Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review
Abstract
1. Introduction
2. Operating Principles of Triboelectric Nanogenerators and Hybrid Renewable Energy Systems
2.1. TENG Based on Contact–Separation Mode (CS-TENG)
2.2. TENG Based on Sliding Mode (Sl-TENG)
2.3. TENG Based on Free-Standing Mode (FS-TENG)
2.4. TENG Based on Single Electrode Mode (SI-TENG)
2.5. TENG for Hybrid Renewable Energy Systems (HRESs)
3. Smart Device and Emerging Technology Applications
3.1. Smart Devices (SDs)
3.2. Emerging Technologies (ETs)
3.3. Advanced TENG for Smart Devices and Emerging Technologies
3.4. TENG and Potential Applications
| Materials | Surface Structure | Output Performance | Emerging Technology Applications | Refs. |
|---|---|---|---|---|
| Al/CP/BTO-PTFE/Cu | BTO nanoparticle | 103 V, 3.6 µA, 32.4 µW/cm2 | Charging, electronic device | [210] |
| Cu/PDMS-Ag/PDMS | Ag nanowire | VOC of 32 V, Isc of 0.7 µA, 9.36 mW/m2 | Wearable strain sensor, self-powered clothing | [211] |
| PDMS/BSFO | BSFO nanomaterial | VOC of 152 V, Isc of 10.6 µA, 4.71 W/m2, 120 LEDs | Intelligent sensors | [212] |
| CNT/PEI Fabric | Carbon nanotube | 3.2 W/m2 | Small electronics, self-powered sensor | [213] |
| PTFE/fabric-Conductive fabric | Fabric | 145 V (VOC), 3.25 µA (Isc), 343.19 mW/m2 | Fire alarm network | [214] |
| PET/ITO/ZnO/PDMS-Al | ZnO nanorod | 39.34 V (VOC), 82 µW | Pressure sensor, lighting | [215] |
| PVDF/Cu2Te-PVA/NaCl | Cu2Te leaf-structure | 170 V, 32 µA, 1.62 W/m2 | Wearable sensing, sustainable electronics | [216] |
| PDMS-ZnO | ZnO nanorod | 39.34 V, 82.2 µW | Compression sensing | [215] |
| PHFC film | Nanofibers | 330.6 µW/cm2 | Sustainable agriculture | [217] |
| Diatomaceous earth/Carbon nanotubes/styrenebutadiene rubber | Nanotubes | 6.26 mW/cm3 | Sensor application | [218] |
| PDMS/Multiwall carbon nanotube | Carbon nanotube | 110 V, 10 µA, 1 Wm−2 | Internet of Things, human–machine interface (HMI) sensing | [219] |
| Electrochemical-TENG | 575 V, 42 µA | Electromechanical applications | [220] | |
| Polyaniline/Textile/PVC/Al | Textile | 257.68 V, 5.36 µA | Wearable electronics, self-powered source | [221] |
| Ni1Co2Al-TENG | Textile | 270 V, 18 µA | Self-charging system | [222] |
| Copper/PTFE/Copper | - | 544 V, 61.16 µA, 33.27 mW | Portable electronics | [223] |
| Mg/PLA-Reed film/Mg | Cytoderm structure | 0.176 V, 192 nA | Implanted medical device | [224] |
| Al/Nylon-TiO2 NPs/PV gel/ITO | TiO2 nanoparticles | 121 V, 11.1 µA, 149 µW/cm2 | Harvesting energy, temperature sensor | [225] |
| Skin-PVBVA@ MXene/Al | Eco-composite | 252 V, 760 mW/m2 | Sensing and harvesting energy | [226] |
4. Advantages, Disadvantages, and Solutions
4.1. Advantages
4.2. Disadvantages
4.3. Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TENG | Triboelectric nanogenerator |
| SD | Smart device |
| ET | Emerging technology |
| RE | Renewable energy |
| REEGC | Renewable energy generation capacity |
| GW | Gigawatt |
| IRENA | The International Renewable Energy Agency |
| IoT | Internet of Things |
| UAV | Unmanned aerial vehicle |
| 5G-network | The fifth generation of mobile technology |
| °C | Degrees Celsius |
| VOC | Open-circuit voltage |
| The triboelectric charge density | |
| The distance between the two contact surfaces | |
| The vacuum permittivity | |
| 3D | Three dimensional |
| SDET | Smart devices and emerging technology |
| PV | Photovoltaic |
| ICT | Information and communication technology |
| BIM | Building information modeling |
| EMG | Electromagnetic generator |
| PENG | Piezoelectric nanogenerator |
| AI | Artificial intelligence |
| V | Voltage |
| PDMS | Polydimethylsiloxane |
| Al | Aluminum |
| PTFE | Polytetrafluoroethylene |
| Au | Gold |
| NaCl | Sodium chloride |
| PVC | Polyvinylchloride |
| Cu | Copper |
| H2 | Hydro |
| PVDF | Polyvinylidene fluoride |
| PEEK | Polyether ether ketone |
| PC | Polycarbonate |
| PP | Polypropylene |
| PA | Nylon |
| FEP | Fluorinated ethylene propylene |
| PET | Polyethylene terephthalate |
| PEI | Polyetherimide |
| PS | Polystyrene |
| PI | Polyimide |
| PPS | Polyphenylenesulphide |
| CoNi | Cobalt–Nickel |
| PZT | Zirconate titanate |
| BaTiO3 | Barium titanate |
| LiNbO3 | Lithium niobate |
| ZnO | Zinc oxide |
| KNN | Potassium sodium niobate |
| Cu2Te | Copper telluride |
| A | Ampe |
| HMI | Human–machine interface |
| W/m2 | Watt per square meter |
| µW | Microwatt |
| mW | Milliwatt |
| W | Watt |
| ANN | Artificial neural network |
| PMM | Power management module |
References
- Taha, M.F.; Mao, H.; Zhang, Z.; Elmasry, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Goel, N.; Kumar, R. Physics of 2D Materials for Developing Smart Devices. Nano-Micro Lett. 2025, 17, 197. [Google Scholar] [CrossRef]
- Barros, E.B.C.; Souza, W.O.; Costa, D.G.; Filho, G.P.R.; Figueiredo, G.B.; Peixoto, M.L.M. Energy management in smart grids: An Edge-Cloud Continuum approach with Deep Q-learning. Future Gener. Comput. Syst. 2025, 165, 107599. [Google Scholar] [CrossRef]
- Su, M.; Song, Y. Printable Smart Materials and Devices: Strategies and Applications. Chem. Rev. 2022, 122, 5144–5164. [Google Scholar] [CrossRef]
- Wang, K.I.K.; Zhou, X.; Liang, W.; Yan, Z.; She, J. Federated Transfer Learning Based Cross-Domain Prediction for Smart Manufacturing. IEEE Trans. Ind. Inform. 2022, 18, 4088–4096. [Google Scholar] [CrossRef]
- Oladimeji, D.; Gupta, K.; Kose, N.A.; Gundogan, K.; Ge, L.; Liang, F. Smart Transportation: An Overview of Technologies and Applications. Sensors 2023, 23, 3880. [Google Scholar] [CrossRef]
- Kang, M.; Cui, X.; Zhou, Y.; Han, Y.; Nie, J.; Zhang, Y. Self-powered wireless automatic countering system based on triboelectric nanogenerator for smart logistics. Nano Energy 2024, 123, 109365. [Google Scholar] [CrossRef]
- Roy, S.; Dasgupta Ghosh, B.; Mishra, S.; Lim Goh, K.; Kim, J. Customized Extrusion Nozzle Assisted Robust Nylon 6/MWCNT Nanocomposite Based Triboelectric Nanogenerators for Advanced Smart Wearables. Chem. Eng. J. 2024, 493, 152598. [Google Scholar] [CrossRef]
- Tan, J.; Wang, X.; Chu, W.; Fang, S.; Zheng, C.; Xue, M.; Wang, X.; Hu, T.; Guo, W. Harvesting Energy from Atmospheric Water: Grand Challenges in Continuous Electricity Generation. Adv. Mater. 2024, 36, 2211165. [Google Scholar] [CrossRef]
- Holzinger, A.; Keiblinger, K.; Holub, P.; Zatloukal, K.; Müller, H. AI for life: Trends in artificial intelligence for biotechnology. New Biotechnol. 2023, 74, 16–24. [Google Scholar] [CrossRef]
- Chen, R.; Wang, H.; Wang, H.; Wang, H.; Bai, L.; Ai, X.; Liu, L.; Hu, Z.; Yuan, Z. A Motion-Sensing Integrated Soft Robot with Triboelectric Nanogenerator for Pipeline Inspection. Adv. Intell. Syst. 2025, 7, 2400643. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021, 33, 2000619. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.A.H.; Khojah, H.M.J. Nanoparticle-based delivery systems for phytochemicals in cancer therapy: Molecular mechanisms, clinical evidence, and emerging trends. Drug Dev. Ind. Pharm. 2025, 51, 1105–1121. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; Rehman, S.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Sigov, A.; Ratkin, L.; Ivanov, L.A.; Xu, L.D. Emerging Enabling Technologies for Industry 4.0 and Beyond. Inf. Syst. Front. 2024, 26, 1585–1595. [Google Scholar] [CrossRef]
- Fidan, I.; Huseynov, O.; Ali, M.A.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Hasanov, S.; Tantawi, K.; Yasa, E.; Yilmaz, O.; et al. Recent Inventions in Additive Manufacturing: Holistic Review. Inventions 2023, 8, 103. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Trinh, V.L.; Chung, C.K.; Nguyen, X.C.; Nguyen, T.S. A Brief Review of Renewable Energy: Sustainable Energy Production, Integration, and Application. In Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), Nha Trang, Vietnam, 12–15 November 2020; Long, B.T., Kim, Y.-H., Ishizaki, K., Toan, N.D., Parinov, I.A., Vu, N.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 202–207. [Google Scholar]
- IRENA C; COP29; GRA; MoEA; Government of Brazil. Delivering on the UAE Consensus: Tracking Progress Toward Tripling Renewable Energy Capacity and Doubling Energy Efficiency by 2030, International Renewable Energy Agency, COP28 Presidency, COP29 Presidency, Ministry of Energy of the Republic of Azerbaijan, and Government of Brazil, Abu Dhabi. 2024. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Oct/IRENA_UAE_Consensus_2030_tripling_renewables_doubling_efficiency_2024.pdf (accessed on 24 May 2025).
- IRENA. Renewable Capacity Statistics 2025, International Renewable Energy Agency, Abu Dhabi. 2025. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2025/Mar/IRENA_DAT_RE_Capacity_Statistics_2025.pdf (accessed on 25 May 2025).
