticle Formation
2.3.1. Watzky–Finke Model
2.3.2. Kinetics of Reduction, Nucleation and Growth—Why Are They Important?
3. Microreactors—Present State-of-the-Art Technology
3.1. Fabrication of the Microreactor
3.2. Microreactor vs. Batch Reactor
3.3. Types of Microreactors
3.3.1. Continuous Flow Microreactors
3.3.2. Segmented Flow Microreactors
4. Noble Metal Nanoparticle Synthesis in the Microreactor Systems
4.1. Control of Nanoparticle Morphology
4.2. Control of Nanomaterial Composition
4.2.1. Nanoshell (Core–Shell) Particle Production
4.2.2. Bimetallic Particle Production
4.3. Catalyst Production
4.4. Synthesis under Special Conditions
4.5. Challenges of Noble Metal Nanoparticle Synthesis in Microreactor Systems
5. Future Research Perspectives
- The present state of the art indicates that the synthesis of nanoparticles is completed using a limited number of reducing agents, namely sodium borohydride, ascorbic acid, sodium citrate and glucose. Thus, the application of other reductants including bio-agents can be considered. Since the application of organic compounds may lead to the appearance of toxic substances, the use of microreactors (which are closed systems) may give better control over produced intermediates.
- Mostly, water-based solutions have been used so far in the experiments. The organic phase appears only as a surrounding medium for water-based droplet formation. Consequently, one may use the agents (metal precursor and a reductant) in the organic solvent. Possible limitations consist of channel blocking, but gains resulting from better mixing properties of molecules dissolved in such a solvent should prevail.
- The design of microreactors may progress by using new materials and more complicated architecture. Since the most common obstacles in their application are wall reaction and clogging, the creation of channel composite surfaces may be one possibility to avoid them. Another one can be inspired by nature, which may tell us how to transport the fluids upwards without obstacles. Moreover, the introduction of a gas (as is conducted in the case of bubble synthesis or segmented flow) may be a good solution for the application in multiphase systems.Also, attention should be turned to the analysis of the following:
- The influence of back pressure, which allows high temperatures to be reached, preventing the boiling of water-based solutions. Temperature control over a wide range of results for better control of product morphology.
- The introduction of multiphase systems (avoiding clogging) by introducing a gas. It gives an opportunity for nanoparticle synthesis in different environments. Solubility of different gases in the liquid medium may influence the mechanism and the rate of the reaction.
- The functionalization of the nanoparticles can be assured by the modularity of a microreactor. The sequence of Y-type junctions will facilitate the control over subsequent stages of the reaction leading to the final product.
- Investigations carried out with microreactor systems should be accompanied by kinetic studies. The rate of reactions (rate constants, activation energy) must be determined as an indispensable component of the reactor’s design.
- A description of the process of nanoparticle formation requires a reliable model. However, such a model is still based more on authors’ imagination than on experimental information. New experimental tools are needed to provide better insights into the stages of the reaction proceeding from the appearance of the metal atom, through cluster growth, and finally to the formed particle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, R.; Higaki, T. Open questions on the transition between nanoscale and bulk properties of metals. Commun. Chem. 2021, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, Y.; Gao, Z.; Rohbeck, N.; Xiao, P. A study of reaction between palladium, palladium silver alloy and silicon carbide ceramics at high temperature. J. Eur. Ceram. Soc. 2023, 43, 3077–3089. [Google Scholar] [CrossRef]
- Asoro, M.; Damiano, J.; Ferreira, P.J. Size Effects on the Melting Temperature of Silver Nanoparticles: In-Situ TEM Observations. Microsc. Microanal. 2009, 15, 706–707. [Google Scholar] [CrossRef]
- Hormozi-Nezhad, M.R.; Jalali-Heravi, M.; Robatjazi, H.; Ebrahimi-Najafabadi, H. Controlling aspect ratio of colloidal silver nanorods using response surface methodology. Colloids Surf. A Physicochem. Eng. Asp. 2012, 393, 46–52. [Google Scholar] [CrossRef]
- Velgosova, O.; Mačák, L.; Lisnichuk, M.; Vojtko, M. Synthesis and Analysis of Polymorphic Silver Nanoparticles and Their Incorporation into the Polymer Matrix. Polymers 2022, 14, 2666. [Google Scholar] [CrossRef]
- Weck, G.; Recoules, V.; Queyroux, J.-A.; Datchi, F.; Bouchet, J.; Ninet, S.; Garbarino, G.; Mezouar, M.; Loubeyre, P. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 2020, 101, 014106. [Google Scholar] [CrossRef]
- Pandey, B.K.; Jaiswal, R.L. Dimensional effect on cohesive energy, melting temperature and Debye temperature of metallic nanoparticles. Phys. B Condens. Matter 2023, 651, 414602. [Google Scholar]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Dreaden, E.; Alkilany, A.; Huang, X.; Murphy, C.; El-Sayed, M. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2011, 41, 2740–2779. [Google Scholar] [CrossRef]
- Vlasenko, V.G.; Podsukhina, S.S.; Kozinkin, A.V.; Zubavichus, Y.V. Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy. Phys. Solid State 2016, 58, 421–426. [Google Scholar] [CrossRef]
- Anzellini, S.; Monteseguro, V.; Bandiello, E.; Dewaele, A.; Burakovsky, L.; Errandonea, D. In situ characterization of the high pressure–high temperature melting curve of platinum. Sci. Rep. 2019, 9, 13034. [Google Scholar] [CrossRef]
- Nashner, M.S.; Bondos, J.C.; Hostetler, M.J.; Gewirth, A.A.; Nuzzo, R.G. Chemisorption Properties and Structural Evolution of Pt−Si Intermetallic Thin Films Prepared by the Activated Adsorption of SiH4 on Pt(111). J. Phys. Chem. B 1998, 102, 6202–6211. [Google Scholar] [CrossRef]
- Sheny, D.S.; Philip, D.; Mathew, J. Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ji, H.; Li, M.; Wang, C. Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles. Mater. Lett. 2012, 85, 61–63. [Google Scholar] [CrossRef]
- Qiao, Z.; Feng, H.; Zhou, J. Molecular dynamics simulations on the melting of gold nanoparticles. Phase Transit. 2014, 87, 59–70. [Google Scholar] [CrossRef]
- Guisbiers, G.; Abudukelimu, G.; Hourlier, D. Size-dependent catalytic and melting properties of platinum-palladium nanoparticles. Nanoscale Res. Lett. 2011, 6, 396. [Google Scholar] [CrossRef] [PubMed]
- Font, F.; Myers, T. Spherically symmetric nanoparticle melting with a variable phase change temperature. J. Nanoparticle Res. 2013, 15, 2806. [Google Scholar] [CrossRef]
- Wang, L.-L.; Tan, T.L.; Johnson, D.D. Nanoalloy composition-temperature phase diagram for catalyst design: Case study of Ag-Au. Phys. Rev. B 2012, 86, 035438. [Google Scholar] [CrossRef]
- Jatschka, J.; Dathe, A.; Csáki, A.; Fritzsche, W.; Stranik, O. Propagating and localized surface plasmon resonance sensing—A critical comparison based on measurements and theory. Sens. Bio-Sens. Res. 2016, 7, 62–70. [Google Scholar] [CrossRef]
- Aghlara, H.; Rostami, R.; Maghoul, A.; SalmanOgli, A. Noble metal nanoparticle surface plasmon resonance in absorbing medium. Optik 2015, 126, 417–420. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2, 107–118. [Google Scholar] [CrossRef]
- Guo, X. Surface plasmon resonance based biosensor technique: A review. J. Biophotonics 2012, 5, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.-F. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020, 145, 3776–3800. [Google Scholar] [CrossRef]
- Wu, J.Z.; Ghopry, S.A.; Liu, B.; Shultz, A. Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. Micromachines 2023, 14, 1393. [Google Scholar] [CrossRef] [PubMed]
- Takalani, C. Preparation of Nanoparticles. In Engineered Nanomaterials; Sorin Marius, A., Kalsoom, A., Irina, F., Sher Bahadar, K., Fayaz, A., Abdullah, M.A., Eds.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Luty-Błocho, M.; Cyndrowska, J.; Rutkowski, B.; Hessel, V. Synthesis of Gold Clusters and Nanoparticles Using Cinnamon Extract—A Mechanism and Kinetics Study. Molecules 2024, 29, 1426. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Csapo, E.; Fitzner, K. On the Rate of Interaction of Sodium Borohydride with Platinum (IV) Chloride Complexes in Alkaline Media. Materials 2021, 14, 3137. [Google Scholar] [CrossRef] [PubMed]
- Luty-Błocho, M.; Szot, A.; Hessel, V.; Fitzner, K. The Kinetics of the Redox Reaction of Platinum(IV) Ions with Ascorbic Acid in the Presence of Oxygen. Materials 2023, 16, 4630. [Google Scholar] [CrossRef]
- Deraedt, C.; Salmon, L.; Gatard, S.; Ciganda, R.; Hernandez, R.; Ruiz, J.; Astruc, D. Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem. Commun. 2014, 50, 14194–14196. [Google Scholar] [CrossRef]
- Charde, R.P.; Devener, B.V.; Nigra, M.M. Surfactant- and Ligand-Free Synthesis of Platinum Nanoparticles in Aqueous Solution for Catalytic Applications. Catalysts 2023, 13, 246. [Google Scholar] [CrossRef]
- Kalbasi, R.J.; Mosaddegh, N.; Abbaspourrad, A. A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite. Appl. Catal. A Gen. 2012, 423–424, 78–90. [Google Scholar] [CrossRef]
- Luty-Błocho, M. The influence of steric stabilization on process of Au, Pt nanoparticles formation. Arch. Metall. Mater. 2019, 64, 55–63. [Google Scholar] [CrossRef]
- Bhattacharjee, R.R.; Dasgupta, U. Seed-mediated synthesis of silver nanoparticles: Tunable surface Plasmon and their facile fabrication. Mater. Today Proc. 2021, 43, 1342–1347. [Google Scholar] [CrossRef]
- Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M. Tuning Size and Seed Position in Small Silver Nanorods. ACS Mater. Lett. 2020, 2, 1246–1250. [Google Scholar] [CrossRef]
- Carroll, K.J.; Reveles, J.U.; Shultz, M.D.; Khanna, S.N.; Carpenter, E.E. Preparation of Elemental Cu and Ni Nanoparticles by the Polyol Method: An Experimental and Theoretical Approach. J. Phys. Chem. C 2011, 115, 2656–2664. [Google Scholar] [CrossRef]
- Torras, M.; Roig, A. From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis. ACS Omega 2020, 5, 5731–5738. [Google Scholar] [CrossRef]
- Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef]
- Kang, H.; Buchman, J.T.; Rodriguez, R.S.; Ring, H.L.; He, J.; Bantz, K.C.; Haynes, C.L. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem. Rev. 2019, 119, 664–699. [Google Scholar] [CrossRef]
- Huynh, K.A.; Chen, K.L. Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions. Environ. Sci. Technol. 2011, 45, 5564–5571. [Google Scholar] [CrossRef]
- Lim, B.; Jiang, M.; Camargo, P.; Cho, E.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. ChemInform Abstract: Pd—Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef]
- Csapó, E.; Patakfalvi, R.; Hornok, V.; Tóth, L.; Sipos, Á.; Szalai, A.; Csete, M.; Dekany, I. Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloids Surf. B Biointerfaces 2012, 98, 43–49. [Google Scholar] [CrossRef]
- Knauer, A.; Csáki, A.; Möller, F.; Hühn, C.; Fritzsche, W.; Köhler, J.M. Microsegmented Flow-Through Synthesis of Silver Nanoprisms with Exact Tunable Optical Properties. J. Phys. Chem. C 2012, 116, 9251–9258. [Google Scholar] [CrossRef]
- Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Lett. 2004, 4, 1733–1739. [Google Scholar] [CrossRef]
- Ramirez, D.; Jaramillo, F. Facile one-pot synthesis of uniform silver nanoparticles and growth mechanism. Dyna 2016, 83, 165. [Google Scholar] [CrossRef]
- Oprica, L.; Andries, M.; Sacarescu, L.; Popescu, L.; Pricop, D.; Creanga, D.; Balasoiu, M. Citrate-silver nanoparticles and their impact on some environmental beneficial fungi. Saudi J. Biol. Sci. 2020, 27, 3365–3375. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Fawcett, D.; Platten, M.; Sharma, S.; Fosu-Nyarko, J.; Poinern, E. Sustainable green chemical synthesis of discrete, well-dispersed silver nanoparticles with bacteriostatic properties from carrot extracts aided by polyvinylpyrrolidone. AIMS Mater. Sci. 2020, 7, 269–287. [Google Scholar] [CrossRef]
- Gaikwad, S.; Ashok, B. Green Synthesis of Silver Nanoparticles Using Aspergillus niger and Its Efficacy Against Human Pathogens. Eur. J. Exp. Biol. 2012, 2, 1654–1658. [Google Scholar]
- Huang, L.; Maolin, Z.; Long, D.; Peng, J.; Xu, L.; Wu, G.; Li, J.; Wei, G. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanoparticle Res. 2008, 10, 1193–1202. [Google Scholar] [CrossRef]
- Szczepanowicz, K.; Stefańska, J.; Socha, R.; Warszyński, P. Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Fizykochem. Probl. Miner. 2010, 45, 85–98. [Google Scholar]
- Radoń, A.; Łukowiec, D. Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: Structure, formation mechanism and catalytic activity. CrystEngComm 2018, 20, 7130–7136. [Google Scholar] [CrossRef]
- Piñero, S.; Camero, S.; Blanco, S. Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology. J. Phys. Conf. Ser. 2017, 786, 012020. [Google Scholar] [CrossRef]
- Mehta, B.; Chhajlani, M.; Shrivastava, B. Green synthesis of silver nanoparticles and their characterization by XRD. J. Phys. Conf. Ser. 2017, 836, 012050. [Google Scholar] [CrossRef]
- Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; De Berardis, B.; Guittard, F.; Rossi, F. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf. A Physicochem. Eng. Asp. 2012, 395, 145–151. [Google Scholar] [CrossRef]
- Bose, S.; Chakraborty, S.; Sanyal, D. Water-Ethylene Glycol Mediated Synthesis of Silver Nanoparticles for Conductive Ink. Mater. Today Proc. 2018, 5, 9941–9947. [Google Scholar] [CrossRef]
- Das, V.L.; Thomas, R.; Varghese, R.T.; Soniya, E.V.; Mathew, J.; Radhakrishnan, E.K. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 2014, 4, 121–126. [Google Scholar] [CrossRef]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [PubMed]
- Garmasheva, I.; Kovalenko, N.; Voychuk, S.; Ostapchuk, A.; Livins’ka, O.; Oleschenko, L. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. Bioimpacts 2016, 6, 219. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.; Pelletier, D.; Wang, W.; Moon, J.-W.; Gu, B.; Mortensen, N.P.; Allison, D.; Joy, D.; Phelps, T.; Doktycz, M. Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environ. Sci. Technol. 2010, 44, 5210–5215. [Google Scholar] [CrossRef] [PubMed]
- Pastoriza-Santos, I.; Liz-Marzán, L. Synthesis of Silver Nanoprisms in DMF. Nano Lett. 2002, 2, 903–905. [Google Scholar] [CrossRef]
- Jabłońska, J.; Jankowski, K.; Tomasik, M.; Cykalewicz, D.; Uznanski, P.; Całuch, S.; Szybowicz, M.; Zakrzewska, J.; Mazurek, P. Preparation of silver nanoparticles in a high voltage AC arc in water. SN Appl. Sci. 2021, 3, 244. [Google Scholar] [CrossRef]
- Ftouni, J.; Penhoat, M.; Addad, A.; Payen, E.; Rolando, C.; Girardon, J.-S. Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device. Nanoscale 2012, 4, 4450–4454. [Google Scholar] [CrossRef]
- Agunloye, E.; Panariello, L.; Gavriilidis, A.; Mazzei, L. A Model for the Formation of Gold Nanoparticles in the Citrate Synthesis Method. Chem. Eng. Sci. 2018, 191, 318–331. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Ichikuni, N.; Tsukuda, T. Microfluidic Synthesis and Catalytic Application of PVP-Stabilized, ∼1 nm Gold Clusters. Langmuir 2008, 24, 11327–11330. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xiao, Q.; Wang, J.; Yu, X.-F.; Wang, H.; Chu, P. Black phosphorus: A two-dimensional reductant for in situ nanofabrication. npj 2d Mater. Appl. 2017, 1, 20. [Google Scholar]
- Yu, M.; Zhou, C.; Liu, J.; Hankins, J.D.; Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc. 2011, 133, 11014–11017. [Google Scholar] [CrossRef] [PubMed]
- Piella, J.; Bastús, N.; Puntes, V. Size-controlled Synthesis of sub-10 nm Citrate-stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016, 28, 1066–1075. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K.J.; Fitzner, K. Linking the Gold Nanoparticles Formation Kinetics with Their Morphology. Int. J. Chem. Kinet. 2018, 50, 204–214. [Google Scholar] [CrossRef]
- Shi, W.; Sahoo, Y.; Swihart, M.; Prasad, P. Gold Nanoshells on Polystyrene Cores for Control of Surface Plasmon Resonance. Langmuir ACS J. Surf. Colloids 2005, 21, 1610–1617. [Google Scholar] [CrossRef]