- Chen, J.-Q.; Wu, Y.; Xiao, F.-X. Single-atom photocatalysis: A new frontier toward solar energy conversion. Mol. Catal. 2025, 575, 114892. [Google Scholar] [CrossRef]
- Su, B.; Guo, T.; Alam, M.M. A review of wind energy harvesting technology: Civil engineering resource, theory, optimization, and application. Appl. Energy 2025, 389, 125771. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, Y.; Yang, J.; Su, W.; Zhang, H.; Wang, Z.l.; Wang, J.; Li, X. Magnetic Suspension Damped Hybrid Nanogenerator for Water Wave Energy Harvesting. Adv. Energy Mater. 2025, 15, 2500130. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, Z.; Huang, K.; Guo, S.; Xu, C.-Y.; Chang, F.-J. Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems. Renew. Sustain. Energy Rev. 2025, 210, 115175. [Google Scholar] [CrossRef]
- Anya, B.; Mohammadpourfard, M.; Akkurt, G.G.; Mohammadi-Ivatloo, B. Exploring geothermal energy based systems: Review from basics to smart systems. Renew. Sustain. Energy Rev. 2025, 210, 115185. [Google Scholar] [CrossRef]
- Ock, I.W.; Yin, J.; Wang, S.; Zhao, X.; Baik, J.M.; Chen, J. Advances in Blue Energy Fuels: Harvesting Energy from Ocean for Self-Powered Electrolysis. Adv. Energy Mater. 2025, 15, 2400563. [Google Scholar] [CrossRef]
- Mensah, T.N.O.; Oyewo, A.S.; Breyer, C. The global sustainable bioenergy potential until 2050 in global-national resolution. Appl. Energy 2025, 400, 126464. [Google Scholar] [CrossRef]
- Lin, L.; Chung, C.-K. PDMS Microfabrication and Design for Microfluidics and Sustainable Energy Application: Review. Micromachines 2021, 12, 1350. [Google Scholar] [CrossRef]
- Ritu; Mitra, R.; Sherrell, P.C.; Houshyar, S.; Wang, L.; Gupta, M.K.; Patel, M.K. Flexible High Temperature Stable Hydrogel Based Triboelectric Nanogenerator for Structural Health Monitoring and Deep Learning Augmented Human Motion Classification. Small 2025, 21, 2502739. [Google Scholar] [CrossRef]
- Trinh, V.-L.; Chung, C.-K. Use of Triboelectric Nanogenerators in Advanced Hybrid Renewable Energy Systems for High Efficiency in Sustainable Energy Production: A Review. Processes 2024, 12, 1964. [Google Scholar] [CrossRef]
- Pang, H.; Feng, Y.; An, J.; Chen, P.; Han, J.; Jiang, T.; Wang, Z.L. Segmented Swing-Structured Fur-Based Triboelectric Nanogenerator for Harvesting Blue Energy toward Marine Environmental Applications. Adv. Funct. Mater. 2021, 31, 2106398. [Google Scholar] [CrossRef]
- Maiti, S.; Karan, S.K.; Kim, J.K.; Khatua, B.B. Nature Driven Bio-Piezoelectric/Triboelectric Nanogenerator as Next-Generation Green Energy Harvester for Smart and Pollution Free Society. Adv. Energy Mater. 2019, 9, 1803027. [Google Scholar] [CrossRef]
- Mousavi, M.; Alzgool, M.; Davaji, B.; Towfighian, S. High Signal-to-Noise Ratio Event-Driven MEMS Motion Sensing. Small 2024, 20, 2304591. [Google Scholar] [CrossRef] [PubMed]
- Walden, R.; Kumar, C.; Mulvihill, D.M.; Pillai, S.C. Opportunities and Challenges in Triboelectric Nanogenerator (TENG) Based Sustainable Energy Generation Technologies: A Mini-Review. Chem. Eng. J. Adv. 2022, 9, 100237. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; El-Kady, M.F.; Radhi, A.; Jeong, C.K.; Selvaganapathy, P.R.; Zu, J.; Ren, S.; Wang, Q.; Kaner, R.B. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. 2019, 6, 1802230. [Google Scholar] [CrossRef]
- Hwang, H.; Lee, K.Y.; Shin, D.; Shin, J.; Kim, S.; Choi, W. Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers. Appl. Surf. Sci. 2018, 442, 693–699. [Google Scholar] [CrossRef]
- Chen, M.; Ji, M.; Huang, L.; Wu, N.; Jiang, T.; Li, C.; Li, W.; Yu, B.; Luo, J.; Li, X.; et al. Highly elastic, lightweight, and high-performance all-aerogel triboelectric nanogenerator for self-powered intelligent fencing training. Mater. Sci. Eng. R Rep. 2025, 165, 101004. [Google Scholar] [CrossRef]
- Jin, T.; Sun, Z.; Li, L.; Zhang, Q.; Zhu, M.; Zhang, Z.; Yuan, G.; Chen, T.; Tian, Y.; Hou, X.; et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381. [Google Scholar] [CrossRef]
- Ke, K.-H.; Chung, C.-K. High-Performance Al/PDMS TENG with Novel Complex Morphology of Two-Height Microneedles Array for High-Sensitivity Force-Sensor and Self-Powered Application. Small 2020, 16, 2001209. [Google Scholar] [CrossRef]
- Yang, J.; Hong, K.; Hao, Y.; Zhu, X.; Qin, Y.; Su, W.; Zhang, H.; Zhang, C.; Wang, Z.L.; Li, X. Triboelectric Nanogenerators with Machine Learning for Internet of Things. Adv. Mater. Technol. 2025, 10, 2400554. [Google Scholar] [CrossRef]
- Yu, C.-Y.; Hsu, C.-C.; Ku, C.-A.; Chung, C.-K. Stripe-Patterned Al/PDMS Triboelectric Nanogenerator for a High-Sensitive Pressure Sensor and a Novel Two-Digit Switch with Surface-Edge Enhanced Charge Transfer Behavior. Nanomaterials 2025, 15, 760. [Google Scholar] [CrossRef]
- Li, C.; Luo, R.; Bai, Y.; Shao, J.; Ji, J.; Wang, E.; Li, Z.; Meng, H.; Li, Z. Molecular Doped Biodegradable Triboelectric Nanogenerator with Optimal Output Performance. Adv. Funct. Mater. 2024, 34, 2400277. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, J.; Xie, Q.; Mi, L. Functional metal/covalent organic framework materials for triboelectric nanogenerator. Coord. Chem. Rev. 2023, 486, 215118. [Google Scholar] [CrossRef]
- Lei, R.; Shi, Y.; Ding, Y.; Nie, J.; Li, S.; Wang, F.; Zhai, H.; Chen, X.; Wang, Z.L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190. [Google Scholar] [CrossRef]
- Cho, H.; Chung, J.; Shin, G.; Sim, J.-Y.; Kim, D.S.; Lee, S.; Hwang, W. Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy 2019, 56, 56–64. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, L.; Wang, Y.-C.; Li, J.; Nie, J.; Wang, Z.L. A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Adv. Funct. Mater. 2021, 31, 2104928. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, J.; Chen, K.; Chen, J. Advances in Nanostructures for High-Performance Triboelectric Nanogenerators. Adv. Mater. Technol. 2021, 6, 2000916. [Google Scholar] [CrossRef]
- Duan, Z.; Cai, F.; Chen, Y.; Chen, T.; Lu, P. Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors. Sensors 2024, 24, 3812. [Google Scholar] [CrossRef]
- Patil, O.A.; Ghode, S.B.; Patil, S.L.; Chougale, M.Y.; Patil, S.R.; Patil, C.S.; Bagade, A.A.; Sonkawade, A.R.; Tiwari, A.P.; Kamat, R.K.; et al. Environmentally friendly agar-agar biomaterial-based triboelectric nanogenerator for sustainable electronics. Environ. Prog. Sustain. Energy 2025, 44, e14564. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kim, D.-W.; Tcho, I.-W.; Kim, J.-K.; Kim, M.-S.; Choi, Y.-K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, P.; Zhu, H.; Yang, S.; Wei, Y.; You, J.; Yang, X.; Xu, G.; Song, Q. A highly efficient self-powered air purification system based on high-voltage-applicable DC triboelectric nanogenerator. Nano Energy 2025, 139, 110947. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Fu, H.; Xu, B. Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing. Nano Energy 2023, 115, 108717. [Google Scholar] [CrossRef]
- Trinh, V.-L.; Chung, C.-K. Advances in Triboelectric Nanogenerators for Sustainable and Renewable Energy: Working Mechanism, Tribo-Surface Structure, Energy Storage-Collection System, and Applications. Processes 2023, 11, 2796. [Google Scholar] [CrossRef]
- Aliyana, A.K.; Bairagi, S.; Kumar, C.; Mulvihill, D.M.; Stylios, G.K. Investigating superior performance by configuring bimetallic electrodes on fabric triboelectric nanogenerators (F-TENGs) for IoT enabled touch sensor applications. Nano Energy 2024, 130, 110125. [Google Scholar] [CrossRef]
- Rahimi Sardo, F.; Rayegani, A.; Matin Nazar, A.; Balaghiinaloo, M.; Saberian, M.; Mohsan, S.A.; Alsharif, M.H.; Cho, H.-S. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. Biosensors 2022, 12, 697. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, J.-S.; Jeong, Y.; Hwang, S.; Yoo, H.; Jeong, Y.; Gu, J.; Mahato, M.; Ko, J.; Jeon, S.; et al. All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems. Adv. Energy Mater. 2022, 12, 2201341. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Yu, X.; Xu, Y.; Yang, Y.; Liu, S.; Cheng, T.; Wang, Z.L. Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture. Appl. Energy 2022, 306, 117977. [Google Scholar] [CrossRef]
- Liu, A.; Su, Y.; Luo, J.; Zhang, X.; Su, X.; Dai, G.; Feng, W.; Li, Z.; Zhao, X.; Zhao, K. A pitched roof-like hybrid piezo/triboelectric nanogenerator with reliable supply capability for building a self-powered industrial monitoring system. Nano Energy 2024, 121, 109222. [Google Scholar] [CrossRef]
- Cao, L.N.Y.; Xu, Z.; Wang, Z.L. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials 2022, 12, 3261. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xiong, Y.; Sun, J.; Xie, X.; Sun, Q.; Wang, Z.L. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nano-Micro Lett. 2022, 15, 14. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.; Yang, L.; Kong, Y.; Fan, X.; Zhang, J.; Liu, X.; Yuan, B. A flame-retardant and conductive fabric-based triboelectric nanogenerator: Application in fire alarm and emergency evacuation. J. Colloid Interface Sci. 2024, 658, 219–229. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wang, S.; Li, W.; Liu, G.; Zhao, J.; Zhang, X.; Zhang, C. Vibrational Triboelectric Nanogenerator-Based Multinode Self-Powered Sensor Network for Machine Fault Detection. IEEE/ASME Trans. Mechatron. 2020, 25, 2188–2196. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Jiang, C.; Ping, J.; Ying, Y. Triboelectric nanogenerators for smart agriculture. InfoMat 2023, 5, e12391. [Google Scholar] [CrossRef]
- Gao, C.; Tong, W.; Liu, S.; Wang, X.; Zhang, Y. Fully degradable chitosan–based triboelectric nanogenerators applying in disposable medical products for information transfer. Nano Energy 2023, 117, 108876. [Google Scholar] [CrossRef]
- Ding, W.; Wang, A.C.; Wu, C.; Guo, H.; Wang, Z.L. Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics. Adv. Mater. Technol. 2019, 4, 1800487. [Google Scholar] [CrossRef]
- Hajra, S.; Panda, S.; Khanberh, H.; Vivekananthan, V.; Chamanehpour, E.; Mishra, Y.K.; Kim, H.J. Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano Energy 2023, 115, 108729. [Google Scholar] [CrossRef]
- Rani, G.M.; Ghoreishian, S.M.; Umapathi, R.; Vivekananthan, V.; Huh, Y.S. A biocompatible triboelectric nanogenerator-based edible electronic skin for morse code transmitters and smart healthcare applications. Nano Energy 2024, 128, 109899. [Google Scholar] [CrossRef]
- Lee, C.; Qin, Y.; Wang, Y.-C. Triboelectric nanogenerators for self-powered sensors and other applications. MRS Bull. 2025, 50, 428–438. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, G.; Zhang, Z.; Ren, H.; Zhou, H.; Gui, Y.; Du, Z.; Cheng, G. Enhancing the output energy of triboelectric nanogenerator by adaptive arc discharge devices and its application in wireless weather sensing system. Nano Energy 2024, 129, 109987. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Chung, C.-K. Dual-Surface-Modified Triboelectric Nanogenerator with Polymer Microcone Array and Its Application to Impact Visual and Voice Warning. Polymers 2025, 17, 1569. [Google Scholar] [CrossRef]
- Wu, C.X.; Kim, T.W.; Li, F.S.; Guo, T.L. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites. ACS Nano 2016, 10, 6449–6457. [Google Scholar] [CrossRef]
- Xia, X.N.; Chen, J.; Liu, G.L.; Javed, M.S.; Wang, X.; Hu, C.G. Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator. Carbon 2017, 111, 569–576. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, D.; Cai, H.; Yang, Y.; Zhang, H.; Du, C. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring. Nano Energy 2022, 102, 107719. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Wang, C.; Ma, J.; Li, H.; Zhang, M.; Lei, S.; Wang, W. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 2018, 50, 562–570. [Google Scholar] [CrossRef]
- Yao, G.; Kang, L.; Li, J.; Long, Y.; Wei, H.; Ferreira, C.A.; Jeffery, J.J.; Lin, Y.; Cai, W.; Wang, X. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 2018, 9, 5349. [Google Scholar] [CrossRef] [PubMed]
- Trinh, V.L.; Chung, C.K. A Facile Method and Novel Mechanism Using Microneedle-Structured PDMS for Triboelectric Generator Applications. Small 2017, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.; Ouyang, H.; Jiang, D.; Fan, Y.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021, 3, e12072. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Wang, Z.; Wang, X.; Zhao, Y.; Ma, J.; Li, H.; Yu, Y.; Wang, Z.L.; Cheng, T. A flexibility-pneumatic triboelectric nanogenerator for stable output of irregular wave energy. Energy Environ. Sci. 2025, 18, 4717–4729. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, J.; Wang, Z.; Ji, L.; Wang, Z.L. Triboelectric nanogenerators for human-health care. Sci. Bull. 2021, 66, 490–511. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Tsai, C.-H.; Hung, C.-W.; Chung, C.-K. A PDMS-Al Triboelectric Nanogenerator Using Two-Pulse Laser to Enhance Effective Contact Area and Its Application. Polymers 2024, 16, 3397. [Google Scholar] [CrossRef]
- Prasanna, A.P.S.; Anithkumar, M.; Kim, S.-J. Hybrid triboelectric nanogenerators: Revolutionizing the energy harvesting through material diversity and device architecture for different applications. Nano Energy 2024, 131, 110253. [Google Scholar] [CrossRef]
- Liufu, Y.H.; Tse, C.K.; Yang, G.; Liao, Y.; Lin, H.; Dai, D.; Lin, H.; Hong, H.; Wu, H.; Zhang, X. Achieving Ultrahigh Efficiency of Triboelectric Nanogenerator Energy Harvesting Systems via Hybrid Electronic-Spark Power Management. Adv. Funct. Mater. 2025, 35, 2415338. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Chung, C.-K. High-Performance Triboelectric Nanogenerator with Double-Side Patterned Surfaces Prepared by CO2 Laser for Human Motion Energy Harvesting. Micromachines 2024, 15, 1299. [Google Scholar] [CrossRef]
- Hao, Y.; Zhu, X.; Hong, K.; Lu, X.; Su, J.; Guo, Z.; Wang, Z.; Qin, Y.; Zhang, H.; Zhang, C.; et al. Advanced sustainable triboelectric nanogenerators for biomedical and clinical applications: In vivo treatments, in vitro therapeutics, and assisted rehabilitations. Chem. Eng. J. 2025, 509, 161042. [Google Scholar] [CrossRef]
- Xu, D.; Jing, Z.; Wang, H.; Yang, W.; Xu, P.; Niu, D.; Ma, P. Advanced flexible self-healing triboelectric nanogenerators for applications in complex environments. Nanoscale 2025, 17, 7713–7737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, Y.; Dong, X.; Wu, J.; Su, X.; Dai, G.; Liu, A.; Feng, W.; Zhao, K.; Lei, B.; et al. Solid–Liquid Elastic Pendulum Triboelectric Nanogenerator Design for Application to Omnidirectional Blue Energy Harvesting. Adv. Mater. Technol. 2025, 10, 2400531. [Google Scholar] [CrossRef]
- Liu, C.; Shimane, R.; Deng, M. Operator-Based Triboelectric Nanogenerator Power Management and Output Voltage Control. Micromachines 2024, 15, 1114. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Munirathinam, P.; Chandrasekhar, A. Self-Powered Triboelectric Nanogenerator for Security Applications. Micromachines 2023, 14, 592. [Google Scholar] [CrossRef]
- Bulathsinghala, R.L.; Deane, J.H.B.; Dharmasena, R.D.I.G. The Distance-Dependent Electric Field Theory for Sliding Mode Triboelectric Nanogenerators. Adv. Energy Mater. 2025, 15, 2403853. [Google Scholar] [CrossRef]
- Rahul, T.P.; Sreekanth, P.S.R. Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting. J. Compos. Sci. 2025, 9, 386. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Chen, X.; Wang, S.; Zhou, Y.S.; Lin, L.; Xie, Y.; Wang, Z.L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774. [Google Scholar] [CrossRef]
- Wang, W.; Yan, J.; Wang, X.; Pang, H.; Sun, C.; Sun, Y.; Wang, L.; Zhang, D. Research on the Performance of a Liquid–Solid Triboelectric Nanogenerator Prototype Based on Multiphase Liquid. Micromachines 2025, 16, 78. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.A.; Vivekanandan, S. Design and Simulation of Single-Electrode Mode Triboelectric Nanogenerator-Based Pulse Sensor for Healthcare Applications Using COMSOL Multiphysics. Energy Technol. 2022, 10, 2101130. [Google Scholar] [CrossRef]
- Trinh, V.L.; Chung, C.K. Renewable energy for SDG-7 and sustainable electrical production, integration, industrial application, and globalization: Review. Clean. Eng. Technol. 2023, 15, 100657. [Google Scholar] [CrossRef]
- Su, Y.; Yin, D.; Zhao, X.; Hu, T.; Liu, L. Exploration of Advanced Applications of Triboelectric Nanogenerator-Based Self-Powered Sensors in the Era of Artificial Intelligence. Sensors 2025, 25, 2520. [Google Scholar] [CrossRef]
- Delgado-Alvarado, E.; Morales-Gonzalez, E.A.; Gonzalez-Calderon, J.A.; Peréz-Peréz, M.C.; Delgado-Maciel, J.; Peña-Juarez, M.G.; Hernandez-Hernandez, J.; Elvira-Hernandez, E.A.; Figueroa-Navarro, M.A.; Herrera-May, A.L. Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges. Technologies 2025, 13, 336. [Google Scholar] [CrossRef]
- Musbah, H.; Aly, H.H.; Little, T.A. Energy management of hybrid energy system sources based on machine learning classification algorithms. Electr. Power Syst. Res. 2021, 199, 107436. [Google Scholar] [CrossRef]
- Bozkurt, A.; Genç, M.S. Optimization of energy and hydrogen storage systems in geothermal energy sourced hybrid renewable energy system. Process Saf. Environ. Prot. 2024, 189, 1052–1060. [Google Scholar] [CrossRef]
- Halkos, G.E.; Gkampoura, E.-C. Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Basit, M.A.; Dilshad, S.; Badar, R.; Sami ur Rehman, S.M. Limitations, challenges, and solution approaches in grid-connected renewable energy systems. Int. J. Energy Res. 2020, 44, 4132–4162. [Google Scholar] [CrossRef]
- Sriphan, S.; Vittayakorn, N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. J. Sci. Adv. Mater. Devices 2022, 7, 100461. [Google Scholar] [CrossRef]
- Ram Ola, S.; Saraswat, A.; Goyal, S.K.; Jhajharia, S.K.; Khan, B.; Mahela, O.P.; Haes Alhelou, H.; Siano, P. A Protection Scheme for a Power System with Solar Energy Penetration. Appl. Sci. 2020, 10, 1516. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef] [PubMed]
- Llácer-Iglesias, R.M.; López-Jiménez, P.A.; Pérez-Sánchez, M. Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water 2021, 13, 3259. [Google Scholar] [CrossRef]
- Maleki, A.; Rosen, M.A.; Pourfayaz, F. Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications. Sustainability 2017, 9, 1314. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Chen, L.; Wu, Q.; Zhao, Z.; Lv, J.-J.; Wang, S.; Pan, S.; Xu, M.; Chen, Y.; et al. Flexible, multifunctional, ultra-light and high-efficiency liquid metal/polydimethylsiloxane sponge-based triboelectric nanogenerator for wearable power source and self-powered sensor. Nano Energy 2024, 127, 109808. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Singh, V.P.; Sadeque, M.S.B.; Yavari, S.; Kalimuldina, G.; Ordu, M. Piezoelectric-Triboelectric Hybrid Nanogenerator for Energy Harvesting and Self-Powered Sensing Applications. Small 2025, 2504626. [Google Scholar] [CrossRef]
- Qian, H.; Zhou, Y.; Cao, Z.; Tang, T.; Deng, J.; Huo, X.; Zhou, H.; Wang, L.; Wu, Z. A Hybrid Nanogenerator Based on Rotational-Swinging Mechanism for Energy Harvesting and Environmental Monitoring in Intelligent Agriculture. Sensors 2025, 25, 5041. [Google Scholar] [CrossRef]
- Zou, H.; Zuo, Z.; Shen, X.; Song, K.; Mao, S.; Chen, B. Research on a Hybrid Self-Powered Landslide Rainfall Sensor Based on Triboelectric Nanogenerators and Electromagnetic Generators. Micromachines 2025, 16, 678. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Jain, A.; Goyal, A.K. Nanograting-assisted flexible Triboelectric Nanogenerator for active human motion detection. Nano Energy 2024, 131, 110318. [Google Scholar] [CrossRef]
- Maamoun, A.A.; Arafa, M.; Esawi, A.M.K. Flexible polyurethane foam: Materials, synthesis, recycling, and applications in energy harvesting—A review. Mater. Adv. 2025, 6, 1842–1858. [Google Scholar] [CrossRef]
- Silverio-Fernández, M.; Renukappa, S.; Suresh, S. What is a smart device?—A conceptualisation within the paradigm of the internet of things. Vis. Eng. 2018, 6, 3. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Lin, Q.; Zhang, Y.; Zhang, Y.; Liu, Z.; Luo, Y.; Xu, X.; Han, F.; Jiang, Z. Flexible three-dimensional force sensor of high sensing stability with bonding and supporting composite structure for smart devices. Smart Mater. Struct. 2021, 30, 105004. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Wang, P.; Chen, X.; Jiang, M.; Zhang, H.; Wang, G.; Liu, F.; Xiang, Z.; Chen, M. Laser-Activated Metallization-Based Hybrid Additive Manufacturing Technology for 3D Flexible Electronics. ACS Appl. Polym. Mater. 2025, 7, 1969–1978. [Google Scholar] [CrossRef]
- Farmanbar, M.; Parham, K.; Arild, Ø.; Rong, C. A Widespread Review of Smart Grids Towards Smart Cities. Energies 2019, 12, 4484. [Google Scholar] [CrossRef]
- Salzmann, C.; Govaerts, S.; Halimi, W.; Gillet, D. The Smart Device specification for remote labs. In Proceedings of the 2015 12th International Conference on Remote Engineering and Virtual Instrumentation (REV), Bangkok, Thailand, 25–27 February 2015; pp. 199–208. [Google Scholar]
- Ahir, S.; Kapadia, S.; Chauhan, J.; Sanghavi, N. The Personal Stun-A Smart Device For Women’s Safety. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–3. [Google Scholar]
- Bikku, T.; Kavitha, V.O.; Lanjewar, C.K.; Choubey, A. Manage and Optimization of Renewable Energy Consumption Efficiency for Smart Homes. In Sustainable Smart Homes and Buildings with Internet of Things; John Wiley and Sons: Hoboken, NJ, USA, 2025; pp. 77–95. [Google Scholar]
- Makroum, M.A.; Adda, M.; Bouzouane, A.; Ibrahim, H. Machine Learning and Smart Devices for Diabetes Management: Systematic Review. Sensors 2022, 22, 1843. [Google Scholar] [CrossRef]
- Jagelčák, J.; Kuba, O.; Kubáňová, J.; Kostrzewski, M.; Nader, M. Dynamic Position Accuracy of Low-Cost Global Navigation Satellite System Sensors Applied in Road Transport for Precision and Measurement Reliability. Sustainability 2024, 16, 5556. [Google Scholar] [CrossRef]
- Qian, K.; Wu, C.; Xiao, F.; Zheng, Y.; Zhang, Y.; Yang, Z.; Liu, Y. Acousticcardiogram: Monitoring Heartbeats using Acoustic Signals on Smart Devices. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 1574–1582. [Google Scholar]
- Wu, B.; Qi, Q.; Liu, L.; Liu, Y.; Wang, J. Wearable Aerogels for Personal Thermal Management and Smart Devices. ACS Nano 2024, 18, 9798–9822. [Google Scholar] [CrossRef]
- Li, X.; Zhao, N.; Jin, R.; Liu, S.; Sun, X.; Wen, X.; Wu, D.; Zhou, Y.; Guo, J.; Chen, S.; et al. Internet of Things to network smart devices for ecosystem monitoring. Sci. Bull. 2019, 64, 1234–1245. [Google Scholar] [CrossRef]
- Roberts, B.; Chucri, K.; Neitzel, R. Improving the accuracy of smart devices to measure noise exposure. J. Occup. Environ. Hyg. 2016, 13, 840–846. [Google Scholar] [CrossRef]
- An, B. Combining Li Zehou’s Aesthetic Theory and Emerging Technologies—Exploring the Construction of an Interactive Academic Field. Appl. Math. Nonlinear Sci. 2024, 9, 2851. [Google Scholar] [CrossRef]
- Almufarreh, A.; Arshad, M. Promising Emerging Technologies for Teaching and Learning: Recent Developments and Future Challenges. Sustainability 2023, 15, 6917. [Google Scholar] [CrossRef]
- D, C.S.; Devarajan, Y. Investigation of Emerging Technologies in Agriculture: An In-Depth Look at Smart Farming, Nano-agriculture, AI, and Big Data. J. Biosyst. Eng. 2025, 50, 170–192. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Mahmmod, B.M.; Alwhelat, A.; Shehada, D.; Shihab, Z.I.; Mohammed, H.J.; Abdulameer, T.H.; Alsabah, M.; Fadel, M.H.; Ali, S.K.; et al. A Comprehensive Review of Sensor Technologies in IoT: Technical Aspects, Challenges, and Future Directions. Computers 2025, 14, 342. [Google Scholar] [CrossRef]
- Hu, X.; Assaad, R.H. A BIM-enabled digital twin framework for real-time indoor environment monitoring and visualization by integrating autonomous robotics, LiDAR-based 3D mobile mapping, IoT sensing, and indoor positioning technologies. J. Build. Eng. 2024, 86, 108901. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K. Harnessing Nanotechnology and Artificial Intelligence to Revolutionize Sustainable Smart Agriculture. In Nanobiotechnology in Agri-Food Sector; Yadav, S.K., Kumari, A., Eds.; Springer Nature Singapore: Singapore, 2025; pp. 123–147. [Google Scholar]
- Torbacki, W. An Integrated MCDA Framework for Prioritising Emerging Technologies in the Transition from Industry 4.0 to Industry 5.0. Appl. Sci. 2025, 15, 8168. [Google Scholar] [CrossRef]
- Dhal, S.B.; Kar, D. Leveraging artificial intelligence and advanced food processing techniques for enhanced food safety, quality, and security: A comprehensive review. Discov. Appl. Sci. 2025, 7, 75. [Google Scholar] [CrossRef]
- Mbunge, E.; Akinnuwesi, B.; Fashoto, S.G.; Metfula, A.S.; Mashwama, P. A critical review of emerging technologies for tackling COVID-19 pandemic. Hum. Behav. Emerg. Technol. 2021, 3, 25–39. [Google Scholar] [CrossRef]
- Lee, C.; Kwon, O.; Kim, M.; Kwon, D. Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technol. Forecast. Soc. Change 2018, 127, 291–303. [Google Scholar] [CrossRef]
- Biswas, P.P.; Chen, W.-H.; Lam, S.S.; Park, Y.-K.; Chang, J.-S.; Hoang, A.T. A comprehensive study of artificial neural network for sensitivity analysis and hazardous elements sorption predictions via bone char for wastewater treatment. J. Hazard. Mater. 2024, 465, 133154. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, F.; Liu, Y.; Ran, L. A deep learning framework to early identify emerging technologies in large-scale outlier patents: An empirical study of CNC machine tool. Scientometrics 2021, 126, 969–994. [Google Scholar] [CrossRef]