- Tyagi, H.; Kushwaha, A.; Kumar, A.; Aslam, M. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature. Nanoscale Res. Lett. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Briñas, R.P.; Hu, L.; Qian, M.F.; Qian, E.S.; Lymar, L.F.; Hainfeld, J.F.L.E.F.; Hainfeld, J.F. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 2008, 130, 975–982. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S.; Osman, S.O.; Gassoumi, M.; Rabhi, M.; Omer, M. Characterization, Antimicrobial and Anticancer Properties of Palladium Nanoparticles Biosynthesized Optimally Using Saudi Propolis. Nanomaterials 2021, 11, 2666. [Google Scholar] [CrossRef]
- Anjum, F.; Gul, S.; Khan, M.; Khan, M. Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes. Green Process. Synth. 2019, 9, 63–76. [Google Scholar] [CrossRef]
- Tian, N.; Zhou, Z.-Y.; Sun, S.-G. Electrochemical preparation of Pd nanorods with high-index facets. Chem. Commun. 2009, 1502–1504. [Google Scholar] [CrossRef]
- Liu, L.; Yoo, S.-H.; Lee, S.; Park, S. Wet-Chemical Synthesis of Palladium Nanosprings. Nano Lett. 2011, 11, 3979–3982. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Albalawi, H.; Shaik, M.R.; Khan, M.; Syed, F.; Kuniyil, M.; Alkhathlan, H.; AlWarthan, A.; Siddiqui, M.R. Miswak Mediated Green Synthesized Palladium Nanoparticles as Effective Catalysts for the Suzuki Coupling Reactions in Aqueous Media. J. Saudi Chem. Soc. 2016, 21, 450–457. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Cheng, F.; Jiang, S. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochem. Commun. 2007, 9, 1212–1216. [Google Scholar] [CrossRef]
- Xiong, Y.; McLellan, J.M.; Chen, J.; Yin, Y.; Li, Z.-Y.; Xia, Y. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. J. Am. Chem. Soc. 2005, 127, 17118–17127. [Google Scholar] [CrossRef]
- Long, N.V.; Hayakawa, T.; Matsubara, T.; Chien, N.; Ohtaki, M.; Nogami, M. Controlled synthesis and properties of palladium nanoparticles. J. Exp. Nanosci. 2012, 7, 426–439. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357. [Google Scholar] [CrossRef]
- Imai, T.; Abe, Y.; Nishio, K.; Tamura, R.; Shibata, H.; Kineri, T.; Gunji, T. Preparation of platinum nanoparticles that are dispersible in water over a wide pH range. Polym. J. 2012, 45, 540–544. [Google Scholar] [CrossRef]
- Nagao, H.; Ichiji, M.; Hirasawa, I. Synthesis of Platinum Nanoparticles by Reductive Crystallization Using Polyethyleneimine. Chem. Eng. Technol. 2017, 40, 1242–1246. [Google Scholar] [CrossRef]
- Al-Radadi, N. Green Synthesis of Platinum Nanoparticles Using Saudi’s Dates Extract and their Usage on The Cancer Cell Treatment. Arab. J. Chem. 2019, 12, 330–349. [Google Scholar] [CrossRef]
- Dobrucka, R.; Romaniuk, A.; Kaczmarek, M. Evaluation of biological synthesized platinum nanoparticles using Ononidis radix extract on the cell lung carcinoma A549. Biomed. Microdevices 2019, 21, 75. [Google Scholar] [CrossRef]
- Song, J.; Kwon, E.-Y.; Kim, B.S. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst. Eng. 2009, 33, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Alshatwi, A.; Athinarayanan, J.; Subbarayan, P.V. Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. J. Mater. Sci. Mater. Med. 2015, 26, 5330. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nemoto, Y.; Yamauchi, Y. Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chem. Mater. 2010, 22, 2835–2841. [Google Scholar] [CrossRef]
- Li, J.; Hou, J.; Gong, Y.; Xiao, C.; Yue, L.; Zhao, L.; Ma, H.; Wang, H.; Peng, S.; Chen, C.; et al. Synthesis of Platinum Nanocrystals within Iodine Ions Mediated. J. Nanomater. 2018, 2018, 1465760. [Google Scholar] [CrossRef]
- Boita, J.; Nicolao, L.; Alves, M.; Morais, J. Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Phys. Chem. Chem. Phys. 2014, 16, 17640–17647. [Google Scholar] [CrossRef]
- Hansen, H.E.; Seland, F.; Sunde, S.; Burheim, O.S.; Pollet, B.G. Two routes for sonochemical synthesis of platinum nanoparticles with narrow size distribution. Mater. Adv. 2021, 2, 1962–1971. [Google Scholar] [CrossRef]
- Dhand, C.; Dwivedi, N.; Loh, X.J.; Ying, A.N.J.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2015, 5, 105003–105037. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef]
- Whitehead, C.; Özkar, S.; Finke, R. LaMer’s 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model’s Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data. Chem. Mater. 2019, 31, 7116–7132. [Google Scholar] [CrossRef]
- Whitehead, C.B.; Özkar, S.; Finke, R.G. LaMer’s 1950 model of particle formation: A review and critical analysis of its classical nucleation and fluctuation theory basis, of competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles. Mater. Adv. 2021, 2, 186–235. [Google Scholar]
- Finney, E.E.; Finke, R.G. Nanocluster nucleation and growth kinetic and mechanistic studies: A review emphasizing transition-metal nanoclusters. J. Colloid Interface Sci. 2008, 317, 351–374. [Google Scholar] [CrossRef]
- Watzky, M.A.; Finke, R.G. Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant: Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth. J. Am. Chem. Soc. 1997, 119, 10382–10400. [Google Scholar] [CrossRef]
- Sugimoto, T. Underlying Mechanisms in Size Control of Uniform Nanoparticles. J. Colloid Interface Sci. 2007, 309, 106–118. [Google Scholar] [CrossRef]
- Abellan, P.; Parent, L.R.; Al Hasan, N.; Park, C.; Arslan, I.; Karim, A.M.; Evans, J.E.; Browning, N.D. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope. Langmuir 2016, 32, 1468–1477. [Google Scholar] [CrossRef]
- Martin, J.E.; Wilcoxon, J.P.; Odinek, J.; Provencio, P. Superlattices of Platinum and Palladium Nanoparticles. J. Phys. Chem. B 2002, 106, 971–978. [Google Scholar] [CrossRef]
- Mozaffari, S.; Li, W.; Thompson, C.; Ivanov, S.; Seifert, S.; Lee, B.; Kovarik, L.; Karim, A.M. Colloidal nanoparticle size control: Experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale 2017, 9, 13772–13785. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D.F. Modified Finke-Watzky mechanisms for the two-step nucleation and growth of silver nanoparticles. Nanotechnology 2018, 29, 505602. [Google Scholar] [CrossRef]
- Sandoe, H.E.; Watzky, M.A.; Diaz, S.A. Experimental probes of silver metal nanoparticle formation kinetics: Comparing indirect versus more direct methods. Int. J. Chem. Kinet. 2019, 51, 861–871. [Google Scholar] [CrossRef]
- Streszewski, B.; Jaworski, W.; Pacławski, K.; Csapó, E.; Dékány, I.; Fitzner, K. Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfate—Kinetic studies. Colloids Surf. A Physicochem. Eng. Asp. 2012, 397, 63–72. [Google Scholar] [CrossRef]
- Wojnicki, M.; Fitzner, K.; Luty-Błocho, M. Kinetic studies of nucleation and growth of palladium nanoparticles. J. Colloid Interface Sci. 2016, 465, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Hornberger, E.; Mastronardi, V.; Brescia, R.; Pompa, P.P.; Klingenhof, M.; Dionigi, F.; Moglianetti, M.; Strasser, P. Seed-Mediated Synthesis and Catalytic ORR Reactivity of Facet-Stable, Monodisperse Platinum Nano-Octahedra. ACS Appl. Energy Mater. 2021, 4, 9542–9552. [Google Scholar] [CrossRef]
- Chung, P.-J.; Lyu, L.-M.; Huang, M.H. Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures. Chem. A Eur. J. 2011, 17, 9746–9752. [Google Scholar] [CrossRef]
- Ye, X.; Gao, Y.; Chen, J.; Reifsnyder, D.C.; Zheng, C.; Murray, C.B. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures. Nano Lett. 2013, 13, 2163–2171. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001, 13, 1389–1393. [Google Scholar] [CrossRef]
- Suryawanshi, P.; Gumfekar, S.; Bhanvase, B.; Sonawane, S.; Pimplapure, M. A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 2018, 189, 431–448. [Google Scholar] [CrossRef]
- Barrow, D.; Taylor, S.; Morgan, A.; Giles, L. Properties and Use of Microreactors. In Microreactors in Organic Chemistry and Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–33. [Google Scholar]
- Ehrfeld, W.; Hessel, V.; Löwe, H. Microreactors—New Technology for Modern Chemistry. Org. Process Res. Dev. 2001, 5, 89. [Google Scholar]
- Ley, S.; Baxendale, I. The Changing Face of Organic Synthesis. Chimia Int. J. Chem. 2008, 62, 162–168. [Google Scholar] [CrossRef]
- Reynolds, O., III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 1997, 35, 84–99. [Google Scholar]