- Ang, K.L.; Seng, J.K.; Ngharamike, E.; Ijemaru, G.K. Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches. ISPRS Int. J. Geo-Inf. 2022, 11, 85. [Google Scholar] [CrossRef]
- Klemme, F.; Prinz, J.; Santen, V.M.v.; Henkel, J.; Amrouch, H. Modeling emerging technologies using machine learning: Challenges and opportunities. In Proceedings of the 39th International Conference on Computer-Aided Design, Virtual Event, 2–5 November 2020; p. 15. [Google Scholar]
- Puspitasari, A.A.; An, T.T.; Alsharif, M.H.; Lee, B.M. Emerging Technologies for 6G Communication Networks: Machine Learning Approaches. Sensors 2023, 23, 7709. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, C.; Xu, Y.; Zhang, Y.; Sun, H. Statistical Machine Learning for Power Flow Analysis Considering the Influence of Weather Factors on Photovoltaic Power Generation. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 5348–5362. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, S.; Li, D. Spectral normalization generative adversarial networks for photovoltaic power scenario generation. IET Renew. Power Gener. 2024, 19, e12978. [Google Scholar] [CrossRef]
- Huang, P.B.; Inderawati, M.M.W.; Rohmat, R.; Sukwadi, R. The development of an ANN surface roughness prediction system of multiple materials in CNC turning. Int. J. Adv. Manuf. Technol. 2023, 125, 1193–1211. [Google Scholar] [CrossRef]
- Rifna, E.J.; Ratish Ramanan, K.; Mahendran, R. Emerging technology applications for improving seed germination. Trends Food Sci. Technol. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, L.; Wang, F.; Xiong, W.; Wu, T.; Demian, P.; Osmani, M. Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis. Systems 2025, 13, 595. [Google Scholar] [CrossRef]
- Khouryieh, H.A. Novel and emerging technologies used by the U.S. food processing industry. Innov. Food Sci. Emerg. Technol. 2021, 67, 102559. [Google Scholar] [CrossRef]
- Slikker, W.; de Souza Lima, T.A.; Archella, D.; de Silva, J.B.; Barton-Maclaren, T.; Bo, L.; Buvinich, D.; Chaudhry, Q.; Chuan, P.; Deluyker, H.; et al. Emerging technologies for food and drug safety. Regul. Toxicol. Pharmacol. 2018, 98, 115–128. [Google Scholar] [CrossRef]
- Okwu, M.O.; Tartibu, L.K.; Maware, C.; Enarevba, D.R.; Afenogho, J.O.; Essien, A. Emerging Technologies of Industry 4.0: Challenges and Opportunities. In Proceedings of the 2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 4–5 August 2022; pp. 1–13. [Google Scholar] [CrossRef]
- Singh, S.; Barde, A.; Mahanty, B.; Tiwari, M.K. Emerging technologies-based and digital twin driven inclusive manufacturing system. Int. J. Integr. Supply Manag. 2020, 13, 353–375. [Google Scholar] [CrossRef]
- Lin, Z.; Jiang, T.; Shang, J. The emerging technology of biohybrid micro-robots: A review. Bio-Des. Manuf. 2022, 5, 107–132. [Google Scholar] [CrossRef]
- Kusiak, A. Fundamentals of smart manufacturing: A multi-thread perspective. Annu. Rev. Control 2019, 47, 214–220. [Google Scholar] [CrossRef]
- Yang, H.; Kumara, S.; Bukkapatnam, S.T.S.; Tsung, F. The internet of things for smart manufacturing: A review. IISE Trans. 2019, 51, 1190–1216. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, C.; Wu, M.; Zhang, J.; Chen, P.; Chen, H.; Jia, C.; Liang, X.; Xu, M. A novel flow sensing and controlling system based on the flapping film triboelectric nanogenerator toward smart factories. Sens. Actuators A Phys. 2022, 344, 113727. [Google Scholar] [CrossRef]
- Chung, C.-K.; Huang, Y.-J.; Wang, T.-K.; Lo, Y.-L. Fiber-Based Triboelectric Nanogenerator for Mechanical Energy Harvesting and Its Application to a Human–Machine Interface. Sensors 2022, 22, 9632. [Google Scholar]
- Wei, Z.; Wang, J.; Liu, Y.; Yuan, J.; Liu, T.; Du, G.; Zhu, S.; Nie, S. Sustainable Triboelectric Materials for Smart Active Sensing Systems. Adv. Funct. Mater. 2022, 32, 2208277. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Bohara, K.; Joshi, P.; Acharya, K.P.; Ramena, G. Emerging technologies revolutionising disease diagnosis and monitoring in aquatic animal health. Rev. Aquac. 2024, 16, 836–854. [Google Scholar] [CrossRef]
- Abdi, S.; Kitsara, I.; Hawley, M.S.; de Witte, L.P. Emerging technologies and their potential for generating new assistive technologies. Assist. Technol. 2021, 33, 17–26. [Google Scholar] [CrossRef]
- Al-Ansi, A.; Al-Ansi, A.M.; Muthanna, A.; Elgendy, I.A.; Koucheryavy, A. Survey on Intelligence Edge Computing in 6G: Characteristics, Challenges, Potential Use Cases, and Market Drivers. Future Internet 2021, 13, 118. [Google Scholar] [CrossRef]
- Trinh, V.L.; Chung, C.K.; Nguyen, X.C.; Nguyen, T.S.; Tran, N.T.; Nguyen, H.H.; Hoang, V.N. Triboelectric Nanogenerator for the Emerging Technologies and Smart Manufacturing. In Proceedings of the 1st International Conference on Sustainability and Emerging Technologies for Smart Manufacturing, Hanoi, Vietnam, 27–28 April 2024; Hoang, T.D., Solanki, V.K., Mahmud, J., Nguyen, T.D.L., Eds.; Springer Nature Singapore: Singapore, 2025; pp. 429–436. [Google Scholar]
- Malekloo, A.; Ozer, E.; AlHamaydeh, M.; Girolami, M. Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct. Health Monit. 2021, 21, 1906–1955. [Google Scholar] [CrossRef]
- Ren, Z.; Wu, L.; Pang, Y.; Zhang, W.; Yang, R. Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy 2022, 100, 107522. [Google Scholar] [CrossRef]
- Meinhold, R.; Wagner, C.; Dhar, B.K. Digital sustainability and eco-environmental sustainability: A review of emerging technologies, resource challenges, and policy implications. Sustain. Dev. 2025, 33, 2323–2338. [Google Scholar] [CrossRef]
- Bogaerts, A.; Neyts, E.C. Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Lett. 2018, 3, 1013–1027. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Linley, S.; Reisner, E. Solar reforming as an emerging technology for circular chemical industries. Nat. Rev. Chem. 2024, 8, 87–105. [Google Scholar] [CrossRef]
- Licardo, J.T.; Domjan, M.; Orehovački, T. Intelligent Robotics—A Systematic Review of Emerging Technologies and Trends. Electronics 2024, 13, 542. [Google Scholar] [CrossRef]
- Banafaa, M.K.; Ö, P.; Shayea, I.; Alhammadi, A.; Shamsan, Z.A.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A Comprehensive Survey on 5G-and-Beyond Networks With UAVs: Applications, Emerging Technologies, Regulatory Aspects, Research Trends and Challenges. IEEE Access 2024, 12, 7786–7826. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.; Goyal, N.; Singh, A.; Cheng, X.; Singh, P. Secure and energy-efficient smart building architecture with emerging technology IoT. Comput. Commun. 2021, 176, 207–217. [Google Scholar] [CrossRef]
- Razdan, S.; Sharma, S. Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies. IETE Tech. Rev. 2022, 39, 775–788. [Google Scholar] [CrossRef]
- Mitra, D.; Adhikari, P.; Djebaili, R.; Thathola, P.; Joshi, K.; Pellegrini, M.; Adeyemi, N.O.; Khoshru, B.; Kaur, K.; Priyadarshini, A.; et al. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. Plant Physiol. Biochem. 2023, 196, 103–120. [Google Scholar] [CrossRef]
- Lê, H.; Seitlinger, J.; Lindner, V.; Olland, A.; Falcoz, P.-E.; Benkirane-Jessel, N.; Quéméneur, E. Patient-Derived Lung Tumoroids—An Emerging Technology in Drug Development and Precision Medicine. Biomedicines 2022, 10, 1677. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, G.; Libanori, A.; Chen, J. Wearable Triboelectric Nanogenerators for Therapeutics. Trends Chem. 2021, 3, 279–290. [Google Scholar] [CrossRef]
- Li, X.; Tat, T.; Chen, J. Triboelectric nanogenerators for self-powered drug delivery. Trends Chem. 2021, 3, 765–778. [Google Scholar] [CrossRef]
- Fu, S.; Hu, C. Achieving Ultra-Durability and High Output Performance of Triboelectric Nanogenerators. Adv. Funct. Mater. 2024, 34, 2308138. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Z. Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy 2019, 56, 16–24. [Google Scholar] [CrossRef]
- Gao, M.; Yang, Z.; Choi, J.; Wang, C.; Dai, G.; Yang, J. Triboelectric Nanogenerators for Preventive Health Monitoring. Nanomaterials 2024, 14, 336. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Yue, M.; Yao, H.; Tian, H.; Sun, X.; Wu, Y.; Huang, Z.; Ban, D.; Zheng, H. Hybridized energy harvesting device based on high-performance triboelectric nanogenerator for smart agriculture applications. Nano Energy 2022, 102, 107681. [Google Scholar] [CrossRef]
- Shu, X.; Kang, M.; Zhou, Y.; Cui, X.; Nie, J.; Zhao, Z.; Zhang, Y. Triboelectric nanogenerators based self-powered visualized weight sensor with high accuracy and real time. Nano Energy 2025, 135, 110624. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef]
- Zhou, Q.; Deng, S.; Gao, A.; Wang, B.; Lai, J.; Pan, J.; Huang, L.; Pan, C.; Meng, G.; Xia, F. Triboelectric Nanogenerator with Dynamic Electrode for Geological Disaster and Fall-Down Self-Powered Alarm System. Adv. Funct. Mater. 2023, 33, 2306619. [Google Scholar] [CrossRef]
- Feng, G.; Wang, Y.; Liu, D.; Cheng, Z.; Feng, Q.; Wang, H.; Han, W.; Jia, C. Development and Applications in Intelligent Sports of Hydrogel-Based Triboelectric Nanogenerators. Materials 2025, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ko, H.-J.; Kim, J. Self-powered gas sensor based on triboelectric nanogenerators (TENG): A comparative review of sensing mechanisms. Micro Nano Syst. Lett. 2025, 13, 2. [Google Scholar] [CrossRef]
- Jiao, P. Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy 2021, 88, 106227. [Google Scholar] [CrossRef]
- Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J.M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, J.; Shi, R.; Liu, H.; Zhang, M.; Guo, Z.; Bai, Y.; Li, X.; Gao, X.; Guo, J.; et al. Triboelectric nanogenerator sensors-based trans-media motion monitoring system for Gannet-inspired vehicle aiming at digital twin applications. Nano Energy 2025, 136, 110763. [Google Scholar] [CrossRef]
- Qu, X.; Liu, X.; Yue, Y.; Tang, Y.; Miao, P. Triboelectric nanogenerator-enabled self-powered strategies for sensing applications. TrAC Trends Anal. Chem. 2025, 185, 118191. [Google Scholar] [CrossRef]
- Jeon, J.; Kang, D.; Kim, S.-W. Advances in Triboelectric Nanogenerators for Microbial Disinfection. Micromachines 2025, 16, 281. [Google Scholar] [CrossRef]
- Sharma, S.; Mondal, T. Recent Advances in Graphene-Polymer Nanocomposite-Based Flexible Sensors and Triboelectric Nanogenerators. Small 2025, 21, 2501722. [Google Scholar] [CrossRef]
- PK, N.; Chandrasekhar, A. Fingerprint-Mimicking, ZIF-67 Decorated, Triboelectric Nanogenerator for IoT Cloud-Supported Self-Powered Smart Glove for Paralyzed Patient Care. ACS Appl. Electron. Mater. 2024, 6, 5314–5327. [Google Scholar]
- Zhou, Y.; Zhang, J.-H.; Wang, F.; Hua, J.; Cheng, W.; Shi, Y.; Pan, L. Recent Advances in Flexible Self-Powered Sensors in Piezoelectric, Triboelectric, and Pyroelectric Fields. Nanoenergy Adv. 2024, 4, 235–257. [Google Scholar] [CrossRef]
- Wu, J.; Lin, X.; Yang, C.; Yang, S.; Liu, C.; Cao, Y. Wearable Sensors Based on Miniaturized High-Performance Hybrid Nanogenerator for Medical Health Monitoring. Biosensors 2024, 14, 361. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Choi, J.; Han, Y.; Yoo, H.; Yoon, H.-J. Polymer Dielectric-Based Emerging Devices: Advancements in Memory, Field-Effect Transistor, and Nanogenerator Technologies. Micromachines 2024, 15, 1115. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Long, Y.; Yang, F.; Wang, X. Respiration-driven triboelectric nanogenerators for biomedical applications. EcoMat 2020, 2, e12045. [Google Scholar] [CrossRef] [PubMed]
- Muktar Ahmed, R.F.S.; Mohan, S.B.; Ankanathappa, S.M.; Shivanna, M.; Basith, S.A.; Chandrashekara Shastry, M.H.; Chandrasekhar, A.; Sannathammegowda, K. Sucrose assisted chemical-free synthesis of rGO for triboelectric nanogenerator: Green energy source for smart-water dispenser. Nano Energy 2023, 106, 108085. [Google Scholar] [CrossRef]
- Pan, Y.C.; Dai, Z.; Ma, H.; Zheng, J.; Leng, J.; Xie, C.; Yuan, Y.; Yang, W.; Yalikun, Y.; Song, X.; et al. Self-powered and speed-adjustable sensor for abyssal ocean current measurements based on triboelectric nanogenerators. Nat. Commun. 2024, 15, 6133. [Google Scholar] [CrossRef]
- Guo, M.; Xia, Y.; Liu, J.; Zhang, Y.; Li, M.; Wang, X. Wearable Pressure Sensor Based on Triboelectric Nanogenerator for Information Encoding, Gesture Recognition, and Wireless Real-Time Robot Control. Adv. Funct. Mater. 2025, 35, 2419209. [Google Scholar] [CrossRef]