- Hardt, S. Modeling and Simulation of Micro Reactors: Sections 2.1–2.5. In Chemical Micro Process Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Domínguez, M.; Centeno, M.; Martínez, M.; Bobadilla, L.F.; Laguna, O.; Odriozola, J. Current scenario and prospects in manufacture strategies for glass, quartz, polymers and metallic microreactors: A comprehensive review. Chem. Eng. Res. Des. 2021, 171, 13–35. [Google Scholar] [CrossRef]
- Bojang, A.A.; Wu, H.-S. Design, Fundamental Principles of Fabrication and Applications of Microreactors. Processes 2020, 8, 891. [Google Scholar] [CrossRef]
- Ko, D.-H.; Gyak, K.-W.; Kim, D. Emerging Microreaction Systems Based on 3D Printing Techniques and Separation Technologies. J. Flow Chem. 2017, 7, 72–81. [Google Scholar] [CrossRef]
- Mills, P.L.; Quiram, D.J.; Ryley, J.F. Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chem. Eng. Sci. 2007, 62, 6992–7010. [Google Scholar] [CrossRef]
- Cukalovic, A.; Monbaliu, J.-C.M.R.; Stevens, C.V. Microreactor Technology as an Efficient Tool for Multicomponent Reactions. In Synthesis of Heterocycles via Multicomponent Reactions I; Orru, R.V.A., Ruijter, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Coyle, E.E.; Oelgemöller, M. Micro-photochemistry: Photochemistry in microstructured reactors. The new photochemistry of the future? Photochem. Photobiol. Sci. 2008, 7, 1313–1322. [Google Scholar] [CrossRef]
- Verguet, S.; Duan, C.; Liau, A.; Berk, V.; Cate, J.H.D.; Majumdar, A.; Szeri, A.J. Mechanics of liquid–liquid interfaces and mixing enhancement in microscale flows. J. Fluid Mech. 2010, 652, 207–240. [Google Scholar] [CrossRef]
- Illg, T.; Löb, P.; Hessel, V. Flow chemistry using milli- and microstructured reactors—From conventional to novel process windows. Bioorganic Med. Chem. 2010, 18, 3707–3719. [Google Scholar] [CrossRef]
- Yoshida, J.-I.; Takahashi, Y.; Nagaki, A. Flash chemistry: Flow chemistry that cannot be done in batch. Chem. Commun. 2013, 49, 9896–9904. [Google Scholar] [CrossRef]
- Fanelli, F.; Parisi, G.; Degennaro, L.; Luisi, R. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J. Org. Chem. 2017, 13, 520–542. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef]
- Zhang, S.; Yun, J.; Shen, S.; Chen, Z.; Yao, K.; Chen, J.; Chen, B. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction. Chem. Eng. Sci. 2008, 63, 5600–5605. [Google Scholar] [CrossRef]
- Dev, S.; Toster, J.; Prasanna, S.; Fitzgerald, M.; Iyer, K.; Raston, C. Suppressing regrowth of microfluidic generated drug nanocrystals using polyelectrolyte coatings. RSC Adv. 2013, 3, 695. [Google Scholar] [CrossRef]
- Greener, J.; Kumacheva, E. Polymerization in Microfluidic Reactors. In Microreactors in Preparative Chemistry; Wiley: Hoboken, NJ, USA, 2013; pp. 197–230. [Google Scholar]
- Loch, J.; Krawiec, H.; Łukaszczyk, A. Wpływ symulowanych wodnych środowisk fizjologicznych na odporność korozyjną stopów Ti6Al4V i Ti10Mo4Zr oraz ich składników stopowych. Arch. Foundry Eng. 2014, 14, 89–94. [Google Scholar]
- Šalić, A.; Jurinjak Tusek, A.; Zelić, B. Application of microreactors in medicine and biomedicine. J. Appl. Biomed. 2012, 10, 137–153. [Google Scholar] [CrossRef]
- Elvira, K.; Casadevall i Solvas, X.; Wootton, R.; Demello, A. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef]
- Makgwane, P.; Sinha Ray, S. Synthesis of Nanomaterials by Continuous-Flow Microfluidics: A Review. J. Nanosci. Nanotechnol. 2014, 14, 1338–1363. [Google Scholar] [CrossRef]
- McQuade, D.; Seeberger, P. Applying Flow Chemistry: Methods, Materials and Multi-Step Synthesis. J. Org. Chem. 2013, 78, 6384–6389. [Google Scholar] [CrossRef]
- Boken, J.; Kumar, D.; Dalela, S. Synthesis of Nanoparticles for Plasmonics Applications: A Microfluidic Approach. Synth. React. Inorg. 2015, 45, 1211–1223. [Google Scholar] [CrossRef]
- Singh, A.; Khan Malek, C.; Kulkarni, S. Development in microreactor technology for nanoparticle synthesis. Int. J. Nanosci. 2010, 9, 93–112. [Google Scholar] [CrossRef]
- Zhao, C.-X.; He, L.; Qiao, S.; Middelberg, A. Nanoparticle synthesis in microreactors. Chem. Eng. Sci. 2011, 66, 1463–1479. [Google Scholar] [CrossRef]
- Abou Hassan, A.; Bazzi, R.; Cabuil, V. Multistep Continuous-Flow Microsynthesis of Magnetic and Fluorescent γ-Fe2O3 @SiO2 Core/Shell Nanoparticles. Angew. Chem. 2009, 121, 7316–7319. [Google Scholar] [CrossRef]
- Chang, C.-H.; Paul, B.; Remcho, V.; Atre, S.; Hutchison, J. Synthesis and post-processing of nanomaterials using microreaction technology. J. Nanoparticle Res. 2008, 10, 965–980. [Google Scholar] [CrossRef]
- Capretto, L.; Carugo, D.; Mazzitelli, S.; Nastruzzi, C.; Zhang, X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv. Drug Deliv. Rev. 2013, 65, 1496–1532. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Yamaguchi, Y.; Miyazaki, M.; Maeda, H.; Uehara, M.; Mulvaney, P. Preparation of CdSe nanocrystals in micro-flow-reactor. Chem. Commun. 2003, 23, 2844–2845. [Google Scholar] [CrossRef]
- Mason, B.; Price, K.; Steinbacher, J.; Bogdan, A.; McQuade, D. Greener Approaches to Organic Synthesis Using Microreactor Technology. Chem. Rev. 2007, 107, 2300–2318. [Google Scholar] [CrossRef]
- Yang, H.; Luan, W.; Cheng, R.; Chu, H.; Tu, S.-T. Synthesis of quantum dots via microreaction: Structure optimization for microreactor system. J. Nanoparticle Res. 2011, 13, 3335–3344. [Google Scholar] [CrossRef]
- Jung, J.Y.; Park, N.-K.; Han, S.-Y.; Han, G.B.; Lee, T.J.; Ryu, S.O.; Chang, C.-H. The growth of the flower-like ZnO structure using a continuous flow microreactor. Curr. Appl. Phys. 2008, 8, 720–724. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Luo, G. Preparation of Highly Dispersed and Small-Sized ZnO Nanoparticles in a Membrane Dispersion Microreactor and Their Photocatalytic Degradation. Ind. Eng. Chem. Res. 2013, 52, 5683–5690. [Google Scholar] [CrossRef]
- Suryawanshi, P.L.; Sonawane, S.H.; Bhanvase, B.A.; Ashokkumar, M.; Pimplapure, M.S.; Gogate, P.R. Synthesis of iron oxide nanoparticles in a continuous flow spiral microreactor and Corning® advanced flow™ reactor. Green Process. Synth. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Simmons, M.D.; Jones, N.; Evans, D.J.; Wiles, C.; Watts, P.; Salamon, S.; Escobar Castillo, M.; Wende, H.; Lupascu, D.C.; Francesconi, M.G. Doping of inorganic materials in microreactors—preparation of Zn doped Fe3O4 nanoparticles. Lab A Chip 2015, 15, 3154–3162. [Google Scholar] [CrossRef]
- Yen, B.; Guenther, A.; Prof, M.; Prof, K.; Prof, M. A Microfabricated Gas–Liquid Segmented Flow Reactor for High-Temperature Synthesis: The Case of CdSe Quantum Dots. Angew. Chem. 2005, 117, 5583–5587. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Sebastian Cabeza, V. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System. Langmuir 2017, 33, 14315–14324. [Google Scholar] [CrossRef]
- Mehenni, H.; Sinatra, L.; Mahfouz, R.; Katsiev, K.; Bakr, O.M. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres. RSC Adv. 2013, 3, 22397–22403. [Google Scholar] [CrossRef]
- Hafermann, L.; Köhler, J.M. Photochemical Micro Continuous-Flow Synthesis of Noble Metal Nanoparticles of the Platinum Group. Chem. Eng. Technol. 2015, 38, 1138–1143. [Google Scholar] [CrossRef]
- Rahman, M.; Rebrov, E. Microreactors for Gold Nanoparticles Synthesis: From Faraday to Flow. Processes 2014, 2, 466–493. [Google Scholar] [CrossRef]
- Xia, Y.; Gilroy, K.D.; Peng, H.-C.; Xia, X. Seed-Mediated Growth of Colloidal Metal Nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 60–95. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.J.; Thompson, L.B.; Chernak, D.J.; Yang, J.A.; Sivapalan, S.T.; Boulos, S.P.; Huang, J.; Alkilany, A.M.; Sisco, P.N. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 2011, 16, 128–134. [Google Scholar] [CrossRef]
- He, M.-Q.; Ai, Y.; Hu, W.; Guan, L.; Ding, M.; Liang, Q. Recent Advances of Seed-Mediated Growth of Metal Nanoparticles: From Growth to Applications. Adv. Mater. 2023, 35, 2211915. [Google Scholar] [CrossRef]
- Lakshmipriya, T.; Gopinath, S.C.B. 1-Introduction to nanoparticles and analytical devices. In Nanoparticles in Analytical and Medical Devices; Gopinath, S.C.B., Gang, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–29. [Google Scholar]
- Aminabhavi, T.; Dharupaneedi, S.P.; More, U. The role of nanotechnology and chitosan-based biomaterials for tissue engineering and therapeutic delivery. In Chitosan Based Biomaterials Volume 2; Woodhead Publishing: Cambridge, UK, 2017; pp. 1–29. [Google Scholar]
- Kapuscinska, A.; Nowak, I. Silver nanoparticles as a challenge for modern cosmetology and pharmacology. In Nanobiomaterials in Galenic Formulations and Cosmetics; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 395–417. [Google Scholar]
- Patil, G.A.; Bari, M.L.; Bhanvase, B.A.; Ganvir, V.; Mishra, S.; Sonawane, S.H. Continuous synthesis of functional silver nanoparticles using microreactor: Effect of surfactant and process parameters. Chem. Eng. Process. Process Intensif. 2012, 62, 69–77. [Google Scholar] [CrossRef]
- Kumar, D.R.; Prasad, B.L.V.; Kulkarni, A.A. Segmented flow synthesis of Ag nanoparticles in spiral microreactor: Role of continuous and dispersed phase. Chem. Eng. J. 2012, 192, 357–368. [Google Scholar] [CrossRef]
- Wojnicki, M.; Tokarski, T.; Hessel, V.; Fitzner, K.; Luty-Błocho, M. Continuous, monodisperse silver nanoparticles synthesis using microdroplets as a reactor. J. Flow Chem. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Horikoshi, S.; Sumi, T.; Serpone, N. A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles. Chem. Eng. Process. Process Intensif. 2013, 73, 59–66. [Google Scholar] [CrossRef]
- Küünal, S.; Rauwel, P.; Rauwel, E. Chapter 14-Plant extract mediated synthesis of nanoparticles. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Barhoum, A., Makhlouf, A.S.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 411–446. [Google Scholar]
- Chinchulkar, S.; Patra, P.; Dehariya, D.; Appidi, T.; Rengan, D.A.K. Gold nanoparticle–based biosensing applications and fundamentals of sensor technology: Principles and novel designs. In Fundamentals of Sensor Technology; Woodhead Publishing: Cambridge, UK, 2023; pp. 669–723. [Google Scholar]
- Wagner, J.; Köhler, J. Continuous Synthesis of Gold Nanoparticles in a Microreactor. Nano Lett. 2005, 5, 685–691. [Google Scholar] [CrossRef]
- Wagner, J.; Tshikhudo, T.R.; Köhler, J.M. Microfluidic generation of metal nanoparticles by borohydride reduction. Chem. Eng. J. 2008, 135, S104–S109. [Google Scholar] [CrossRef]
- Sen, N.; Chakravarty, R.; Singh, K.K.; Chakraborty, S.; Panicker, L.; Shenoy, K. Flow synthesis of PVP capped gold nanoparticles in capillary microreactor. Chem. Eng. Process.-Process Intensif. 2022, 179, 109036. [Google Scholar] [CrossRef]
- Huang, H.; Toit, H.d.; Besenhard, M.O.; Ben-Jaber, S.; Dobson, P.; Parkin, I.; Gavriilidis, A. Continuous flow synthesis of ultrasmall gold nanoparticles in a microreactor using trisodium citrate and their SERS performance. Chem. Eng. Sci. 2018, 189, 422–430. [Google Scholar] [CrossRef]
- Nasr-Esfahani, P.; Ensafi, A.A. Noble metals and nonnoble metal oxides based electrochemical sensors. In Functionalized Nanomaterial-Based Electrochemical Sensors; Woodhead Publishing: Cambridge, UK, 2022; pp. 115–140. [Google Scholar]
- Suryawanshi, P.L.; Gumfekar, S.P.; Kumar, P.R.; Kale, B.B.; Sonawane, S.H. Synthesis of ultra-small platinum nanoparticles in a continuous flow microreactor. Colloid Interface Sci. Commun. 2016, 13, 6–9. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Pacławski, K.; Fitzner, K. The synthesis of platinum nanoparticles and their deposition on the active carbon fibers in one microreactor cycle. Chem. Eng. J. 2013, 226, 46–51. [Google Scholar] [CrossRef]
- Riche, C.T.; Roberts, E.J.; Gupta, M.; Brutchey, R.L.; Malmstadt, N. Flow invariant droplet formation for stable parallel microreactors. Nat. Commun. 2016, 7, 10780. [Google Scholar] [CrossRef]
- MubarakAli, D.; Kim, H.; Venkatesh, P.S.; Kim, J.W.; Lee, S.Y. A Systemic Review on the Synthesis, Characterization, and Applications of Palladium Nanoparticles in Biomedicine. Appl. Biochem. Biotechnol. 2023, 195, 3699–3718. [Google Scholar] [CrossRef] [PubMed]
- Maduraiveeran, G.; Jin, W. 12—Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications. In Handbook of Nanomaterials in Analytical Chemistry; Mustansar Hussain, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Torigoe, K.; Watanabe, Y.; Endo, T.; Sakai, K.; Sakai, H.; Abe, M. Microflow reactor synthesis of palladium nanoparticles stabilized with poly(benzyl ether) dendron ligands. J. Nanopart. Res. 2010, 12, 951–960. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802. [Google Scholar] [CrossRef]
- Sharada, S.; Suryawanshi, P.L.; Kumar, P.R.; Gumfekar, S.P.; Narsaiah, T.B.; Sonawane, S.H. Synthesis of palladium nanoparticles using continuous flow microreactor. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498, 297–304. [Google Scholar] [CrossRef]
- Paul, S.; Hmar, E.L.; Pathak, H.; Sharma, H. An overview on nanocarriers. Nanocarriers Drug-Target. Brain Tumors 2022, 145–204. [Google Scholar] [CrossRef]
- Hirsch, L.; Gobin, A.; Lowery, A.; Tam, F.; Drezek, R.; Halas, N.; West, J. Metal Nanoshells. Ann. Biomed. Eng. 2006, 34, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tekade, R.; Maheshwari, R.; Soni, N.; Chougule, M. Nanotechnology for the Development of Nanomedicine. In Nanotechnology-based Approaches for Targeting and Delivery of Drugs and Genes; Academic Press: Cambridge, MA, USA, 2017; pp. 3–61. [Google Scholar]
- Watanabe, S.; Asahi, Y.; Omura, H.; Mae, K.; Miyahara, M.T. Flow microreactor synthesis of gold nanoshells and patchy particles. Adv. Powder Technol. 2016, 27, 2335–2341. [Google Scholar] [CrossRef]
- Gomez Navascues, L.; Arruebo, M.; Sebastian, V.; Gutierrez, L.; Santamaría, J. Facile synthesis of SiO2–Au nanoshells in a three-stage microfluidic system. J. Mater. Chem. 2012, 22, 21420–21425. [Google Scholar] [CrossRef]
- Meincke, T.; Bao, H.; Pflug, L.; Stingl, M.; Klupp Taylor, R. Heterogeneous nucleation and surface conformal growth of silver nanocoatings on colloidal silica in a continuous flow static T-mixer. Chem. Eng. J. 2016, 308, 89–100. [Google Scholar] [CrossRef]
- Maw, S.S.; Watanabe, S.; Miyahara, M.T. Flow synthesis of silver nanoshells using a microreactor. Chem. Eng. J. 2019, 374, 674–683. [Google Scholar] [CrossRef]
- Kalele, S.A.; Kundu, A.A.; Gosavi, S.W.; Deobagkar, D.N.; Deobagkar, D.D.; Kulkarni, S.K. Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small 2006, 2, 335–338. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M. Single-step synthesis of onion-like Au—Pd—PtNPs nanoparticles using microflow system. J. Flow Chem. 2015, 5, 197–200. [Google Scholar] [CrossRef]
- Knauer, A.; Thete, A.; Li, S.; Romanus, H.; Csáki, A.; Fritzsche, W.; Köhler, J.M. Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem. Eng. J. 2011, 166, 1164–1169. [Google Scholar] [CrossRef]
- Kluitmann, J.; Zheng, X.; Köhler, J.M. Tuning the morphology of bimetallic gold-platinum nanorods in a microflow synthesis. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127085. [Google Scholar] [CrossRef]
- Rodrigues, T.; Silva, A.; Camargo, P. Nanocatalysis by Noble Metal Nanoparticles: Controlled Synthesis for the Optimization and Understanding of Activities. J. Mater. Chem. A 2019, 7, 5857–5874. [Google Scholar] [CrossRef]
- Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E. Noble metal-based bimetallic nanoparticles: The effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci. 2016, 229, 80–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jin, M.; Xia, Y. ChemInform Abstract: Enhancing the Catalytic and Electrocatalytic Properties of Pt-Based Catalysts by Forming Bimetallic Nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049. [Google Scholar] [CrossRef]
- Tao, A.R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4, 310–325. [Google Scholar] [CrossRef]
- Wu, Z.; Shuanglei, Y.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2015, 8, 1237–1259. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Alves, P.; Gomes Aranda, D.; Schmal, M. Characterization of carbon supported palladium catalysts: Inference of electronic and particle size effects using reaction probes. Appl. Catal. A Gen. 2004, 277, 71–81. [Google Scholar] [CrossRef]
- Li, J.; Ma, L.; Li, X.; Lu, C.-S.; Liu, H. Effect of Nitric Acid Pretreatment on the Properties of Activated Carbon and Supported Palladium Catalysts. Ind. Eng. Chem. Res. 2005, 44, 5478–5482. [Google Scholar] [CrossRef]
- Gong, T.; Huang, Y.; Qin, L.; Zhang, W.; Li, J.; Hui, L.; Feng, H. Atomic layer deposited Palladium nanoparticle catalysts supported on Titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Appl. Surf. Sci. 2019, 495, 143495. [Google Scholar] [CrossRef]