- Umapathi, R.; Rethinasabapathy, M.; Kakani, V.; Kim, H.; Park, Y.; Kim, H.K.; Rani, G.M.; Kim, H.; Huh, Y.S. Hexagonal boron nitride composite film based triboelectric nanogenerator for energy harvesting and machine learning assisted handwriting recognition. Nano Energy 2025, 136, 110689. [Google Scholar] [CrossRef]
- Shen, S.; Fu, J.; Yi, J.; Ma, L.; Sheng, F.; Li, C.; Wang, T.; Ning, C.; Wang, H.; Dong, K.; et al. High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action Provided by Triboelectric Nanogenerator. Nano-Micro Lett. 2021, 13, 194. [Google Scholar] [CrossRef]
- Vincent, S.; Luhar, B.; Singh, A.; Kumari, K.; Sharma, R.; Sharma, D.; Randhawa, J.K. Biocompatible PVA-AgNP nanocomposites for flexible hybrid triboelectric nanogenerator. J. Power Sources 2025, 658, 238375. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, L.; Xu, J.; Dhaware, V.; Wang, Z.; Chen, Y.; Wu, Y.; Gu, L.; Liu, Y.; Hoogenboom, R. Recyclable Dynamic Hydrogen Bonding and Disulfide Based Polymer-Silver Nanoparticle Hybrid Triboelectric Nanogenerator for Artificial Intelligence-Assisted High-Precision Smart Insoles. Adv. Funct. Mater. 2025, 35, 2501277. [Google Scholar] [CrossRef]
- Vahidhosseini, S.M.; Rashidi, S.; Ehsani, M.H. Efficient energy harvesting using triboelectric nanogenerators (TENGs): Integration with technologies, wearable applications, and future trends. Renew. Sustain. Energy Rev. 2025, 216, 115662. [Google Scholar] [CrossRef]
- Dai, J.; Xia, X.; Zhang, D.; He, S.; Wan, D.; Chen, F.; Zi, Y. High-performance self-desalination powered by triboelectric–electromagnetic hybrid nanogenerator. Water Res. 2024, 252, 121185. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, R.; Vaithilingam, C.A.; Paiman, S.; Sharma, A.; V, I. Hybrid Photovoltaics cell with triboelectric nanogenerator: Overcoming energy availability limits and reducing optical scattering losses. Environ. Prog. Sustain. Energy 2025, 44, e70046. [Google Scholar] [CrossRef]
- Peng, W.; Ni, Q.; Zhu, R.; Fu, X.; Zhu, X.; Zhang, C.; Liao, L. Triboelectric-electromagnetic hybrid wind energy harvesting and multifunctional sensing device for self-powered smart agricultural monitoring. Nano Energy 2024, 131, 110272. [Google Scholar] [CrossRef]
- Selvam, S.; Praveenkumar, S.; Yim, J.-H. Cyclodextrin incorporated textile supercapacitor/piezo-triboelectric nanogenerator hybrid system for versatile temperature dependent wearable wireless devices. Chem. Eng. J. 2024, 482, 148929. [Google Scholar] [CrossRef]
- Mondal, S.; Maiti, S.; Paul, T.; Poddar, S.; Das, B.K.; Chattopadhyay, K.K. CsPbI3–PVDF Composite-Based Multimode Hybrid Piezo-Triboelectric Nanogenerator: Self-Powered Moisture Monitoring System. ACS Appl. Mater. Interfaces 2024, 16, 9231–9246. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Li, H.; Yang, Q.; Peng, L.; Cheng, S.; Han, Y.; Jie, Y.; Cao, X. Integrated Triboelectric Nanogenerator and Photovoltaic Systems Using InP/ZnSe Quantum Dots for Smart Security Applications. ACS Appl. Mater. Interfaces 2025, 17, 39132–39141. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Cao, X. From Triboelectric Nanogenerator to Hybrid Energy Harvesters: A Review on the Integration Strategy toward High Efficiency and Multifunctionality. Materials 2023, 16, 6405. [Google Scholar] [CrossRef]
- Patil, O.A.; Cheong, J.Y.; Lu, B.; Hwang, B.; Lim, S. High-Performance Screen-Printed Triboelectric Nanogenerator Based on BaTiO3-Enhanced Copy Paper for Sustainable Energy Harvesting. Chemosensors 2025, 13, 76. [Google Scholar] [CrossRef]
- Ye, Y.; Ning, J.; Meng, Y.; Wang, Y.; Wang, P.; Luo, J.; Yin, A.; Ren, Z.; Liu, H.; Qi, X.; et al. Flexible and Sensitive Triboelectric Nanogenerator Strain Sensors Made of Semi-Embedded Aligned Silver Nanowires. Adv. Electron. Mater. 2025, 11, 2400426. [Google Scholar] [CrossRef]
- Umapathi, R.; Pammi, S.V.N.; Han, S.; Haribabu, J.; Safarkhani, M.; Rani, G.M.; Huh, Y.S. Designing smart anti-theft alarm system via lead-free BSFO-PDMS composite based triboelectric nanogenerator. Chem. Eng. J. 2025, 511, 161799. [Google Scholar] [CrossRef]
- Feng, P.-Y.; Xia, Z.; Sun, B.; Jing, X.; Li, H.; Tao, X.; Mi, H.-Y.; Liu, Y. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification. ACS Appl. Mater. Interfaces 2021, 13, 16916–16927. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Dong, K.; Liu, L.; Ning, C.; Chen, P.; Peng, X.; Liu, D.; Wang, Z.L. Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications. ACS Nano 2020, 14, 15853–15863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Han, G.; Deng, H.; Ma, M.; Zhong, X. Polydimethylsiloxane-Zinc Oxide Nanorod-Based Triboelectric Nanogenerator for Compression Applications. Materials 2025, 18, 1392. [Google Scholar] [CrossRef]
- Khan, M.U.; Ansari, S.M.; Aldosari, H.M.; Mohammad, B. 3D copper telluride morphological leaf structure based triboelectric nanogenerator for wearable sensing application. Energy Convers. Manag. X 2025, 26, 100976. [Google Scholar] [CrossRef]
- Lan, L.; Xiong, J.; Gao, D.; Li, Y.; Chen, J.; Lv, J.; Ping, J.; Ying, Y.; Lee, P.S. Breathable Nanogenerators for an On-Plant Self-Powered Sustainable Agriculture System. ACS Nano 2021, 15, 5307–5315. [Google Scholar] [CrossRef]
- Alam, M.N.; Kim, Y.; Kumar, V.; Ryu, S.-R.; Lee, D.-J.; Park, S.-S. Diatomaceous Earth and Carbon Nanotubes Toughened Advanced Rubber Composite for Triboelectric Nanogenerator and Sensor Applications. Polym. Compos. 2025, 46, 14491–14505. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, T.P.; Jha, R.K.; Sharma, P.; Sinha-Ray, S.; Goswami, A. Energy augmentation of triboelectric nanogenerators using PDMS–MWCNT composites and their applications in IoT and HMI sensing. RSC Appl. Polym. 2025, 3, 905–915. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Wang, J.; Han, H.; Liu, J.; Wang, W.; Chen, Y. Design of high-performance modular triboelectric nanogenerators for efficient mechanical energy harvesting and electrochemical applications. Nanoscale 2025, 17, 12396–12405. [Google Scholar] [CrossRef]
- Amini, S.; Sagade Muktar Ahmed, R.F.; Madanahalli Ankanathappa, S.; Sannathammegowda, K. Polyaniline-Doped Textile-Based Triboelectric Nanogenerator: Self-Powered Device for Wearable Electronics. Appl. Res. 2025, 4, e202400124. [Google Scholar] [CrossRef]
- Chen, H.; Zu, G.; Wu, H.; Zhao, Y.; Yang, X. A sandwich-structured flexible triboelectric nanogenerator self-charging system for energy harvesting and human motion monitoring. J. Alloys Compd. 2025, 1021, 179623. [Google Scholar] [CrossRef]
- Shateri, A.A.; Zhuo, F.; Shuaibu, N.S.; Wan, R.; Xu, L.; Hazarika, D.; Gyawali, B.; Wang, X. Generating a Full Cycle of Alternative Current Using a Triboelectric Nanogenerator for Energy Harvesting. Micromachines 2025, 16, 11. [Google Scholar] [CrossRef]
- Jian, G.; Zhu, S.; Yuan, X.; Fu, S.; Yang, N.; Yan, C.; Wang, X.; Wong, C.-P. Biodegradable triboelectric nanogenerator as a implantable power source for embedded medicine devices. NPG Asia Mater. 2024, 16, 12. [Google Scholar] [CrossRef]
- Park, H.; Ryu, Y.; Joo, H.; Gwak, S.; Gbadam, G.S.; Niu, S.; Lee, J.-H. High-output, thermally resilient Nano-TiO2 dielectric gel triboelectric nanogenerator for energy harvesting and reliable temperature-independent pressure sensing. J. Mater. Chem. A 2025, 13, 4197–4206. [Google Scholar] [CrossRef]
- Pratap, A.; Rajabi Kouchi, F.; Burgoyne, H.; Curtis, M.; Rektor, A.; Seol, M.-L.; Mansoor, N.E.; Varghese, T.V.; Eixenberger, J.; Efaw, C.M.; et al. Direct writing of PVBVA/Ti3C2 Tx (MXene) triboelectric nanogenerators for energy harvesting and sensing applications. Nano Energy 2025, 142, 111206. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, L.; Li, S.; Liu, D.; Li, Y.; Gao, Y.; Liu, Y.; Dai, Y.; Wang, J.; Wang, Z.L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, Y.; Deng, H.; Shi, S.; Tian, S.; Wu, H.; Tang, J.; Zhang, C.; Zhang, X.; Zha, J.-W.; et al. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications. Adv. Mater. 2024, 36, 2314380. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Liu, Y.; Zhao, T.; Luo, B.; Liu, T.; Zhang, S.; Chi, M.; Cai, C.; Wei, Z.; et al. Lightweight and Strong Cellulosic Triboelectric Materials Enabled by Cell Wall Nanoengineering. Nano Lett. 2024, 24, 3273–3281. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dong, L.; Liu, J.; Hou, T.; Li, Y.; Wang, L.; Xu, X.; Chen, S. Regulating Contact Electrification and Charge Retention Capability With Metal–Organic Frameworks in Triboelectric Nanogenerator for Self-Powered Sewage Treatment. Adv. Funct. Mater. 2025, 35, 2422803. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, C.; Tao, Y.; Zhang, Y.; Cui, J.; Wang, D.; Wang, P.; Zhang, Y.-Y. Flexible Triboelectric Nanogenerators Based on Cadmium Metal–Organic Framework/Eethyl Cellulose Composites as Energy Harvesters for Selective Photoinduced Bromination Reaction. Small 2025, 21, 2406623. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Q.; Zhu, Z.; Zhai, L.; Huang, C.; Mi, L. Construction of Metal-Covalent Organic Frameworks with Trinuclear Copper Cluster for Efficient Triboelectric Nanogenerators. Small 2025, 21, 2502138. [Google Scholar] [CrossRef]
- Chen, S.; Hong, S.; Li, Y.; Zhang, Y.; Wang, P. High-performance triboelectric nanogenerators doped with carbon nanomaterials derived from cobalt-nickel bimetallic organic frameworks for harvesting low-frequency mechanical energy. Chem. Eng. J. 2025, 505, 159111. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Wang, Z.L. Biopolymer and Biomimetic Techniques for Triboelectric Nanogenerators (TENGs). Adv. Mater. 2025, 37, 2409440. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Mao, Y.; Zhou, B.; Hu, W. All-textile 3D triboelectric nanogenerator derived from bidirectional cross-weaving binary-yarns for bio-motion energy harvesting and sensing. Chem. Eng. J. 2025, 504, 158871. [Google Scholar] [CrossRef]
- Wang, C.; Niu, H.; Shen, G.; Li, Y. Self-Healing Hydrogel-Based Triboelectric Nanogenerator in Smart Glove System for Integrated Drone Safety Protection and Motion Control. Adv. Funct. Mater. 2025, 35, 2419809. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Luo, J.; Xu, W.; Zhang, C.; Yuan, H.; Zhang, Y.; Pang, Y. High-performance triboelectric nanogenerator based on NH2-MXene/TiO2@sodium alginate composite film for self-powered cathodic protection. Chem. Eng. J. 2025, 506, 159837. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Ren, J.; Li, Y.; Wu, Z.; Shan, K.; Zhang, L.; Wan, L.; Lin, T. Highly Wear-Resistant Triboelectric Nanogenerators Based on Fluorocarbon-Graphene Hybrids. Nanomaterials 2025, 15, 763. [Google Scholar] [CrossRef]
- Mu, J.; Zou, J.; Song, J.; He, J.; Hou, X.; Yu, J.; Han, X.; Feng, C.; He, H.; Chou, X. Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Convers. Manag. 2022, 254, 115151. [Google Scholar] [CrossRef]
- Zhou, H.; Cao, Z.; Wang, Z.L.; Wu, Z. A tightly coupled electromagnetic-triboelectric hybrid generator for wind energy harvesting and environmental monitoring. Nano Today 2025, 61, 102628. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, H.; Shao, J.; Zhang, Y.; Chen, Y. Output Characteristics of an Electromagnetic–Triboelectric Hybrid Energy Harvester Based on Magnetic Liquid. ACS Appl. Electron. Mater. 2023, 5, 775–783. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Wang, K.; Liu, Y.; Li, C.; Zhao, F.; Yao, Y.; Cheng, T. Bidirectional Rotating Turbine Hybrid Triboelectric-Electromagnetic Wave Energy Harvester for Marine Environment Monitoring. Adv. Energy Mater. 2024, 14, 2400313. [Google Scholar] [CrossRef]
- Cao, W.-Q.; Zhang, M.; Cao, M.-S. A Perspective of Tailoring Dielectric Genes for 2D Materials Toward Advanced Electromagnetic Functions. Adv. Funct. Mater. 2024, 34, 2410928. [Google Scholar] [CrossRef]
- Gui, Y.; Zhang, W.; Liu, S.; Li, Y.; Yang, J.; Jin, G.; Huang, H.; Yang, P.; Gao, M. Self-driven sensing of acetylene powered by a triboelectric-electromagnetic hybrid generator. Nano Energy 2024, 124, 109498. [Google Scholar] [CrossRef]
- Sapkal, S.; Kandasubramanian, B.; Panda, H.S. A review of piezoelectric materials for nanogenerator applications. J. Mater. Sci. Mater. Electron. 2022, 33, 26633–26677. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, T.; Wang, N. From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review. Biosensors 2023, 13, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Wang, N. Recent Progress in Piezoelectric-Triboelectric Effects Coupled Nanogenerators. Nanomaterials 2023, 13, 385. [Google Scholar] [CrossRef]
- Ba Hashwan, S.S.; Khir, M.H.M.; Nawi, I.M.; Ahmad, M.R.; Hanif, M.; Zahoor, F.; Al-Douri, Y.; Algamili, A.S.; Bature, U.I.; Alabsi, S.S.; et al. A review of piezoelectric MEMS sensors and actuators for gas detection application. Discov. Nano 2023, 18, 25. [Google Scholar] [CrossRef]