- Davidson, M.; Ji, Y.; Leong, G.J.; Kovach, N.C.; Trewyn, B.G.; Richards, R.M. Hybrid Mesoporous Silica/Noble-Metal Nanoparticle Materials—Synthesis and Catalytic Applications. ACS Appl. Nano Mater. 2018, 1, 4386–4400. [Google Scholar] [CrossRef]
- Ke, F.; Zhu, J.; Qiu, L.-G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core–shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267–1269. [Google Scholar] [CrossRef]
- Federici, J.A.; Vlachos, D.G. Experimental studies on syngas catalytic combustion on Pt/Al2O3 in a microreactor. Combust. Flame 2011, 158, 2540–2543. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Tokarski, T.; Hessel, V.; Fitzner, K. Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers. Materials 2021, 14, 6598. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Wloch, G.; Fitzner, K. Green method for efficient PdNPs deposition on carbon carrier in the microreactor system. J. Nanoparticle Res. 2018, 20, 239. [Google Scholar] [CrossRef]
- Pach, A.; Zaryczny, A.; Michałek, T.; Kamiński, H.; Kutyła, D.; Tokarski, T.; Chat-Wilk, K.; Hessel, V.; Luty-Błocho, M. One-Step Synthesis of Pt–Pd@ACF Catalyst in the Microreactor System for the Hydrogen Evolution Reaction. Ind. Eng. Chem. Res. 2024, 63, 7018–7030. [Google Scholar] [CrossRef]
- Atmakidis, T.; Kenig, E. Numerical Investigations of Packed Bed Reactors with Irregular Particle Arrangements. Comput. Aided Chem. Eng. 2014, 33, 217–222. [Google Scholar]
- Pekkari, A.; Say, Z.; Susarrey-Arce, A.; Langhammer, C.; Härelind, H.; Sebastian, V.; Moth-Poulsen, K. Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core–Shell Nanoparticles and Their Catalysis of NO2 Reduction. ACS Appl. Mater. Interfaces 2019, 11, 36196–36204. [Google Scholar] [CrossRef]
- Yang, T.H.; Zhou, S.; Gilroy, K.D.; Figueroa-Cosme, L.; Lee, Y.H.; Wu, J.M.; Xia, Y. Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals. Proc. Natl. Acad. Sci. USA 2017, 114, 13619–13624. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.Z.; Terepka, A.D.; Yang, H. Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor. Nano Lett. 2004, 4, 2227–2232. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Tong, L.; Xia, Y. Seed-Mediated Synthesis of Silver Nanocrystals with Controlled Sizes and Shapes in Droplet Microreactors Separated by Air. Langmuir ACS J. Surf. Colloids 2013, 29, 15719–15725. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Jiang, P.; Pang, D.-W.; Zhang, Z.-L. Droplet-based microreactor for synthesis of water-soluble Ag₂S quantum dots. Nanotechnology 2015, 26, 275701. [Google Scholar] [CrossRef]
- Weng, C.-H.; Huang, C.-C.; Yeh, C.-S.; Lei, H.-Y.; Lee, G.-B. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system. J. Micromechanics Microengineering 2008, 18, 035019. [Google Scholar] [CrossRef]
- Pacławski, K.; Streszewski, B.; Jaworski, W.; Luty-Błocho, M. Gold nanoparticles formation via gold(III) chloride complex ions reduction with glucose in the batch and in the flow microreactor systems. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 208–215. [Google Scholar] [CrossRef]
- Khan, M.A.R.; Mamun, M.S.A.; Ara, M.H. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem. J. 2021, 171, 106840. [Google Scholar] [CrossRef]
- Pumera, M.; Sánchez, S.; Ichinose, I.; Tang, J. Electrochemical nanobiosensors. Sens. Actuators B Chem. 2007, 123, 1195–1205. [Google Scholar] [CrossRef]
- Gutiérrez de la Rosa, S.Y.; Muñiz Diaz, R.; Villalobos Gutiérrez, P.T.; Patakfalvi, R.; Gutiérrez Coronado, Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 9404. [Google Scholar] [CrossRef]
- Pohar, A.; Belavič, D.; Dolanc, G.; Hočevar, S. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor. J. Power Sources 2014, 256, 80–87. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Kurzydłowski, K.J.; Grzonka, J. The Synthesis of Stable Platinum Nanoparticles in the Microreactor. Arch. Metall. Mater. 2014, 59, 509–512. [Google Scholar]
- Sebastian, V.; Smith, C.; Jensen, K. Shape-controlled continuous synthesis of metal nanostructures. Nanoscale 2016, 8, 7534–7543. [Google Scholar] [CrossRef]
- Sebastian, V.; Basak, S.; Jensen, K. Continuous synthesis of palladium nanorods in oxidative segmented flow. AIChE J. 2015, 62, 373–380. [Google Scholar] [CrossRef]
- Kolokoltsev, V.; Borovitskaya, I.; Nikulin, V.; Silin, P. Production of porous films of silicate glass using a plasma focus setup. J. Phys. Conf. Ser. 2021, 1758, 012016. [Google Scholar] [CrossRef]
- Abu Bakar, A.; Nakajima, M.; Yue, T.; Hu, C.; Takeuchi, M.; Maruyama, S.; Fukuda, T. Micro-Sorting Device by a Micro-Channel with Multiple-Size Pores. In Proceedings of the MHS2013, Nagoya, Japan, 10–13 November 2013; pp. 1–4. [Google Scholar]
- Wojnicki, M.; Luty-Błocho, M.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K.J.; Fitzner, K. Micro-continuous flow synthesis of gold nanoparticles and integrated deposition on suspended sheets of graphene oxide. Chem. Eng. J. 2013, 225, 597–606. [Google Scholar] [CrossRef]
- Ran, J.; Wang, X.; Liu, Y.; Yin, S.; Li, S. Microreactor-based micro/nanomaterials: Fabrication, advances, and outlook. Mater. Horiz. 2023, 10, 2343–2372. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Hessel, V.; Csapó, E.; Ungor, D.; Fitzner, K. Micro Droplet Formation towards Continuous Nanoparticles Synthesis. Micromachines 2018, 9, 248. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, Y.J.; Lee, J.M.; Choi, J.-H.; Choi, J.-W.; Chung, B.G. Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals. BioChip J. 2020, 14, 298–307. [Google Scholar] [CrossRef]
- Abalde-Cela, S.; Taladriz-Blanco, P.; de Oliveira, M.G.; Abell, C. Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Sci. Rep. 2018, 8, 2440. [Google Scholar] [CrossRef]
- Saucedo-Espinosa, M.A.; Breitfeld, M.; Dittrich, P.S. Continuous Electroformation of Gold Nanoparticles in Nanoliter Droplet Reactors. Angew. Chem. Int. Ed. 2023, 62, e202212459. [Google Scholar] [CrossRef]
- Benyahia, B.; Bandulasena, M.V.; Bandulasena, H.C.H.; Vladisavljević, G.T. Experimental and Computational Analysis of Mixing Inside Droplets for Microfluidic Fabrication of Gold Nanoparticles. Ind. Eng. Chem. Res. 2021, 60, 13967–13978. [Google Scholar] [CrossRef]
- Nie, Y.; Jin, C.; Zhang, J.X.J. Microfluidic In Situ Patterning of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopic Sensing of Biomolecules. ACS Sens. 2021, 6, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Jarad, N.A.; Leung, A.; Soleymani, L.; Didar, T.F. Biofunctionalization of Glass- and Paper-Based Microfluidic Devices: A Review. Adv. Mater. Interfaces 2019, 6, 1900940. [Google Scholar] [CrossRef]
- Subramani, K. Chapter 11—Fabrication of hydrogel micropatterns by soft photolithography. In Emerging Nanotechnologies for Manufacturing, 2nd ed.; Ahmed, W., Jackson, M.J., Eds.; William Andrew Publishing: Norwich, NY, USA Boston, 2015; pp. 279–293. [Google Scholar]
- Rao, X.; Guyon, C.; Ognier, S.; Da Silva, B.; Chu, C.; Tatoulian, M.; Hassan, A.A. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels. Appl. Surf. Sci. 2018, 439, 272–281. [Google Scholar] [CrossRef]
- Gao, Y.; Pinho, B.; Torrente-Murciano, L. Tailoring the size of silver nanoparticles by controlling mixing in microreactors. Chem. Eng. J. 2022, 432, 134112. [Google Scholar] [CrossRef]
- Lintag, R.; Leyson, F.; Matibag, M.; Yap, K. Low-cost fabrication of a polydimethylsiloxane (PDMS) microreactor using an improved Print-and-Peel (PAP) method and its performance testing in silver nanoparticle synthesis. Mater. Today Proc. 2020, 22, 185–192. [Google Scholar] [CrossRef]
- Huang, J.; Lin, L.; Li, Q.; Sun, D.; Wang, Y.; Lu, Y.; He, N.; Yang, K.; Yang, X.; Wang, H.; et al. Continuous-Flow Biosynthesis of Silver Nanoparticles by Lixivium of Sundried Cinnamomum camphora Leaf in Tubular Microreactors. Ind. Eng. Chem. Res. 2008, 47, 6081–6090. [Google Scholar] [CrossRef]
- Chou, K.-S.; Chang, Y.-C.; Chiu, L.-H. Studies on the Continuous Precipitation of Silver Nanoparticles. Ind. Eng. Chem. Res. 2012, 51, 4905–4910. [Google Scholar] [CrossRef]