- Luo, X.; Li, Q.; Wang, Y. Piezoelectric Applications of Low-Dimensional Composites and Porous Materials. Materials 2024, 17, 844. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, H.; Yu, H.; Xu, Q.; Li, X.; Guo, J.; Shao, J.; Wang, Z.L.; Xu, M.; Ding, W. Theoretical modeling of contact-separation mode triboelectric nanogenerators from initial charge distribution. Energy Environ. Sci. 2024, 17, 2228–2247. [Google Scholar] [CrossRef]
- Shi, W.; Wang, X.; Diao, W.; Liu, G.; Cao, Y. Effect of pump voltage on triboelectric properties and air breakdown of sliding-mode triboelectric nanogenerator. Nano Energy 2025, 137, 110758. [Google Scholar] [CrossRef]
- Li, M.; Jiang, T.; Cao, L.; Sun, H.; Zhang, S.; Tang, J.; Li, Y.; Jiang, H. High voltage rotary freestanding triboelectric nanogenerator with novel electrode pair relative position: Theoretical and experimental studies. Mater. Des. 2025, 259, 114773. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, C.; Ma, T.; Wang, T.; Gao, S.; Dai, Q.; Han, Q.; Chu, F. Tooth backlash inspired comb-shaped single-electrode triboelectric nanogenerator for self-powered condition monitoring of gear transmission. Nano Energy 2024, 123, 109429. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, S.; Liu, W.; Xu, F. A Review of Evaluation, Principles, and Technology of Wearable Electromagnetic Harvesters. ACS Appl. Electron. Mater. 2023, 5, 4035–4050. [Google Scholar] [CrossRef]
- Zhao, B.; Qian, F.; Hatfield, A.; Zuo, L.; Xu, T.-B. A Review of Piezoelectric Footwear Energy Harvesters: Principles, Methods, and Applications. Sensors 2023, 23, 5841. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, H.M.; Woo, I.; Yoon, J.U.; Gajula, P.; Arun, A.P.; Bae, J.W. Unveiling the latent potential: Ni/CoFe2O4-loaded electrospun PVDF hybrid composite-based triboelectric nanogenerator for mechanical energy harvesting applications. Adv. Compos. Hybrid Mater. 2025, 8, 221. [Google Scholar] [CrossRef]
- Alghamdi, M.S.; Morgan, J.J.; Walsh, K.; Shin, D.W.; Nigmatullin, R.; Saadi, Z.; Routledge, J.; Neves, A.I.S.; Russo, S.; Eichhorn, S.J.; et al. Triboelectric nanogenerator based on cellulose nanocrystals and graphene for energy harvesting from piano playing motion. Nano Energy 2025, 138, 110816. [Google Scholar] [CrossRef]
- Feng, C.; Ji, S.; Li, W. Integrated Triboelectric Nanogenerator for Energy Harvesting: Efficient Absorption of Wind in 6–16 m s−1 Velocity Range and Wave Energy. Adv. Eng. Mater. 2024, 26, 2400987. [Google Scholar] [CrossRef]
- Chen, F.; Dai, X.; Wu, X.; Ding, Z.; Gao, Y.; Pang, Y.; Jiang, T.; Luo, J.; Hong, Z.; Wang, Z.L. High Energy Density Non-Contact Bidirectional Spinning Oscillating Float-Type Triboelectric Nanogenerators for Energy Extraction From Irregular Waves. Adv. Energy Mater. 2025, 15, 2404891. [Google Scholar] [CrossRef]
- Ge, H.; Zhao, S.; Dai, B.; Chen, S.; Pan, Y.; Lu, Y.; Xie, Y.; Jiang, C. Acoustic triboelectric nanogenerator for underwater acoustic communication. Nano Energy 2025, 136, 110738. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, L.; He, J.; Yao, M.; Yang, T. Dual-functional triboelectric-electromagnetic hybrid nanogenerator for simultaneous vibration energy harvesting and vibration suppression. Nano Energy 2025, 142, 111277. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Chen, P.; Fu, Q.; Cui, L. Annular Electromagnetic Generator for Harvesting Ocean Wave Energy. J. Mar. Sci. Eng. 2023, 11, 2266. [Google Scholar] [CrossRef]
- Huang, M.; Liu, C.; Zhang, Z.; Wang, J.; Zu, Q.; Zhou, L.; Zhou, X.; Yu, L.; Guo, S. Dual-mode electromagnetic-triboelectric-piezoelectric multifunctional self-charging energy system for efficient capture of kinetic energy. Nano Energy 2024, 128, 109819. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, H.; Zhou, Y.; Hu, Y.; Wang, Y.; Wang, Z.L.; Sun, Q. High Performance Rotary-Structured Triboelectric-Electromagnetic Hybrid Nanogenerator for Ocean Wind Energy Harvesting. Adv. Mater. Technol. 2023, 8, 2300327. [Google Scholar] [CrossRef]
- Sharghi, H.; Bilgen, O. Energy Harvesting from Human Walking Motion using Pendulum-based Electromagnetic Generators. J. Sound Vib. 2022, 534, 117036. [Google Scholar] [CrossRef]
- Yang, C.; Ji, J.; Lv, Y.; Li, Z.; Luo, D. Application of Piezoelectric Material and Devices in Bone Regeneration. Nanomaterials 2022, 12, 4386. [Google Scholar] [CrossRef]
- He, Y.; Wan, H.; Jiang, X.; Peng, C. Piezoelectric Micromachined Ultrasound Transducer Technology: Recent Advances and Applications. Biosensors 2023, 13, 55. [Google Scholar] [CrossRef]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef]
- Doganay, D.; Durukan, M.B.; Cugunlular, M.; Cakir, O.; Cicek, M.O.; Demircioglu, O.; Wei, D.; Unalan, H.E. Triboelectric nanogenerators from fundamentals to applications. Nano Energy 2025, 138, 110825. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Xu, W.; Gong, Y.; Peng, Y.; Zhong, S.; Xie, S. Performance comparison of electromagnetic generators based on different circular magnet arrangements. Energy 2022, 258, 124759. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, Y.; Jiang, W.; Hong, W.; Wang, Y.; Xie, Y.; Sun, J.; Ren, X. Optimized design of auxetic substrates for enhanced electric power output in piezoelectric composites. Mech. Syst. Signal Process. 2025, 228, 112428. [Google Scholar] [CrossRef]
- Cai, C.; Liu, T.; Meng, X.; Luo, B.; Chi, M.; Wang, J.; Liu, Y.; Zhang, S.; Gao, C.; Bai, Y.; et al. Lightweight and Mechanically Robust Cellulosic Triboelectric Materials for Wearable Self-Powered Rehabilitation Training. ACS Nano 2025, 19, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Luo, B.; Liu, T.; Cai, C.; Meng, X.; Wang, S.; Nie, S. Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials. Mater. Today 2023, 66, 348–370. [Google Scholar] [CrossRef]
- Ou, F.; Li, X.; Tuo, L.; Zhang, Z.; Tang, W.; Xie, T.; Ning, C.; Pan, W.; Chen, Q.; Liang, Q.; et al. Solid-state ion-conductive elastomers with high mechanical robustness and ion-conductivity for highly durable triboelectric nanogenerators. Chem. Eng. J. 2025, 505, 159502. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, X.; Pan, H.; Hu, X.; Chen, Z.; Yang, B.; Liu, Y.; Gao, X.; Wang, Q.; Chen, Z.; et al. In-situ bonding enables robust fluorinated poly(imide-siloxane) based triboelectric nanogenerator for firefighter motion and location monitoring. Nano Energy 2025, 138, 110856. [Google Scholar] [CrossRef]
- Sun, E.; Zhu, Q.; Rehman, H.U.; Wu, T.; Cao, X.; Wang, N. Magnetic Material in Triboelectric Nanogenerators: A Review. Nanomaterials 2024, 14, 826. [Google Scholar] [CrossRef]
- He, N.; King, C.; Xie, Q.; Zhao, F.; Gao, W. A Multidirectional Forearm Electromagnetic Generator Designed via Numerical Simulations. Actuators 2023, 12, 225. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, A.; Wang, Y.; Dai, X.; Lu, Y.; Wang, F. Rotational electromagnetic energy harvester for human motion application at low frequency. Appl. Phys. Lett. 2020, 116, 053902. [Google Scholar] [CrossRef]
- Ram, N.; Pabba, D.P.; Kaarthik, J.; Hwang, G.-T.; Vaduganathan, K.; Venkateswarlu, A. High Output, Biocompatible, Fully Flexible Fiber-Based Magneto-Mechano-Electric Generator for Standalone-Powered Electronics. Adv. Sustain. Syst. 2025, 9, 2400548. [Google Scholar] [CrossRef]
- Sekhar, M.C.; Veena, E.; Kumar, N.S.; Naidu, K.C.B.; Mallikarjuna, A.; Basha, D.B. A Review on Piezoelectric Materials and Their Applications. Cryst. Res. Technol. 2023, 58, 2200130. [Google Scholar] [CrossRef]
- Chen, Z.; Sang, L.; Liu, Y.; Bai, Z. Sono-Piezo Dynamic Therapy: Utilizing Piezoelectric Materials as Sonosensitizer for Sonodynamic Therapy. Adv. Sci. 2025, 12, 2417439. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, J.; Zhang, Y.; Liu, J.; Hu, Y.; Liu, C.; Zhu, P.; Lu, L.; Mao, Y. Recent Advances in Electrospun Nanofiber-Based Self-Powered Triboelectric Sensors for Contact and Non-Contact Sensing. Nanomaterials 2025, 15, 1080. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, Y.; Wang, Z.L. Quantitative comparison between the effective energy utilization efficiency of triboelectric nanogenerator and electromagnetic generator post power management. Nano Energy 2022, 103, 107760. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, K.; Li, S.; Wang, Y.; Sun, D.; Wang, L.; He, Z.; Tang, W.; Liu, H.; Jin, X.; et al. An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings. Appl. Energy 2024, 353, 122075. [Google Scholar] [CrossRef]
- Ali, M.; Bathaei, M.J.; Istif, E.; Karimi, S.N.H.; Beker, L. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Adv. Healthc. Mater. 2023, 12, 2300318. [Google Scholar] [CrossRef]
- Rayegani, A.; Saberian, M.; Delshad, Z.; Liang, J.; Sadiq, M.; Nazar, A.M.; Mohsan, S.A.; Khan, M.A. Recent Advances in Self-Powered Wearable Sensors Based on Piezoelectric and Triboelectric Nanogenerators. Biosensors 2023, 13, 37. [Google Scholar] [CrossRef]
- Chi, M.; Cai, C.; Liu, Y.; Zhang, S.; Liu, T.; Du, G.; Meng, X.; Luo, B.; Wang, J.; Shao, Y.; et al. Aramid Triboelectric Materials: Opportunities for Self-Powered Wearable Personal Protective Electronics. Adv. Funct. Mater. 2024, 34, 2411020. [Google Scholar] [CrossRef]
- Shang, M.; Zong, Y.; Zhang, X. Cellulose Nanofibril-Based Triboelectric Nanogenerators Enhanced by Isoreticular Metal-Organic Frameworks for Long-Term Motion Monitoring. Sensors 2025, 25, 3232. [Google Scholar] [CrossRef]
- Ippili, S.; Jella, V.; Jyothi, S.J.; Kment, S.; Zboril, R.; Yoon, S.-G.; Jayaramulu, K. Covalent Graphene-Metal–Organic Polyhedra Hybrids: Triboelectric Nanogenerators for Next Generation of Wearable E-Skin Technologies. Small 2025, 21, 2503772. [Google Scholar] [CrossRef]
- Sarfudeen, S.; Panda, T. Core-shell nano-architectonics in metal organic framework for enhanced performance in triboelectric nano-generator and self-powered nitro-explosive/humidity sensor. Chem. Eng. J. 2025, 503, 158519. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Mao, R.; Zhu, L.; Zhang, C.; Zhou, L.; Yang, C.; Ji, Y.; Mao, Y. A flexible triboelectric nanogenerator based on Ecoflex/BaTiO3/carbon spheres for active and passive tactile intelligent sensing systems. Chem. Eng. J. 2025, 506, 159840. [Google Scholar] [CrossRef]
- Xia, K.; Yu, M. Highly robust and efficient metal-free water cup solid–liquid triboelectric nanogenerator for water wave energy harvesting and ethanol detection. Chem. Eng. J. 2025, 503, 157938. [Google Scholar] [CrossRef]
- Dong, W.; Duan, Z.; Peng, S.; Chen, Y.; Chu, D.; Tai, H.; Li, W. Triboelectric nanogenerator-powering piezoresistive cement-based sensors for energy harvesting and structural health monitoring. Nano Energy 2025, 137, 110823. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, D.; Li, K.; Zhang, H.; Yang, C. Flexible hydrogel triboelectric nanogenerator-based smart wristband for handwriting recognition with the assistance of deep learning. Nano Energy 2025, 140, 111072. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.; Ye, C.; Jiang, Y.; Chen, L.; Xu, Z.; Xu, M.; Hong, Z.; Jiang, T.; Wang, Z.L. A Self-Sustainable, Ultrarobust and High-Power-Density Triboelectric Nanogenerator for In Situ Powering of Marine Internet of Things. Adv. Mater. 2025, e11283. [Google Scholar] [CrossRef]
- Dong, W.; Li, M.; Chen, C.; Xie, K.; Hong, J.; Yang, L. Flexible hybrid self-powered piezo-triboelectric nanogenerator based on BTO-PVDF/PDMS nanocomposites for human machine interaction. Sci. Rep. 2025, 15, 15991. [Google Scholar] [CrossRef]
- Manchi, P.; Nagaraju, M.; Paranjape, M.V.; Graham, S.A.; Kurakula, A.; Kavarthapu, V.S.; Lee, J.K.; Yu, J.S. Bifunctional binder-free ZnCuSe2 nanostructures/carbon fabric-based triboelectric nanogenerator and supercapacitor for self-charging hybrid power system application. J. Mater. Sci. Technol. 2025, 209, 9–18. [Google Scholar] [CrossRef]
- Huang, X.; Hu, D.; Wang, Q.; Wu, Z.; Wang, N.; Chen, Z.; Xu, S.; Chi, M.; Chen, S. Hybrid Nanogenerator Harvesting Electric-Field and Wind Energy for Self-Powered Sensors on High-Voltage Transmission Lines. Adv. Funct. Mater. 2025, 35, 2417400. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhu, L.; Wang, Z.; Zhang, X.; Li, Q.; Han, Q.; Yang, Z.; Qin, Z. Hybrid triboelectric-piezoelectric nanogenerator assisted intelligent condition monitoring for aero-engine pipeline system. Chem. Eng. J. 2025, 519, 165121. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, E.; Sun, Y.; Cao, X.; Wang, N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. Nanomaterials 2024, 14, 1885. [Google Scholar] [CrossRef]