- V Kinhal, K.; Bhatt, N.; Subramaniam, P. Transport and Kinetic Effects on the Morphology of Silver Nanoparticles in a Millifluidic System. Ind. Eng. Chem. Res. 2019, 58, 5820–5829. [Google Scholar] [CrossRef]
- Yang, M.; Yang, L.; Zheng, J.; Hondow, N.; Bourne, R.A.; Bailey, T.; Irons, G.; Sutherland, E.; Lavric, D.; Wu, K.-J. Mixing performance and continuous production of nanomaterials in an advanced-flow reactor. Chem. Eng. J. 2021, 412, 128565. [Google Scholar] [CrossRef]
- Długosz, O.; Banach, M. Continuous Production of Silver Nanoparticles and Process Control. J. Clust. Sci. 2019, 30, 541–552. [Google Scholar] [CrossRef]
- Duraiswamy, S.; Khan, S.A. Droplet-Based Microfluidic Synthesis of Anisotropic Metal Nanocrystals. Small 2009, 5, 2828–2834. [Google Scholar] [CrossRef]
- Maguire, P.A.-O.; Rutherford, D.; Macias-Montero, M.A.-O.X.; Mahony, C.; Kelsey, C.; Tweedie, M.; Pérez-Martin, F.; McQuaid, H.; Diver, D.; Mariotti, D. Continuous In-Flight Synthesis for On-Demand Delivery of Ligand-Free Colloidal Gold Nanoparticles. Nano Lett. 2017, 17, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Li, Y.; Elgendy, A.; Duran, E.C.; Buckingham, M.; Spencer, B.; Han, B.; Alam, F.; Zhong, X.; Cartmell, S.H.; et al. Synthesis of High Entropy and Entropy-Stabilized Metal Sulfides and Their Evaluation as Hydrogen Evolution Electrocatalysts. Chem. Mater. 2023, 35, 7904–7914. [Google Scholar] [CrossRef] [PubMed]
- Bullen, C.; Latter, M.J.; D’Alonzo, N.J.; Willis, G.J.; Raston, C.L. A seedless approach to continuous flow synthesis of gold nanorods. Chem. Commun. 2011, 47, 4123–4125. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.; Fabienne, T.; Florent, M.; Coulon, P.-E.; Nicolas, M.; Olivier, S. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels. Langmuir 2012, 28, 15966–15974. [Google Scholar] [CrossRef]
- Cabeza, V.S.; Kuhn, S.; Kulkarni, A.A.; Jensen, K.F. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 2012, 28, 7007–7013. [Google Scholar] [CrossRef]
- Baumgard, J.; Vogt, A.M.; Kragl, U.; Jähnisch, K.; Steinfeldt, N. Application of microstructured devices for continuous synthesis of tailored platinum nanoparticles. Chem. Eng. J. 2013, 227, 137–144. [Google Scholar] [CrossRef]
- Sasaki, K.; Miyake, K.; Uchida, Y.; Nishiyama, N. Mechanochemical Synthesis of Dispersible Platinum Nanosheets for Enhanced Catalysis in a Microreactor. ACS Appl. Nano Mater. 2022, 5, 4998–5005. [Google Scholar] [CrossRef]
- Arndt, D.; Thöming, J.; Bäumer, M. Improving the quality of nanoparticle production by using a new biphasic synthesis in a slug flow microreactor. Chem. Eng. J. 2013, 228, 1083–1091. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, K.; Li, B.; Liu, Y.; Su, Y.; Wang, R.; Cheng, Y. Microfluidic, One-Batch Synthesis of Pd Nanocrystals on N-Doped Carbon in Surfactant-Free Deep Eutectic Solvents for Formic Acid Electrochemical Oxidation. ACS Appl. Mater. Interfaces 2020, 12, 42704–42710. [Google Scholar] [CrossRef] [PubMed]
- Gioria, E.; Wisniewski, F.; Gutierrez, L. Microreactors for the continuous and green synthesis of palladium nanoparticles: Enhancement of the catalytic properties. J. Environ. Chem. Eng. 2019, 7, 103136. [Google Scholar] [CrossRef]
- Karim, A.M.; Al Hasan, N.; Ivanov, S.; Siefert, S.; Kelly, R.T.; Hallfors, N.G.; Benavidez, A.; Kovarik, L.; Jenkins, A.; Winans, R.E.; et al. Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X-ray Absorption Fine Structure Spectroscopy and Small-Angle X-ray Scattering. J. Phys. Chem. C 2015, 119, 13257–13267. [Google Scholar] [CrossRef]
- Gaikwad, G.; Bangde, P.; Rane, K.; Stenberg, J.; Borde, L.; Bhagwat, S.; Dandekar, P.; Jain, R. Continuous production and separation of new biocompatible palladium nanoparticles using a droplet microreactor. Microfluid. Nanofluidics 2021, 25, 27. [Google Scholar] [CrossRef]
- Kim, Y.H.; Zhang, L.; Yu, T.; Jin, M.; Qin, D.; Xia, Y. Droplet-Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small 2013, 9, 3462–3467. [Google Scholar] [CrossRef]
Metal | Melting Temperature (K) | Optical Properties | Reference |
---|---|---|---|
Ag | 1234 | Metallic shine, gray tint (silver 4) | [2] |
Nano Ag | 898 1 | Yellow, orange, red, green, blue (LSPR) | [3,4,5] |
Au | 1336 | Metallic shine, yellow (gold 4) | [6] |
Nano Au | 685–1115 2 | Orange, red, violet, blue (LSPR) | [7,8,9] |
Pd | 1828 | Gray–white tint (palladium 4) | [2] |
Nano Pd | above 500 3 | Dark orange, brown (LSPR in UV region) | [10] |
Pt | 2042 | Pale grayish-white tint (platinum 4) | [11] |
Nano Pt | above 800 3 | Gray, black (LSPR in UV region) | [12,13] |
Material | Advantages | Disadvantages |
---|---|---|
Silicon |
|
|
Glass |
|
|
Quartz |
|
|
Metal and metal alloy |
|
|
Polymers |
|
|
Type of Metal | Chemicals * | Reacting Conditions ** | Type of Microreactor | Flow Conditions | Particle Morphology | Findings | Ref. |
---|---|---|---|---|---|---|---|
Ag | 0.1 mM AgNO3; 0.6 mM NaBH4 and 0.35 mM sodium citrate | 3D curved microreactors | Quantitative analysis of the effect of mixing of precursors on the size and distribution of metal nanoparticles synthesized in flow microreactors. | [230] | |||
0.001 M AgNO3 and 0.002 M NaBH4 | Polydimethylsiloxane (PDMS) microreactor | [231] | |||||
50 mL of 1.0 mM aqueous AgNO3, Camphora lixivium | 60 or 90 °C | Continuous flow tubular microreactors with glass and stainless steel | flow rate: 0.5 or 1.0 mL/min | Reactor A: quasi-spherical, size 11–40 nm; reactor B: quasi-spherical, size 12–38 nm; reactor C: quasi-spherical, size 9 to 33 nm | It has been shown that the polyols in lixivium are responsible for the reduction of silver ions. The process used three tubular microreactors with different internal diameters made of glass or stainless steel and different temperatures. At a temperature of 90 °C, silver nuclei exploded as a result of uniform nucleation, while at a temperature of 60 °C, polydisperse particles were formed. | [232] | |
0.01–0.1 M AgNO3, PVP and AgNO3 | 170 °C, molar ratio of NaBH4 to AgNO3 was 0.7, molar ratio of PVP to AgNO3 was 0.05 to 1.5 | Microchannel reactor made of acrylic resin | flow rate: 0.83 to 3.57 mL/s | 130–13 nm | The influence of several variables on the obtained properties of AgNPs colloids in a continuous process was examined; the particle size was controlled by changing the weight ratio of PVP to AgNO3 from 0.05 to 1.5. The obtained silver nanoparticles were characterized by high purity and good crystalline structure. | [233] | |
10 mM AgNO3, 1 or 25 mM CTAB, 10 or 1000 mM ascorbic acid | Straight and spiral millichannels | flow rate: 50 μL/min, reactors operated: 30 min | Spherical nanoparticles: 30–60 nm; triangular plates: 80–200 nm; nanorods: 130–150 nm | The influence of the ratio of reactants (silver nitrate and ascorbic acid) in batch, straight and spiral millifluidic reactors on the morphology of the synthesized silver nanoparticles was investigated. At higher reactant ratios, rod- and wire-shaped particles were obtained in straight and curved millifluidic reactors. At low reactant ratios, the particle shape is either triangular or rectangular in the three reactor configurations. | [234] | ||
0.06–0.45 mM AgNO3, 0.2–1.57 mM Na3CA×2H 2O, 0.3–0.9 mM NaBH4 | 20 °C | Advanced-FlowTM Reactor (AFR) | flow rate: 1–9 mL/min | 7.2 ± 3.9 and 4.6 ± 1.8 nm (FR 1 and 9 mL/min); 7.5 ± 3.9 and 4.3 ± 1.8 nm (FR 0.25 and 8 mL/min). | As the total flow rate increased, the particle size distribution of Ag nanoparticles became narrower due to better micromixing efficiency at higher flow rates. When the flow rate ratio changed, the particle size distribution of Ag nanoparticles depended on the width of the Ag precursor solution. | [235] | |
AgNO3, tannic acid, pH 10 | 20 to 45 °C, molar ratios of tannic acid/AgNO3: 0.5 | Glass tubular reactor | 14 to 60 nm | The effect of tannic acid concentration and temperature on the conversion of silver ions and the size of silver nanoparticles. The increase in temperature had a positive effect on the conversion rate of the resulting silver nanoparticles; it also affected the obtaining of nanoparticles with larger diameters. | [236] | ||
Au | 1.08 mM HAuCl4 and 5.4 mM trisodium citrate; 0.54 mM HAuCl4 and 1.7 mM trisodium citrate solutions | average residence time (1.5–30 min) and temperature (70–100 °C) 275 kPa back pressure, | Continuous flow capillary reactor | 1.9–3.0 nm | Negatively charged capillary–solution interface offered enhanced nucleation rate; the size varied depending used flow rate and temperature. | [167] | |