- Mao, Y.; Liang, J.; Zhang, R.; Zhao, T.; Zhou, A. Research Progress of Self-Powered Gait Monitoring Sensor Based on Triboelectric Nanogenerator. Appl. Sci. 2025, 15, 5637. [Google Scholar] [CrossRef]
- Li, J.-W.; Huang, B.-S.; Chang, C.-H.; Chiu, C.-W. Advanced electrospun AgNPs/rGO/PEDOT:PSS/TPU nanofiber electrodes: Stretchable, self-healing, and perspiration-resistant wearable devices for enhanced ECG and EMG monitoring. Adv. Compos. Hybrid Mater. 2023, 6, 231. [Google Scholar] [CrossRef]
- Zhou, X.; Mei, M.; Tang, T.; Li, Y.; Wang, Z.; Zhu, Y.; Yan, B.; Lin, H.; Li, Z.; Liu, H. Self-powered water condition monitoring system based on rotational electromagnetic generator. Energy 2025, 326, 136124. [Google Scholar] [CrossRef]
- Sarker, M.R.; Saad, M.H.; Olazagoitia, J.L.; Vinolas, J. Review of Power Converter Impact of Electromagnetic Energy Harvesting Circuits and Devices for Autonomous Sensor Applications. Electronics 2021, 10, 1108. [Google Scholar] [CrossRef]
- Wang, S.; Miao, G.; Zhou, S.; Yang, Z.; Yurchenko, D. A novel electromagnetic energy harvester based on the bending of the sole. Appl. Energy 2022, 314, 119000. [Google Scholar] [CrossRef]
- Deng, W.; Zhou, Y.; Libanori, A.; Chen, G.; Yang, W.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435. [Google Scholar] [CrossRef] [PubMed]
- Pawar, O.Y.; Patil, S.L.; Redekar, R.S.; Patil, S.B.; Lim, S.; Tarwal, N.L. Strategic Development of Piezoelectric Nanogenerator and Biomedical Applications. Appl. Sci. 2023, 13, 2891. [Google Scholar] [CrossRef]
- Kulkarni, N.D.; Kumari, P. Development of highly flexible PVDF-TiO2 nanocomposites for piezoelectric nanogenerator applications. Mater. Res. Bull. 2023, 157, 112039. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Sun, J.; Zhu, X.; Sun, Q.; Wang, Z.L. Piezoelectric Nanogenerators Derived Self-Powered Sensors for Multifunctional Applications and Artificial Intelligence. Adv. Funct. Mater. 2021, 31, 2102983. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Mistewicz, K.; In-na, P.; Sahu, M.; Rajaitha, P.M.; Kim, H.J. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 2022, 100, 107514. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, G.; Huang, M. Piezoelectric Materials: Properties, Advancements, and Design Strategies for High-Temperature Applications. Nanomaterials 2022, 12, 1171. [Google Scholar] [CrossRef]
- Gao, D.; Wang, H.; Tang, J.; Ye, C.; Wang, L. Charge-excited enhanced piezoelectric-triboelectric hybrid nanogenerator for high-efficiency energy harvesting and applications. Sustain. Mater. Technol. 2025, 45, e01539. [Google Scholar] [CrossRef]
- Priya, A.S.; Bin Idris, M.I.; Henry, J.; Indhumathi, R.; Aepuru, R. Advancements in hybrid energy harvesting: Combining triboelectric nanogenerators and photovoltaic cells for next-generation energy solutions. Mater. Today Energy 2025, 48, 101768. [Google Scholar] [CrossRef]
- Sagar, P.; Kumar, B. PANI-reinforced-ZnS/PDMS-based flexible hybrid piezo-triboelectric nanogenerator for self-powered wearable electronics and sensing. Mater. Res. Bull. 2025, 190, 113482. [Google Scholar] [CrossRef]
- Gao, S.; Wei, H.; Wang, J.; Luo, X.; Wang, R.; Chen, Y.; Xiang, M.; Chen, X.; Xie, H.; Feng, S. Self-powered system by a suspension structure-based triboelectric-electromagnetic-piezoelectric hybrid generator for unifying wind energy and vibration harvesting with vibration attenuation function. Nano Energy 2024, 122, 109323. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, S.; Feng, W.; Wu, L.; Chen, G.; Cai, R.; Xie, G.; Fang, C.; Qin, B.; Yang, X. Self-retracting triboelectric-electromagnetic hybrid sensor for high-precision displacement and speed monitoring. Nano Energy 2025, 140, 110964. [Google Scholar] [CrossRef]
- Zhu, J.; Feng, Y.; Yang, Z.; Wang, Y.; Dong, L.; Yu, Y.; Li, H.; Zhu, J.; Cheng, X.; Cheng, T. Enhanced wind energy harvesting performance of triboelectric-electromagnetic hybrid generator via whale fin blades and speed matching. Nano Energy 2025, 135, 110615. [Google Scholar] [CrossRef]
- Hu, C.; Zeng, P.; Li, Y.; Qi, L. An electromagnetic-triboelectric hybrid wave energy harvesting system with high-output performance based on wire-stayed structure. Measurement 2025, 253, 117800. [Google Scholar] [CrossRef]
- Chen, H.; Chen, M.; Sun, L.; Wang, G.; Zhong, J.; Guan, W. Piezoelectric-Triboelectric Coupling Enhanced Hybrid Nanogenerator for Flexible Motion Sensing. ACS Appl. Nano Mater. 2025, 8, 12693–12705. [Google Scholar] [CrossRef]
- Nambiar, A.; Athira, B.S.; Shamili, C.; Surendran, K.P.; Chandran, A. Multiferroic composite films-based flexible piezo-tribo hybrid nanogenerator for effective kinetic energy scavenging. J. Mater. Sci. Mater. Electron. 2025, 36, 215. [Google Scholar] [CrossRef]
- Rui, X.; Li, H.; Han, X.; Zhang, L.; Zhang, Y.; Zeng, Z. A piezoelectric-triboelectric-electromagnetic tri-hybrid energy harvester with dual-frequency-up-conversion mechanism for ultralow-frequency rotational motion. Sustain. Energy Technol. Assess. 2024, 68, 103859. [Google Scholar] [CrossRef]
- Lv, Y.; An, P.; Zhang, A.; Ren, P.; Ma, T.; Wang, Y.; Liang, D.; Luo, D. A triboelectric-electromagnetic hybrid nanogenerator enhancing electrochemical oxidation for organic pollutant degradation. J. Mater. Chem. A 2025, 13, 29092–29100. [Google Scholar] [CrossRef]
- Liu, G.; Fan, B.; Qi, Y.; Han, K.; Cao, J.; Fu, X.; Wang, Z.; Bu, T.; Zeng, J.; Dong, S.; et al. Ultrahigh-Current-Density Tribovoltaic Nanogenerators Based on Hydrogen Bond-Activated Flexible Organic Semiconductor Textiles. ACS Nano 2025, 19, 6771–6783. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.-Y.; Huang, T.-Y.; Yang, C.-H.; Lee, C.-H.; Jeng, R.-J.; Chen, C.-P.; Lin, M.-F. Leveraging Bio-Waste onion skin for High-Performance triboelectric nanogenerators. Chem. Eng. J. 2025, 506, 160136. [Google Scholar] [CrossRef]
- Liu, H.; Guo, D.; Zhu, H.; Wen, H.; Li, J.; Wan, L. Shell-Optimized Hybrid Generator for Ocean Wave Energy Harvesting. Energies 2025, 18, 1502. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, G.; Lou, Y.; Li, M.; Hu, J.; Li, J.; Cui, W.; Yu, A.; Zhai, J. Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. Sensors 2024, 24, 3770. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zheng, H.; Zhao, Y.; Chen, Y.; Zhou, Y.; Liu, X. A Flexible Hybrid Generator for Efficient Dual Energy Conversion from Raindrops to Electricity. Adv. Sci. 2024, 11, 2404310. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, T.; Zheng, Y.; Wang, K.; Wang, E.; Wang, H.; Zhu, L.; Du, Z.; Wang, H.; Chou, K.-C.; et al. Heterojunction Engineering Enhanced Self-Polarization of PVDF/CsPbBr3/Ti3C2Tx Composite Fiber for Ultra-High Voltage Piezoelectric Nanogenerator. Adv. Sci. 2023, 10, 2300650. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Graphene-Enhanced Piezoelectric Nanogenerators for Efficient Energy Harvesting. C 2025, 11, 3. [Google Scholar] [CrossRef]
- Kim, I.; Yun, J.; Kim, G.; Kim, D. Triboelectric-Enhanced Piezoelectric Nanogenerator with Pressure-Processed Multi-Electrospun Fiber-Based Polymeric Layer for Wearable and Flexible Electronics. Polymers 2025, 17, 2295. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Z.L. Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy. Small 2022, 18, 2107034. [Google Scholar] [CrossRef]
- Ke, K.-H.; Lin, L.; Chung, C.-K. Low-cost micro-graphite doped polydimethylsiloxane composite film for enhancement of mechanical-to-electrical energy conversion with aluminum and its application. J. Taiwan Inst. Chem. Eng. 2022, 135, 104388. [Google Scholar] [CrossRef]
- Ejaz, S.; Shah, I.; Aziz, S.; Hassan, G.; Shuja, A.; Khan, M.A.; Jung, D.-W. Fabrication and Characterization of a Flexible Polyurethane-Based Triboelectric Nanogenerator for a Harvesting Energy System. Micromachines 2025, 16, 230. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liang, X.; Jiang, T.; Wang, Z.L. Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring. Engineering 2024, 33, 204–224. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Xu, L.; Li, N.; Tan, H.; Du, J.; Yu, M.; Xu, J. Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature. Nano Energy 2024, 125, 109521. [Google Scholar] [CrossRef]
- Ou-Yang, W.; Liu, L.; Xie, M.; Zhou, S.; Hu, X.; Wu, H.; Tian, Z.; Chen, X.; Zhu, Y.; Li, J. Recent advances in triboelectric nanogenerator-based self-powered sensors for monitoring human body signals. Nano Energy 2024, 120, 109151. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Li, Z.; Liu, Z.; Li, M.; Guo, J.; Du, J.; Cai, C.; Zhang, S.; Sun, N.; Li, Y.; et al. Inorganic Dielectric Materials Coupling Micro-/Nanoarchitectures for State-of-the-Art Biomechanical-to-Electrical Energy Conversion Devices. Adv. Mater. 2025, 37, 2419081. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring. Adv. Funct. Mater. 2019, 29, 1808849. [Google Scholar] [CrossRef]
- Yun, S.-Y.; Kim, M.H.; Yang, G.G.; Choi, H.J.; Kim, D.-W.; Choi, Y.-K.; Kim, S.O. A triboelectric nanogenerator with synergistic complementary nanopatterns fabricated by block copolymer self-assembly. J. Mater. Chem. A 2024, 12, 11302–11309. [Google Scholar] [CrossRef]
- Wajahat, M.; Kouzani, A.Z.; Khoo, S.Y.; Mahmud, M.A.P. Output Enhancement of a 3D-Printed Triboelectric Nanogenerator Using Laser Surface 3D Patterning. Adv. Eng. Mater. 2024, 26, 2400199. [Google Scholar] [CrossRef]
- Mohana Rani, G.; Ranjith, K.S.; Ghoreishian, S.M.; Vilian, A.T.E.; Roh, C.; Umapathi, R.; Han, Y.-K.; Huh, Y.S. Fabrication of MoS2 Petals-Decorated PAN Fibers-Based Triboelectric Nanogenerator for Energy Harvesting and Smart Study Room Touch Sensor Applications. Adv. Fiber Mater. 2024, 6, 1825–1838. [Google Scholar] [CrossRef]
- Amini, A.; Almasi Kashi, M.; Noormohammadi, M. Fabrication of a milliwatt uniform current pulse multifunctional layered triboelectric nanogenerator with high durability based on hierarchical TiO2 micro-nanostructures. Colloids Surf. A Physicochem. Eng. Asp. 2025, 726, 137958. [Google Scholar] [CrossRef]
- Zhang, T.; Yao, C.; Xu, X.; Liu, Z.; Liu, Z.; Sun, T.; Huang, S.; Huang, X.; Farah, S.; Shi, P.; et al. Nanopores-templated CNT/PDMS Microcolumn Substrate for the Fabrication of Wearable Triboelectric Nanogenerator Sensors to Monitor Human Pulse and Blood Pressure. Adv. Mater. Technol. 2025, 10, 2400749. [Google Scholar] [CrossRef]
- Chen, J.; Luo, X.; Song, Y.; Shen, L.; Zhu, S.; Xie, Y.; Qian, Y. Fabrication of layered SnS2 as co-triboelectric layers for high performance PDMS-based triboelectric nanogenerators. Mater. Lett. 2024, 372, 137003. [Google Scholar] [CrossRef]
- Tene, T.; Gulahmadov, O.; Gahramanli, L.; Muradov, M.; Gilev, J.B.; Hamzayeva, T.; Bayramova, S.; Bellucci, S.; Vacacela Gomez, C. Influence of MWCNT Concentration on Performance of Nylon/MWCNT Nanocomposite-Based Triboelectric Nanogenerators Fabricated via Spin Coating Method. Nanoenergy Adv. 2025, 5, 9. [Google Scholar] [CrossRef]
- Meng, X.; Hui, D.; Ge, S.; Zhou, S.; Hu, X.; Lin, D.; Liu, W. Nanopillar- and Nanocone-Structured SrTiO3/PDMS Films for Triboelectric Nanogenerators. ACS Appl. Nano Mater. 2024, 7, 14193–14202. [Google Scholar] [CrossRef]
- Salemi, F.; Karimzadeh, F.; Abbasi, M.H.; Moradi, F.; Kim, J. Recent Progress in Self-powered Graphene-Based Triboelectric Nanogenerators. Int. J. Precis. Eng. Manuf.-Green Technol. 2025, 12, 749–779. [Google Scholar] [CrossRef]
- Jeong, J.; Jo, E.; Choi, J.-A.; Kang, Y.; Pyo, S. Structural design strategies of triboelectric nanogenerators for omnidirectional wind energy harvesting. Micro Nano Syst. Lett. 2025, 13, 4. [Google Scholar] [CrossRef]
- Xiao, Y.; Che, X.; Yang, L.; Wang, Y.; Niu, M. Fabrication of fabric-based triboelectric nanogenerators with asymmetric output based on flexible metallic silver electrode formed by the micro-printing primary cell replacement deposition technique. Mater. Sci. Eng. B 2025, 318, 118318. [Google Scholar] [CrossRef]
- Davoudi, M.; An, C.-Y.; Kim, D.-E. A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. Int. J. Precis. Eng. Manuf. -Green Technol. 2024, 11, 1317–1340. [Google Scholar] [CrossRef]
- Shanbedi, M.; Ardebili, H.; Karim, A. Polymer-based triboelectric nanogenerators: Materials, characterization, and applications. Prog. Polym. Sci. 2023, 144, 101723. [Google Scholar] [CrossRef]
- Wang, X.; Yin, G.; Sun, T.; Xu, X.; Rasool, G.; Abbas, K. Mechanical Vibration Energy Harvesting and Vibration Monitoring Based on Triboelectric Nanogenerators. Energy Technol. 2024, 12, 2300931. [Google Scholar] [CrossRef]