Seed gold nanoparticles: 10 mL of 0.5 mM HAuCl4 ×3H2O, 0.6 mL of 0.01 M NaBH4, 10 mL of 200 mM CTAB Microreactor: 4 mL of 1.25 mM gold salt, 4 mL of 250 mM CTAB, 0.05 mL to 0.25 mL of 4 mM AgNO3, 5.16 mM ascorbic acid | 35 °C | Microfluidic T-junction. | Spherical–spheroidal, rod-shaped particles (about 2.3 ± 0.5, 3.2 ± 0.5, 4.0 ± 0.5, 2.7 ± 0.3) and sharp-edged AuNPs | The droplet-based microfluidic system (aqueous suspension of reactants and oil) for the production of anisotropic dispersions of Au nanocrystals. Au nanocrystals with different morphologies were synthesized by manipulating reagent concentrations and feed rates of individual water streams entering the microreactor. | [237] | ||
H2O + 1 mM HAuCl4 H2O2 | Droplet–plasma microreactor | synthesis time: 120 μs | ~4 nm | The method based on irradiating liquid droplets with ultra-low energy electrons (<0.1 eV) resulted in the rate of formation of nanoparticles in the plasma-droplet system exceeding other synthesis methods. Plasma droplet synthesis of small spherical Au nanoparticles has been demonstrated. | [238] | ||
1 mL 10 mM HAuCl4, 8.8 mL 0.05 M CTAB, 50 μL of a 40 mM AgNO3, 2.1 mM ascorbic acid, 60 µL NaBH4 | 30 °C | Continuous flow microfluidic chip | flow rates: 5 μL min−1, 3.6 μL min−1, 1 μL min−1, and 6 μL min−1, residence time-on-chip of 70 min, | Au nanorods | The effect of seed age on the growth of gold nanorods was investigated in real time. As the gold-grain nanoparticle solution ages, the efficiency of the nanorods decreases. | [239] | |
1 mM HAuCl4, 100 mM CTAB, 10 mM acetylacetone (acac), 100 mM CTAB, 100 mM and 0.025–0.1 mM AgNO3 | 30 °C | Continuous flow microreactor with rotating tube processor (RTP) connecting serially with a Narrow channel processor (NCP). | RTP flow rate: 40 mL/min, NCP flow rate: 10 mL/min, | Au nanorods | Development of method for production of AuNRs at room temperature without using seeds, applying acetylacetone as the reductant. | [240] | |
10 mL 0.5 mM–6 mM HAuCl4, 0.5 mM–12 mM ascorbic acid | pH from 10 to 11.8 (ascorbic acid) | Continuous flow millifluidic setup | the injection rate: 5 mL/min, flow rates: 30 mL/min and 240 mL/min | 3 to 25 nm | Obtained biocompatible gold nanoparticles of controlled size at ambient temperature. The size of the gold nanoparticles was controlled by adjusting the initial pH of the ascorbic acid or the flow rate of the solutions. | [241] | |
3.8 mM NaBH4, 1 mM HAuCl4, 20 mM tetradecyltrimethylammonium bromide | 100 °C | Segmented flow microreactor | residence time: 10 s, flow rate: 27, 273 and 300 μL/min | toluene: particles with a size of 3.8 ± 0.3 nm; air 2.8 ± 0.2 nm; silicone oil 7.8 ± 6.5 and 15.5 ± 3.1 nm | The sliding speed between the two fluids and the internal mixing in the continuous phase determines the nature of the particle size distribution. Reducing the axial dispersion has less impact on particle growth and therefore on the particle size distribution. | [242] | |
Pt | 5.4 mmol/L H2PtCl6 × 6H2O, sodium hydroxide, PVP, NaOH | 110–140 °C | X-type micromixer | flow rate: 0.1 0.4, 0.8 mL/min, Reynolds numbers less than 15 | 1–4 nm | The particle size of the Pt nanoparticles which are formed inside the microchannels can be controlled by the NaOH/Pt ratio. At a high NaOH/Pt ratio, the Pt nanoparticles have a lower size and a narrow size distribution. At a low NaOH/Pt ratio, particle size increases, also the particle size distribution increases. | [243] |
1.0 × 10−1 wt % heptane solution with H2PtCl6· 6H2O, 6.9 wt %Brij L4, 1.9 wt % water, and 8.7 × 10−1 wt % methanol, heptane solution with 2.6 × 10−2 wt % NaBH4, 6.9 wt % Brij L4, 1.9 wt % sodium hydroxide solution and 8.7 × 10−1 wt % methanol | pH 11 | PTFE tube | flow rate: 1.0 × 10−4 to 1.0 × 10−2 m s−1, channel length = 2000 mm, ID = 1.0 mm | Nanosheets, size1247 ± 228 and 1.4 ± 0.2 nm | Dispersible platinum nanosheets (PtNS) were synthesized in TRAP solution in a microreactor. Due to the high dispersibility resulting from the lateral fusion of nanoplatelets, PtNSs show higher catalytic activity in the reduction of 4-nitrophenol to 4-aminophenol. | [244] | |
1.93/1.125 mmol H2PtCl6· 6H2O, 0.5-M-NaOH/EG solution, 40 mmol oleic acid, 40 mmol oleylamine and 50 mL hexadecene | 170 °C–200 °C, | Biphasic micro tube reactor (MTR) | reaction time of 90 s | 2 nm | With the increase in the reaction temperature, the rate constant k decreases simultaneously from 6.5 × 10−5/s at 160 °C to 3.2 × 10−6 /s at 170 °C. | [245] | |
Pd | 7.42 mM K2PdCl4 | 180 °C | PFA tube | ID = 1.0 mm, flow rate: 0.2 mL/min, residence time d 10 do 150 cm | ~13.0 ± 3.5 nm | Preparation of surfactant-free Pd nanocrystals (NC) uniformly loaded on N-doped porous carbon in a microfluidic system. Pd/N-carbon composites show outstanding activity for the formic acid electrochemical oxidation. | [246] |
8.3 mM of β-d-Glucose, 36.9 mg of soluble starch and 1.78 mL of H2PdCl4, 0.5 M NaOH | pH 5.5, 60 °C | Tygon® tubing | residence time: 10 min, flow rate: 132 mL/h, | 7.2 ± 21.1 nm and 4.40 ± 1.68 | The ecological synthesis of palladium nanoparticles was carried out using polysaccharides as reducing agents in a microreactor. Stable PdNP suspensions with small and well-dispersed particles were obtained. Nanoparticles synthesized in a microreactor showed high catalytic activity in the degradation of 4-nitrophenol. | [247] | |
50 mM Palladium(II) acetate in toluene, oleylamine, methanol and hexanol | 100 °C | Si-Pyrex microreactor | ~270 µm deep, 700 µm wide, and 80 cm long, flow rate: 1 mL/min | 1.0 nm and 3.0 nm | Synthesis of colloidal Pd nanoparticles in the presence of oleylamine (OLA) and trioctylphosphine (TOP) ligands using in situ SAXS and XAFS in microflow. Protective ligands slow down growth, resulting in continuous nucleation of nanoparticles. The final size of the nanoparticles was influenced by the binding strength of the ligands. Strongly binding TOP ligands led to synthesis of Pd nanoparticles with a size of 1 nm with a narrow size distribution (±20%), while OLA led to particles with a size of 3 nm (±20%). | [248] | |
Na2PdCl4 in mixtures of water, ethylene glycol, PVP and KBr | 160 °C and 190 °C | Silicon/Pyrex microreactors | V: 100 μL, pressure: 0.8 MPa, gas/liquid volume flow ratios were in the range of 0.8 to 3.5. | 4 nm Pd rod-shaped nanostructures | Synthesis of Pd rod-shaped nanostructures in laminar and segmented flow. The use of air as a segmentation gas resulted in an anisotropic increase in Pd, and increased temperatures (160 °C and 190 °C) and pressure (0.8 MPa) shortened the synthesis time to 2 min. The resulting Pd nanorods showed high activity at moderate temperature (40 °C) and pressure (0.2 MPa) during the catalytic hydrogenation of styrene. | [216] | |
Na2PdCl4, L-ascorbic acid, sunflower oil, trimethyl chitosan (TMC) | 25 °C | New microfluidic platform | 60 mm (W) × 20 mm (H), flow rates: 50 and 250 µL/ min | spherical 35–40 nm | Designing a microreactor for the continuous synthesis of nanoparticles of controlled sizes and shapes in drops. Trimethylchitosan (TMC)-coated palladium (Pd) nanoparticles were fabricated for biomedical applications. | [249] | |
Na2PdCl4, L-ascorbic acid, KBr, PVP | 80 °C | PTFE tube | PTFE tube was reduced to ca. 500 μm, | spherical ca. 5 nm, cubes/bars ca.10, 14, 18 nm | [250] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pach, A.; Szot, A.; Fitzner, K.; Luty-Błocho, M. Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. Micromachines 2024, 15, 1119. https://doi.org/10.3390/mi15091119
Pach A, Szot A, Fitzner K, Luty-Błocho M. Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. Micromachines. 2024; 15(9):1119. https://doi.org/10.3390/mi15091119
Chicago/Turabian StylePach, Adrianna, Aleksandra Szot, Krzysztof Fitzner, and Magdalena Luty-Błocho. 2024. "Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems" Micromachines 15, no. 9: 1119. https://doi.org/10.3390/mi15091119
APA StylePach, A., Szot, A., Fitzner, K., & Luty-Błocho, M. (2024). Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. Micromachines, 15(9), 1119. https://doi.org/10.3390/mi15091119