- Li, Z.; Huang, H.; Shen, J.; Gao, Y.; Zhou, X.; Qian, Y.; Wang, G.; Dong, K.; Lyu, L. 3-D woven triboelectric nanogenerators with integrated friction, spacer, and electrode layers for wearable energy harvesting and mechanical sensing. Nano Energy 2025, 135, 110622. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Cui, S.; Zhou, L.; Gao, Y.; Wang, Z.L.; Wang, J. Recent Progress of Advanced Materials for Triboelectric Nanogenerators. Small Methods 2023, 7, 2300562. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.; Chen, H.; Cai, X.; Shi, X.; Yang, Y.; Wei, X.; Wang, J.; Xu, Y. Machine Learning-Enhanced Triboelectric Sensing Application. Adv. Mater. Technol. 2024, 9, 2301316. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extrem. Mech. Lett. 2016, 9, 514–530. [Google Scholar] [CrossRef]
- Trinh, V.L.; Chung, C.K. Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure. Appl. Energy 2018, 213, 353–365. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, H.; Xu, B. Advanced design of triboelectric nanogenerators for future eco-smart cities. Adv. Compos. Hybrid Mater. 2024, 7, 102. [Google Scholar] [CrossRef]
- Turar, Z.; Sembay, M.; Mubarak, A.; Belgibayeva, A.; Kong, L.; Kalimuldina, G. Advances in Porous Structure Design for Enhanced Piezoelectric and Triboelectric Nanogenerators: A Comprehensive Review. Glob. Chall. 2025, 9, 2400224. [Google Scholar] [CrossRef]
- Vahidhosseini, S.M.; Rashidi, S.; Ehsani, M.H. Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): Advanced materials and performance enhancement strategies. Renew. Sustain. Energy Rev. 2025, 216, 115663. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Li, Z.; Shen, B.; Liu, Z.; Chen, L.; Wang, H.; Li, H.; Zhang, Y.; Du, S.; Tang, Q.; et al. Electric displacement modulation under internal field for high-performance mechanical-to-electrical energy generator. Cell Rep. Phys. Sci. 2024, 5, 102025. [Google Scholar] [CrossRef]
- Li, R.; Wei, D.; Wang, Z. Synergizing Machine Learning Algorithm with Triboelectric Nanogenerators for Advanced Self-Powered Sensing Systems. Nanomaterials 2024, 14, 165. [Google Scholar] [CrossRef]
- Chakoma, S.; Rajendran, J.; Pei, X.; Ghandehari, A.; Negrete, J.A.T.; Esfandyarpour, R. Pioneering 3-D-Printed Devices with Triboelectric Nanogenerators for Advanced Self-Powered Force Sensing. IEEE Sens. Lett. 2025, 9, 2500804. [Google Scholar] [CrossRef]
- Kuang, T.; Deng, L.; Liu, M.; Ding, Y.; Guo, W.; Cai, Z.; Liu, W.; Huang, Z.-X. Facet Engineering of Metal-Organic Frameworks for Triboelectric Nanogenerators-Based Self-Powered Water Splitting. Adv. Mater. 2025, 37, 2415616. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.K.; Ke, K.H. High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices. Appl. Surf. Sci. 2020, 508, 145310. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, P.; Pandey, M.; Bhattacharya, S. Additive manufacturing as an emerging technology for fabrication of microelectromechanical systems (MEMS). J. Micromanuf. 2019, 2, 175–197. [Google Scholar] [CrossRef]
- Okbaz, A.; Yar, A.; Lin, G.-S.; Tong, Z. Numerical and Machine Learning-Based Triboelectric Nanogenerator Simulators: Contact-Separation Mode. Energy Technol. 2025, 2402101. [Google Scholar] [CrossRef]
- Cheng, X.; Tang, W.; Song, Y.; Chen, H.; Zhang, H.; Wang, Z.L. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 2019, 61, 517–532. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Ke, K.-H.; Chung, C.-K. Effect of commercial P25 TiO2 doping in polydimethylsiloxane tribo-film on the output performance of triboelectric nanogenerator and its application. Surf. Coat. Technol. 2024, 482, 130721. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, J.; Zhu, X.; Hong, K.; Su, J.; Qin, Y.; Su, W.; Zhang, H.; Zhang, C.; Li, X. PEO/cysteine composite nanofiber-based triboelectric nanogenerators for harvesting tiny mechanical energy. J. Mater. Chem. A 2025, 13, 1853–1862. [Google Scholar] [CrossRef]
- Wu, H.; Shan, C.; Fu, S.; Li, K.; Wang, J.; Xu, S.; Li, G.; Zhao, Q.; Guo, H.; Hu, C. Efficient energy conversion mechanism and energy storage strategy for triboelectric nanogenerators. Nat. Commun. 2024, 15, 6558. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, M.-G.; Kang, W.; Park, H.-M.; Cho, Y.; Hong, J.; Kim, T.-H.; Kim, S.-H.; Cho, S.-K.; Kang, D.; et al. Pulse-Charging Energy Storage for Triboelectric Nanogenerator Based on Frequency Modulation. Nano-Micro Lett. 2025, 17, 210. [Google Scholar] [CrossRef]
- Fang, C.; Tong, T.; Bu, T.; Cao, Y.; Xu, S.; Qi, Y.; Zhang, C. Overview of Power Management for Triboelectric Nanogenerators. Adv. Intell. Syst. 2020, 2, 1900129. [Google Scholar] [CrossRef]
- Tattershall, E.; Nenadic, G.; Stevens, R.D. Modelling trend life cycles in scientific research using the Logistic and Gompertz equations. Scientometrics 2021, 126, 9113–9132. [Google Scholar] [CrossRef]















| Region | Renewable Power Capacity (GW) | Renewable Share of the Electricity Capacity (%) | Growth in Comparison to 2020 (%) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2020 | 2021 | 2022 | 2023 | 2024 | 2020 | 2021 | 2022 | 2023 | 2024 | 2021 | 2022 | 2023 | 2024 | |
| Asia | 1301.39 | 1456.18 | 1631.02 | 1960.96 | 2382.47 | 35.7 | 37.7 | 39.7 | 43.4 | 47.5 | 11.89 | 25.33 | 50.68 | 83.07 |
| Europe | 606.05 | 647.05 | 705.14 | 778.51 | 848.63 | 49.7 | 51.6 | 54.0 | 56.6 | 60.2 | 6.77 | 16.35 | 28.46 | 40.03 |
| North America | 424.73 | 462.21 | 492.47 | 527.11 | 573.01 | 30.6 | 32.3 | 33.7 | 35.2 | 37.3 | 8.82 | 15.95 | 24.10 | 34.91 |
| South America | 233.17 | 247.26 | 267.92 | 290.64 | 313.16 | 67.5 | 68.4 | 70.5 | 71.6 | 73.0 | 6.04 | 14.90 | 24.65 | 34.31 |
| Eurasia | 106.88 | 112.37 | 115.82 | 122.31 | 130.62 | 29.9 | 30.9 | 31.4 | 32.5 | 34.2 | 5.14 | 8.36 | 14.44 | 22.21 |
| Oceania | 47.04 | 52.35 | 58.78 | 65.11 | 73.78 | 44.9 | 47.4 | 50.2 | 53.3 | 56.0 | 11.29 | 24.96 | 38.41 | 56.85 |
| Africa | 53.68 | 55.58 | 59.29 | 62.67 | 66.89 | 22.3 | 22.6 | 23.5 | 24.4 | 25.4 | 3.54 | 10.45 | 16.75 | 24.61 |
| Middle East | 23.62 | 25.88 | 30.73 | 36.9 | 40.22 | 7.1 | 7.6 | 8.8 | 10.1 | 10.8 | 9.57 | 30.10 | 56.22 | 70.28 |
| Central America and the Caribbean | 16.43 | 17.06 | 17.61 | 18.67 | 19.27 | 35.7 | 37.2 | 38.1 | 38.7 | 38.7 | 3.83 | 7.18 | 13.63 | 17.29 |
| Global Total | 2812.98 | 3075.93 | 3378.79 | 3862.88 | 4448.05 | 36.6 | 38.4 | 40.3 | 43.1 | 46.4 | 9.35 | 20.11 | 37.32 | 58.13 |
| Items | TENG | EMG | PENG | Refs. |
|---|---|---|---|---|
| Materials | Triboelectric materials such as PTFE, PDMS, PEEK, PC, PP, PVDF, PA, PVC, FEP, PET, PEI, PS, PI, Nitrile, and PPS [227,228], biomaterial, cellulosic [229], organic materials [230], cadmium metal/cellulose composite [231], covalent organic [232], carbon nanomaterial, PVDF, CoNi [233], biopolymers [234], textiles [235], hydrogels [236], composite materials [237], fluorocarbon–graphene [238], rubber [239] | Magnetic materials [240], Fe3O4 [241], rubidium [242], dielectric genes [243], ZnO nanoparticle, TiO2, Ni-ZnO, MXene, In2O3 nanoparticle [244] | Piezoelectric materials [245] such as ceramics, single crystal of ZnO and CdS, polycrystal of BaTiO and PZT, polymers, and composites [246], LiNbO3, quartz, and PVDF [247], KNN, graphene [248], porous materials [249] | [227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249] |
| Working mechanism | The working mechanism of TENGs are related to mechanical energy–electricity conversion with operation modes including contact–separation type [250], sliding mode [251], free-standing mode [252], and single electrode mode [253] | EMG generates electric energy based on the electromagnetic induction principle that occurs as a magnetic flux in the closed circuit that generates the induced current under electromotive force induction [254] | PENG produces electricity based on the triboelectric effect as a material subjected to a mechanical pressure [255] | [250,251,252,253,254,255] |
| Input energy sources | TENG can convert vast mechanical energy into electricity such as mechanical energy [256], biomechanical energy [257], wind energy [258], wave energy [259], sound energy [260], vibration energy [261] | EMG can convert mechanical energy into electricity such as wave energy [262], kinetic energy [263], wind energy [264], motion, vibration [265] | PENG can transform mechanical energy into electricity such as mechanical stress [266], sound pressure [267], vibration [268] | [256,257,258,259,260,261,262,263,264,265,266,267,268] |
| Energy production | Producing electricity [269] | Generating electrical energy [270] | Producing electrical energy [271] | [269,270,271] |
| Advantages | Robust harvester [272], ability to work in extreme environments [273], light weight, high elasticity, high performance, high durability [274], renewable energy, clean energy [275], portability and flexibility [276] | Stability, high efficiency in energy conversion [277], low-input jigger frequency [278], renewable energy [279] | Some limitations that FENGs have been faced with include high precision, speed, and fast response [280], sonosensitizer [281] | [272,273,274,275,276] |
| Disadvantages | Some disadvantages that TENGs have been faced with include limitations in energy density, fluctuation in input signals, attachment of dusty [282], bulk size for TENG [282] | Some limitation that EMGs have been faced with such as low output voltage [283], power density limitation [284] | Some disadvantages that PENGs have been faced with include toxicity from metal particles and processing such as lead, electronic waste of piezoelectric materials, limitation of potential application by limiting temperature of piezoelectric material [285] | [282,283,284,285] |
| Potential applications | Smart active sensors [156], wearable sensors [286] self-powered wearable electronics [287], motion monitoring [288], e-skin technology [289], humidity sensors [290], intelligent sensors [291], ethanol sensing [292], monitoring structural health [293], deep learning applications [294], Internet of Things [295], human–machine [296], self-charging [297], self-powered sensor [298], aero-engine pipeline monitoring [299], clinical and healthcare [300], sports applications [301] | Some potential applications of EMGs include health monitoring [302], intelligent sensing [303], autonomous sensors [304], portable devices [305] | Harvesting energy, human healthcare [306], biomedical applications [307], harvesting energy, sensors [308], self-powered sensors [309], biomedical applications [310], sensors, precise instruments, health monitoring devices [311] | [156,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311] |
| Integration ability | Alone Integrated into hybrid energy systems: TENG and electromagnetic nanogenerators [312], solar cells [313], piezoelectric nanogenerators in hybrid energy systems [314], TENG-EMG-PENG hybrid energy system for harvesting wind and vibration energies [315] | EMG integrated with TENG for harvesting energy and monitoring speed [316], a hybrid EMG and TENG system for harvesting wind energy [317], EMG-TENG hybrid system for harvesting wave energy [318] | PENG integrated with TENG for harvesting energy [319], PENG-TENG hybrid energy system for harvesting kinetic energy [320], PENG integrated with TENG and EMG to harvesting rotational energy [321] | [313,314,315,316,317,318,319,320,321,322], |
| Performance | Some TENGs have recently exhibited high performance such as a TENG with ultra-high current density with 8.75 A per square meter [323], a TENG with high output performance with an output voltage of 800 V [324], a TENG with a VOC of 420 V, Isc of 17 µA, and charge density of 1.3 µC [325], a TENG with an output power of 42.68 mW [326] | Some EMGs have recently generated electricity with peak output voltage of 86.4 V and peak current of 19.85 mA [327], an EMG with VOC of 8 V and Isc of 2.3 mA [325], an EMG with highest output power of 4.4 mW [326] | Some PENGs have recently shown good performance such as a PENG with an output voltage of 160 V [328], a PENG with power density of 28 µW/cm2 and VOC of 153 V [329], a PENG with a VOC of 14.59 V, Isc of 205.7 nA, and peak power density of about 7.5 mW/m2 [330] | [323,324,325,326,327,328,329,330] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, V.-L.; Chung, C.-K. Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review. Micromachines 2025, 16, 1203. https://doi.org/10.3390/mi16111203
Trinh V-L, Chung C-K. Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review. Micromachines. 2025; 16(11):1203. https://doi.org/10.3390/mi16111203
Chicago/Turabian StyleTrinh, Van-Long, and Chen-Kuei Chung. 2025. "Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review" Micromachines 16, no. 11: 1203. https://doi.org/10.3390/mi16111203
APA StyleTrinh, V.-L., & Chung, C.-K. (2025). Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review. Micromachines, 16(11), 1203. https://doi.org/10.3390/mi16111203

